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Abstract: Microdata publishing should be privacy preserved as it may contain some sensitive information about an 

individual. Various anonymization techniques, generalization and bucketization, have been designed for privacy preserving 

microdata publishing. Generalization does not work better for high dimensional data. Bucketization failed to prevent 

membership disclosure and does not show a clear separation between quasi-identifiers and sensitive attributes. There are 

number of attributes in each record which can be categorized as 1) Identifiers such as Name or Social Security Number are the 

attributes that can be uniquely identify the individuals. 2)Some attributes may be Sensitive Attributes(SAs) such as disease and 

salary and 3) Some may be Quasi Identifiers (QI) such as zipcode, age, and sex whose values, when taken together, can 

potentially identify an individual. Data anonymization enables the transfer of information across a boundary, such as between 

two departments within an agency or between two agencies, while reducing the risk of unintended disclosure, and in certain 

environments in a manner that enables evaluation and analytics post-anonymization. Here, we present a novel technique called 

slicing which partitions the data both horizontally and vertically. It preserves better data utility than generalization and is more 

effective than bucketization in terms of sensitive attribute. 
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1. Introduction 

Data Anonymization is a technology that convert clear text 

into a non-human readable form. Data anonymization 

technique for privacy-preserving data publishing has received 

a lot of attention in recent years. Detailed data (also called as 

micro-data) contains information about a person, a household 

or an organization. 

Data mining is the process of analysing data from different 

perspectives and summarizing it into useful information. 

Knowledge discovery from databases, techniques like 

clustering, association rules, regression, classification, 

decision trees, genetic algorithm etc. are used nowadays. 

Data mining is also used in areas of Science and Engineering 

such as genetics and bioinformatics.       

In both generalization and bucketization, one first removes 

identifiers from the data and then partitions tuples into 

buckets. The two techniques differ in the next step. 

Generalization transforms the QI-values in each bucket into 

“less specific but semantically consistent” values so that 

tuples in the same bucket cannot be distinguished by their QI 

values. In bucketization, one separates the SAs from the QIs 

by randomly permuting the SA values in each bucket. The 

anonymized data consists of a set of buckets with permuted 

sensitive attribute values. 

 

Fig. 1.1. Anonymization of data 

In this information age, data and knowledge extracted by 

data mining techniques represent a key asset driving research, 

innovation, and policy-making activities. Many agencies and 

organizations have recognized the need of accelerating such 

trends and are therefore willing to release the data they 

collected to other parties, for purposes such as research and 

the formulation of public policies. However the data 

publication processes are today still very difficult. Data often 

contains personally identifiable information and therefore 

releasing such data may result in privacy breaches, this is the 
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case for the examples of micro-data, e.g., census data and 

medical data. This thesis studies how we can publish and 

share micro data in a privacy-preserving manner. This present 

an extensive study of this problem along three dimensions: 

Designing a simple, intuitive, and robust privacy model, 

Designing an effective anonymization technique that works 

on sparse and high-dimensional data and developing a 

methodology for evaluating privacy and utility tradeoffs. 

 

Fig. 1.2. Privacy preserving model for data 

1.1. Organization 

Here, we are studying slicing for privacy-preserving data 

publishing. Our contributions include the following. First, we 

introduce slicing as a new technique for privacy preserving 

data publishing. Slicing has several advantages when 

compared with generalization and bucketization. It preserves 

better data utility than generalization. It preserves more 

attribute correlations with the SAs than bucketization. It can 

also handle high-dimensional data and data without a clear 

separation of QIs and SAs. 

Second, we show that slicing can be effectively used for 

preventing attribute disclosure, based on the privacy 

requirement of ℓ-diversity. We introduce a notion called ℓ-

diverse slicing, which ensures that the adversary cannot learn 

the sensitive value of any individual with a probability 

greater than 1/ℓ. 

Third, we develop an efficient algorithm for computing the 

sliced table that satisfies ℓ-diversity. Our algorithm partitions 

attributes into columns, applies column generalization, and 

partitions tuples into buckets. Attributes that are highly-

correlated are in the same column; this preserves the 

correlations between such attributes. The associations 

between uncorrelated attributes are broken; the provides 

better privacy as the associations between such attributes are 

less-frequent and potentially identifying. 

