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Abstract: The hot rolling mills of steel plants are in the process of transformation from manual operation to artificial 

intelligence (AI) based automatic operations. Most of the mill input parameters required by the automation system are recorded 

from different sensors installed in the mill except the flow stress of rolled material. Generally a semi-empirical equation is used 

that correlate flow stress with strain, strain rate and temperature during rolling. The coefficients and exponents of the empirical 

equations are calculated from experimental data with parameter estimation techniques. This paper discusses the application of 

artificial neural network (ANN) for calculation of flow stress of material from experimental data. Experiments were conducted 

in a dynamic thermo-mechanical simulator to measure flow stress of steel at different strain, strain rate and temperature. The 

experimental data was used to calculate coefficients of empirical equations using multivariable optimization techniques. The 

data was also used to formulate an ANN model using feed forward network. The ANN model was trained with 

backpropagation algorithm. The ANN method is found to be more accurate than the semi-empirical equations for correlating 

the flow stress with strain, strain rate and temperature. 
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1. Introduction 

Hot rolling is an important process in a steel plant. The 

operators of hot rolling mills decide draft and speed schedule 

of the mill using their expertise and experience. A 

transformation is under progress in rolling mills to replace 

the manual operation with artificial intelligence (AI) based 

operation. Online mathematical models, data-driven models 

and hybrid models are being formulated to calculate mill 

parameters accurately. However, all these models require 

accurate and reliable data. Most of the input parameters like 

material temperature, strip width, roll gap, speed, roll force, 

torque required for model based operation are recorded from 

mill sensors. However, flow stress of steel, which is an 

important input parameter cannot be measured online 

because no such sensor is available at present which can 

measure flow stress online during rolling process.  

Semi-empirical equations, which correlate flow stress 

with strain, strain rate and temperature, are available in 

literature. Researchers like Sellars [1], Shida [2], Hatta [3] 

and Zyuzin [4] proposed such equations. The coefficient 

and exponents of these equations are calculated from 

experimental data using parameter estimation techniques. 

This paper describes three models including two semi-

empirical equations based models and a feed-forward 

artificial neural network (ANN) model developed for 

calculation of flow stress of material from experimental 

data. Experiments were conducted in a dynamic thermo-

mechanical simulator to measure flow stress of steel at 

different strain, strain rate and temperature. Coefficients of 

semi-empirical equations were calculated using 

multivariable optimization techniques. ANN model was 

trained and validated with the experimental data.  
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2. Experimental Determination of Flow 

Stress 

Experiments were conducted in Gleeble-3500, a dynamic 

thermo mechanical simulator, for determining flow stress 

values of steel at different strain, strain rate and temperature. 

The chemical composition of steel samples is given in Table-1. 

Table 1. Chemical Composition of Steel (% of wt). 

C Mn Si S P Al Nb Fe 

0.16 1.48 0.22 0.008 0.027 0.024 0.049 Balance 

Twelve numbers of cylindrical samples of 12mm diameter 

and 15mm height were prepared. These samples are tested at 

4 distinct temperatures (900°C, 1000°C, 1050°C, 1100°C) 

each at 3 strain rates (1 sec
-1

, 10 sec 
-1

, 100 sec
-1

). So, there 

were 12 tests in total. In each test, strain values were varied 

between 0 to 0.6. The flow stress vs. strain data points were 

recorded from the data recording system of Gleeble-3500. 

The number data points obtained from of each test is not 

same. When the speed of deformation is high, the number of 

data points obtained from the experiment was less and when 

the speed of deformation is low, the number of data points 

obtained from the experiment was more.  

Table 2. Summary of Experimental Results of Flow Stress. 

Test ID Temperature (°C) Strain Rate (sec-1) Strain No of Data Points 
Flow Stress (MPa) 

Min Max 

1 900 1 0-0.6 353 39.197 220.46 

2 1000 1 0-0.6 354 39.736 165.66 

3 1050 1 0-0.6 353 34.508 138.42 

4 1100 1 0-0.6 351 24.47 113.94 

5 900 10 0-0.6 74 53.686 254.29 

6 1000 10 0-0.6 71 51.167 205.15 

7 1050 10 0-0.6 71 57.58 171.94 

8 1100 10 0-0.6 72 55.531 153.48 

9 900 100 0-0.6 104 58.8 291.08 

10 1000 100 0-0.6 95 109.28 247.26 

11 1050 100 0-0.6 89 82.042 226.6 

12 1100 100 0-0.6 92 15.543 199.15 

 

Table-2 shows the summary of experimental results 

obtained from 12 number of tests. The minimum and 

maximum values of flow stress are given in the Table. 

Number of data points recorded in each test is also given the 

table. Total number of data points from these 12 tests was 

found to be 2079.  

3. Development of Semi Empirical 

Models 

Sellars derived a basic flow stress constitutive equation for 

metals from first principle using Arrhenius-type temperature 

sensitivity term in the form of a hyperbolic sine function 

given by [1],  
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where, R is universal gas constant, TA is the absolute 

temperature and Q is the activation energy of plastic 

deformation. The parameters C, α , n and Q are coefficients 

of Equation (1).  

The flow stress equation relating strain, strain rate and 

temperature was proposed by Zyuzin [4] is given below:  
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where, A, m, n and p are coefficients of Zyuzin’s equations 

for the tested steel material. 