Fourth, we describe the intuition behind membership 

disclosure and explain how slicing prevents membership 

disclosure. A bucket of size k can potentially match kc tuples 

where c is the number of columns. Because only k of the kc 

tuples are actually in the original data, the existence of the 

other kc −k tuples hides the membership information of 

tuples in the original data. 

Finally, we conduct extensive workload experiments. Our 

results confirm that slicing preserves much better data utility 

than generalization. In workloads involving the sensitive 

attribute, slicing is also more effective than bucketization. In 

some classification experiments, slicing shows better 

performance than using the original data (which may overfit 

the model). Our experiments also show the limitations of 

bucketization in membership disclosure protection and 

slicing remedies these limitations. 

2. Existing Technology 

There are two existing systems considered in this paper: 

Generalization and bucketization with which slicing is 

compared later. 

Record linkage model attack and attribute linkage and 

attribute linkage model attack are different attacks occurred 

at the time of microdata publishing. There are some 

principles of privacy preserving as follows:- 

2.1. K-Anonymity 

Samarati and Sweeney introduced k-anonymity as the 

property that each record is indistinguishable with at least k-1 

other records with respect to the quasi-identifier. In other 

words, k-anonymity requires that each QI group contains at 

least k records. k-anonymity is one of the most classic 

models, which prevents joining attacks by generalizing or 

suppressing portions of the released micro data so that no 

individual can be uniquely distinguished from a group of size 

k. k-Anonymity attributes are suppressed or generalized until 

each row is identical with at least k-1 other rows. 

2.1.1. K-Anonymity using Generalization 

The generalization hierarchy transforms the k-anonymity 

problem into a partitioning problem. Specifically, this 

approach consists of the following two steps. The first step is 

to find a partitioning of the dimensional space, where n is the 

number of attributes in the quasi identifier, such that each 

partition contains at least k records. Then the records in each 

partition are generalized so that they all share the same quasi-

identifier value. The Generalization method substitutes the 

values of a given attribute with more general values. 

Generalization can be applied at the following levels. 

Attribute Generalization (AG): generalization is performed at 

the level of column; a generalization step generalizes all the 

values in the column. 

Cell Generalization (CG): generalization is performed on 

single cells; as a result a generalized table may contain, for a 

specific column, values at different generalization levels. 

There are two types of generalization exist namely domain 

generalization hierarchy and value generalization hierarchy. 

The domain generalization hierarchy of a domain topic is a 

lattice, where each vertex represents a generalized table that 

is obtained by generalizing the involved attributes according 

to the Corresponding domain tuple and by suppressing a 

certain number of tuples to fulfill the k-anonymity constraint. 

Figure illustrates an example of domain generalization 

hierarchy obtained by considering marital status and sex its 

quasi-identifying attributes i.e. by considering the domain 

tuple (Ma, So). Each path in the hierarchy corresponds to a 

generalization strategy according to which the original 

private table PT can be generalized.   
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Fig. 1.3. Domain generalization hierarchy

K-anonymity model for multiple sensitive

mentioned that there are three kinds of information

1)Identity Disclosure: When an individual

particular record in the published data 

disclosure.  

2)Attribute Disclosure: When sensitive

regarding individual is disclosed called as attribute

3)Membership Disclosure: When information

individual’s information belongs from data

not is disclosed is said to be membership disclosure.

2.1.2. Attacks on k-Anonymity 

Here, we studied two attacks on 

homogeneity attack and the background knowledge

1) Homogeneity Attack:  

Sensitive information may be revealed based

information if the non sensitive information

is known to the attacker. If there is no

sensitive attributes for a particular block 

getting sensitive information this method 

positive disclosure.  

2) Background Knowledge Attack:  

If the user has some extra demographic 

can be linked to the released data which helps

some of the sensitive attributes, then

information about an individual might

information. Such a method of revealing

known as negative disclosure.  

2.1.3. Limitations of k-Anonymity 

(1) K-anonymity cannot hide whether a given

in the database,  

(2) K-anonymity reveals individuals' sensitive

(3) K-anonymity cannot protect against

background knowledge,  

(4) Mere knowledge of the k-anonymization

be violated by the privacy,  

(5) K-anonymity does not applied to 

data without complete loss of utility.  

(6) If a dataset is anonymized and pub
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hierarchy 

sensitive attributes 

information disclosure.  

individual is linked to a 

 called as identity 

sensitive information 

attribute disclosure.  

information regarding 

data set is present or 

disclosure. 

 k-anonymity: the 

knowledge attack.  

based on the known 

information of an individual 

no diversity in the 

 then it occurs. To 

 is also known as 

information which 

helps in neglecting 

then some sensitive 

might be revealing 

revealing information is 

given individual is 

sensitive attributes,  

against attacks based on 

anonymization algorithm can 

 high-dimensional 

published more than 

once then special methods are required.

2.2. ℓ-Diverse Slicing 

In the above example, tuple

bucket. In general, a tuple t 

buckets. We now extend the above

case and introduce the notion 

an adversary who knows all the

infer t’s sensitive value from the

to determine which buckets t 

matching buckets of t. Tuple

matching buckets. Let p(t,B) 

bucket B (the procedure for

described later in this section).

example, p(t1,B1) = 1 and p(t1

the adversary computes p(t, s),

sensitive value s. p(t, s) is calculated

probability. Specifically, let p(s

takes sensitive value s given 

according to the law of total probability,

is: 

p(t, s) =∑b   

In the rest of this section, we

the two probabilities: p(t,B) and

Given a tuple t and a sliced bucket

is in B depends on the fraction

match the column values in B

does not appear in the corresponding

certain that t is not in B. In general,

match |B|c tuples, where |B| is

Without additional knowledge,

column values are independent;

tuples is equally likely to 

probability that t is in B depends

tuples that match t. 

We formalize the above analysis.

between t’s column values {t[C

column values {B[C1],B[C2], ·

≤ c − 1) be the fraction of occurrences

let fc(t,B) be the fraction of occurrences

B[Cc − {S}]). Note that, Cc − 

in the sensitive column. For example,

= 1/4 = 0.25 and f2(t1,B1) = 2/

0 and f2(t1,B2) = 0. Intuitively,

degree on column Ci, between 

each possible candidate tuple

original tuple, the matching degree

product of the matching degree

Q1_i_c fi(t,B). Note that Pt f(

matching bucket of t, f(t,B) = 

matching buckets, t’s total matching

is f(t) = PB f(t,B).  The probability

p(t,B) =f(t,B)/f(t) 

Computing p(s|t,B). Suppose

determine t’s sensitive value,

 47 

required. 

tuple t1 has only one matching 

 can have multiple matching 

above analysis to the general 

 of ℓ-diverse slicing. Consider 

the QI values of t and attempts to 

the sliced table. He first needs 

 may reside in, i.e., the set of 

Tuple t can be in any one of its 

 is the probability that t is in 

for computing p(t,B) will be 

section). For example, in the above 

1,B2) = 0. In the second step, 

), the probability that t takes a 

calculated using the law of total 

s|t,B) be the probability that t 

 that t is in bucket B, then 

probability, the probability p(t, s) 

   p(t,B)p(s|t,B)                     (1) 

we will show how to compute 

and p(s|t,B).Computing p(t,B): 

bucket B, the probability that t 

fraction of t’s column values that 

B. If some column value of t 

corresponding column of B, it is 

general, bucket B can potentially 

is the number of tuples in B. 

knowledge, one has to assume that the 

independent; therefore each of the |B|c 

 be an original tuple. The 

depends on the fraction of the |B|c 

analysis. We consider the match 

C1], t[C2], · · · , t[Cc]} and B’s 

· · · ,B[Cc]}. Let fi(t,B) (1 ≤ i 

occurrences of t[Ci] in B[Ci] and 

occurrences of t[Cc −{S}] in 

 {S} is the set of QI attributes 

example, in Table 1(f), f1(t1,B1) 