To obtain the coefficients of equation (1) and equation 

(2), a cost function was formulated. The cost function is 

root mean square error between predicted and measured 

flow stress values of i
th

 data point. The cost function needs 

to be minimized to obtain the coefficients of equation (1) 

and (2).  
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where n is the number of experimental data points, iσ is the 

predicted flow stress of ith datapoint and i
mσ is the 

experimentally measured flow stress of ith data point. To 

minimize the cost function for obtaining the coefficients, a 

series of multivariable optimization algorithms were used. 

The selected algorithms were: Powell’s BOTM algorithm [5], 

Hooke & Jeeves’s HOOKE algorithm [5], Rosenbrock’s 

ROSENB [5] algorithm and Genetic Algorithm (GA) [6] [7]. 

Four multivariable optimization algorithms namely BOTM, 

HOOKE, ROSENB and GA were coded into computer 

program in Visual Basic. Net program. Root mean square 

error between predicted and measured flow stress were 

minimized by all of these four algorithms. The values of 

coefficients of equations (1) and (2) obtained for lowest 

values of cost function from the 4 algorithms are given in 

Table-3 and Table-4 respectively. 

Table 3. Estimated Material Coefficients of Equation (1). 

C (sec-1) α  (MPa-1) n Q (KJ/mole) 

1.5x1010 0.08888 0.8975 340.9 
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Table 4. Estimated Material Coefficients Equation (2). 

A (MPa) m n p 

2174 0.145 0.1 0.00255 

4. Development of Artificial Neural 

Network Model 

A ANN model was developed to correlate flow stress with 

strain, strain rate and temperature. Figure-1 shows a 

representative diagram which shows that the flow stress is 

related to stain strain rate and temperature. The ANN 

network is a feed-forward network. Back-propagation 

algorithm is used to train the network. The detailed 

methodology of the algorithm of the backpropagation 

algorithm is described in literature [8] [9].  

 

Figure 1. Typical structure of ANN Model for Flow Stress Calculation. 

In the representative figure shown in Figure-1, three layers 

are shown. The input layer has 3 nodes, the hidden layer has 

two nodes and output layer has one node. Initially all the 

input parameters were normalized so that the values of strain, 

strain rate and temperature remain between 0 and 1. The 

output flow stress values were also normalized so that the 

values remain between 0 and 1. The transfer function for 

hidden nodes and output nodes were selected as “tansig” 

function. During training of ANN, a variable learning rate 

was used. The methodology is discussed in an earlier 

publication [10]. The number of nodes of hidden layers was 

changed from 2 to 3 and 4 during training of ANN. 

5. Results and Discussion 

Flow stress of were calculated using two semi-empirical 

equations (1) and (2) for different strain, strain rate and 

temperature with coefficients listed in Table-3 and Table-4 

respectively. The calculated values of flow stress were 

compared corresponding measured values of flow stress 

using a statistical parameter: square of Pearson product 

moment correlation coefficient (r-square). The r-square 

values of two empirical methods and ANN method is shown 

in Figure-2. In this figure, Emp1 represents the method of 

flow stress calculation using the semi-empirical Equation-1 

and Emp2 represents method of flow stress calculation using 

the semi-empirical Equation-2. It is found that the r-square 

value between the calculated and measured flow stress values 

was 0.709 for equation (1) and 0.959 for equation (2). 

Equation (1) is less accurate than equation (2) because the 

strain term is not incorporated in the equation (1). The r-

square value for the ANN model predicted output was found 

to be 0.984 after a large number of training and simulations 

of ANN model with different number nodes (2, 3, 4) of 

hidden layer and variable learning rates. A similar model of 

flow stress of aluminum alloy was carried out by Quan et al 

[11]. They have used a 3-5-5-1 BP-ANN network structure to 

get high accuracy. The present work has the advantage of 

lesser number of hidden nodes to obtain a comparable 

accuracy. 

 

Figure 2. Comparison of performance of different modelling methods for 

calculation of flow stress. 

The values of flow stress calculated by ANN model and 

measured in Gleeble-3500 for strain rate 1 sec
-1 

is shown in 

Figure-3. The dotted points shows the experimental values of 

flow stress and the continuous line shows the flow stress 

calculated by the ANN model. It can be seen from the figure 

that there is closeness between the predicted and measured 

values of flow stress. 

 

Figure 3. Measured and ANN Model calculated Flow Stress at strain rate = 

1 sec-1. 

Similarly, the values of flow stress calculated by ANN 

model and measured in Gleeble-3500 for strain rate 10 sec
-1 

and 100 sec 
-1 

are shown in Figure-4 and Figure-5 

respectively. It can be seen from the figures that there is 

closeness between the predicted and measured values of flow 

stress. The ANN model is more accurate than semi-empirical 
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model because the non-linearity in the experimental data is 

well addressed in the ANN model.  

 

Figure 4. Measured and ANN Model calculated Flow Stress at strain rate = 

100 sec-1. 

 

Figure 5. Measured and ANN Model calculated Flow Stress at strain rate = 

10 sec-1. 

6. Conclusions 

The traditional semi-empirical equation based models for 

calculation of flow stress of material at different strain, strain 

rate and temperature have been replaced by ANN based 

model. The model is more accurate than the semi-empirical 

equation based models. It is also found that there is close 

match between the calculated flow stress at different strain, 

strain rate and temperature. 
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