/4 = 0.5. Similarly, f1(t1,B2) = 

Intuitively, fi(t,B) measures the matching 

 tuple t and bucket B. Because 

tuple is equally likely to be an 

degree between t and B is the 

degree on each column, i.e.,f(t,B) = 

t,B) = 1 and when B is not a 

 0. Tuple t may have multiple 

matching degree in the whole data 

probability that t is in bucket B is: 

Suppose that t is in bucket B, to 

value, one needs to examine the 
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sensitive column of bucket B. Since the 

contains the QI attributes, not all sensitive

sensitive value. Only those sensitive values

match t’s QI values are t’s candidate 

Without additional knowledge, all candidate

(including duplicates) in a bucket are equally

D(t,B) be the distribution of t’s candidate sensitive

bucket B. Definition 6 (D(t,B)). Any sensitive

associated with t[Cc − {S}] in B is a candidate

value for t (there are fc(t,B) candidate sensitive

B, including duplicates). Let D(t,B) be the 

candidate sensitive values in B and 

probability of the sensitive  s in the distribution.

For example, in Table 1(f), D(t1,B1) = (dyspepsia

0.5) and therefore D(t1,B1)[dyspepsia] = 0

p(s|t,B) is exactly D(t,B)[s], i.e., p(s|t,B) =D

Slicing. Once we have computed p(t,B) and

able to compute the probability p(t, s) based

(1). We can show when t is in the data, the 

takes a sensitive value sum up to 1. 

Fact 1. For any tuple t ∈ D, Ps p(t, s) = 1.

ℓ-Diverse slicing is defined based on the 

Definition(7) for ℓ-diverse slicing: A tuple

diversity iff for any sensitive value s, 

p(t, s) ≤ 1/ℓA sliced table satisfies ℓ-diversity

tuple in it satisfies ℓ-diversity. 

Our analysis directly show that from an

table, an adversary cannot correctly learn the

of any individual with a probability greater

that once we have computed the probability

a sensitive value, we can also use slicing

measures such as t-closeness. 

2.2.1. Attacks on L-Diversity  

In this section we studied two attacks 

Skewness attack and the Similarity attack.  

1) Skewness Attack :l-diversity cannot

disclosure whenever the overall distribution

satisfied. 

2) Similarity Attack :When the sensitive

are distinct but also semantically similar, 

learn important information.  

2.2.2. Limitations of L-Diversity  

While the l-diversity principle represents

with respect to k-anonymity in protecting

disclosure, it has several drawbacks. It is

achieve l – Diversity and it also may not 

privacy protection. 

3. Slicing 

Generally in privacy preserving, there 

due to the presence of the adversary’s background

in real life application. Data contains sensitive

about individuals.These data when published

privacy. The current practice in data publishing

on policies and guidelines as to what types
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 sensitive column 

sensitive values can be t’s 

values whose QI values 

 sensitive values. 

candidate sensitive values 

equally possible. Let 

sensitive values in 

sensitive value that is 

candidate sensitive 

sensitive values for t in 

 distribution of the 

 D(t,B)[s] be the 

distribution. 

dyspepsia :0.5, flu : 

.5. The probability 

D(t,B)[s].ℓ-Diverse 

and p(s|t,B), we are 

based on the Equation 

 probabilities that t 

1. 

 probability p(t, s). 

tuple t satisfies ℓ-

diversity iff every 

an ℓ-diverse sliced 

the sensitive value 

greater than 1/ℓ. Note 

probability that a tuple takes 

slicing for other privacy 

 on l-diversity: the 

 

cannot prevent attribute 

distribution is skewed and 

sensitive attribute values 

 an adversary can 

represents an important step 

protecting against attribute 

is very difficult to 

 provide sufficient 

is loss of security 

background knowledge 

sensitive information 

published violate the 

publishing relies mainly 

types of data can be 

published and on agreements 

The approach alone may lead to

insufficient protection. Privacy

(PPDP) provides methods and

information while preserving data

like bucketization, generalization

privacy however they exhibit

overcome this problem an algorithm

3.1. Architecture of Slicing and

Fig. 1.4. Slicing

Let T be the microdata table

attributes: A = {A1,A2, . . . ,A

are {D[A1],D[A2], . . . ,D[A

represented as t = (t[A1], t[A2]

≤ d) is the Ai value of t. 

Definition 1 (Attribute partition

partition consists of several 

attribute belongs to exactly 

attributes is called a column.

columns C1,C2, . . . ,Cc, then ∪

i1 6= i2 ≤ c, Ci1 ∩ Ci2 = ∅. 

For simplicity of discussion,

sensitive attribute S. If the data

attributes, one can either consider

consider their joint distribution.

contains S. Without loss of generality,

contains S be the last column C

the sensitive column. All other

contain only QI attributes. 

Definition 2 (Tuple partition 

consists of several subsets of T

to exactly one subset. Each subset

Specifically, let there be b buckets

i=1Bi = T and for any 1 ≤ 

∅.Definition 3 (Slicing). Given

of T is given by an attribute partition

For example, Table 1(e) and Table

In Table 1(e), the attribute 

Slicing 

 on the use of published data. 

to excessive data distortion or 

Privacy-preserving data publishing 

and tools for publishing useful 

data privacy. Many algorithms 

generalization have tried to preserve 

exhibit attribute disclosure. So to 

algorithm called slicing is used. 

and Formulization 

 

Slicing Architecture 

table to be published. T contains d 

,Ad} and their attribute domains 

Ad]}. A tuple t ∈  T can be 

2], ..., t[Ad]) where t[Ai] (1 ≤ i 

partition and columns). An attribute 

 subsets of A,such that each 

 one subset. Each subset of 

column. Specifically, let there be c 

∪c i=1Ci = A and for any 1 ≤ 

discussion, we consider only one 

data contains multiple sensitive 

consider them separately or 

distribution. Exactly one of the c columns 

generality, let the column that 

Cc. This column is also called 

other columns {C1,C2, . . . ,Cc−1} 

 and buckets). A tuple partition 

T, such that each tuple belongs 

subset of tuples is called a bucket. 

buckets B1,B2, . . . ,Bb, then ∪b 

 i1 6= i2 ≤ b, Bi1 ∩ Bi2 = 

Given a microdata table T, a slicing 

partition and a tuple partition. 

Table 1(f) are two sliced tables. 

 partition is {{Age}, {Sex}, 
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{Zipcode}, {Disease}} and the tuple partition is {{t1, t2, t3, 

t4}, {t5, t6, t7, t8}}. In Table 1(f), the attribute partition is 

{{Age, Sex}, {Zipcode, Disease}} and the tuple partition is 

{{t1, t2, t3, t4}, {t5, t6, t7, t8}}. Often times, slicing also 

involves column generalization. 

Definition 4 (Column Generalization). Given a microdata 

table T and a column Ci = {Ai1,Ai2, . . . ,Aij}, a column 

generalization for Ci is defined as a set of non-overlapping j-

dimensional regions that completely cover D[Ai1] × D[Ai2] 

× . . . × D[Aij ]. A column generalization maps each value of 

Ci to the region in which the value is contained. 

Column generalization ensures that one column satisfies 

the k-anonymity requirement. It is a multidimensional 

encoding and can be used as an additional step in slicing. 

Specifically, a general slicing algorithm consists of the 

following three phases: attribute partition, column 

generalization, and tuple partition. Because each column 

contains much fewer attributes than the whole table, attribute 

partition enables slicing to handle high-dimensional data. A 

key notion of slicing is that of matching buckets. 

Definition 5 (Matching Buckets). Let {C1,C2, . . . ,Cc} be 

the c columns of a sliced table. Let t be a tuple, and t[Ci] be 

the Ci value of t. Let B be a bucket in the sliced table, and 

B[Ci] be the multiset of Ci values in B. We say that B is a 

matching bucket of t iff for all 1 ≤ i ≤ c, t[Ci] ∈ B[Ci]. For 

example, consider the sliced table shown in Table 1(f), and 

consider t1 = (22,M, 47906, dyspepsia). Then, the set of 

matching buckets for t1 is {B1}. 

Table 1: An original microdata table and its anonymized 

versions using various anonymization techniques 

Table 1(a). The original table 

Age Sex Zipcode Disease 

22 M 47906 Dyspepsia 

22 F 47906 Flu 

33 F 47905 Flu 

52 F 47905 Bronchitis 

54 M 47302 Flu 

60 M 47302 Dyspepsia 

60 M 47304 Dyspepsia 

64 F 47304 Gastritis 

Table 1(b). The generalized table 

Age Sex Zipcode Disease 

[20-52] 

[20-52] 

[20-52] 

[20-52] 

* 

* 

* 

* 

4790* 

4790* 

4790* 

4790* 

Dyspepsia 

Flu 

Flu 

Bronchitis 

[54-64] 

[54-64] 

[54-64] 

[54-64] 

* 

* 

* 

* 

4730* 

4730* 

4730* 

4730* 

Flu 

Dyspepsia 

Dyspepsia 

Gastritis 

 

Table 1(c). The Bucketized table 

Age Sex Zipcode Disease 

22 

22 

33 

52 

M 

F 

F 

F 

47906 

47906 

47905 

47905 

Flu 

Dyspepsia 

Bronchitis 

Flu 

54 

60 

60 

64 

M 

M 

M 

F 

47302 

47302 

47304 

47304 

Gastritis 

Flu 

Dyspepsia 

dyspepsia 

Table 1(d). Multiset based generalization 

Age Sex Zipcode Disease 

22:2,33:1, 52:1 

22:2,33:1, 52:1 

22:2,33:1, 52:1 

22:2,33:1, 52:1 

M:1,F:3 

M:1,F:3 

M:1,F:3 

M:1,F:3 

47905:2, 

47906:2 

47905:2, 

47906:2 

47905:2, 

47906:2 

47905:2, 

47906:2 

Dyspepsia 

Flu 

Flu 

Bronchitis 

54:1,60:2, 64:1 

54:1,60:2, 64:1 

54:1,60:2, 64:1 

54:1,60:2, 64:1 

M:3,F:1 

M:3,F:1 

M:3,F:1 

M:3,F:1 

47302:2, 

47304:2 

47302:2, 

47304:2 

47302:2, 

47304:2 

47302:2, 

47304:2 

Flu 

Dyspepsia 

Dyspepsia 

Gastritis 

Table 1(e). One attribute per column slicing 

Age Sex Zipcode Disease 

22 

22 

33 

52 

F 

M 

F 

F 

47906 

47905 

47906 

47905 

Flu 

Flu 

Dyspepsia 

Bronchitis 

54 

60 

60 

64 

M 

F 

M 

M 

47302 

47304 

47302 

47304 

Dyspepsia 

Gastritis 

Dyspepsia 

Flu 

Table 1(f). The sliced table 

(Age,Sex) (Zipcode,Disease) 

(22,M) 

(22,F) 

(33,F) 

(52,F) 

(47905,Flu) 

(47906,Dysp.) 

(47905,Bronchitis) 

(47906,Flu) 

(54,M) 

(60,M) 

(60,M) 

(64,F) 

(47304,Gast.) 

(47302,Flu) 

(47302,Dysp.) 

(47304,Dysp.) 

3.2. Comparison with Generalization 

There are several types of recodings for generalization. 

The recoding that preserves the most information is local 
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recoding. In local recoding, one first groups tuples into 

buckets and then for each bucket, one replaces all values of 

one attribute with a generalized value. Such a recoding is 

local because the same attribute value may be generalized 

differently when they appear in different buckets. We now 

show that slicing preserves more information than such a 

local recoding approach, assuming that the same tuple 

partition is used. We achieve this by showing that slicing is 

better than the following enhancement of the local recoding 

approach. Rather than using a generalized value to replace 

more specific attribute values, one uses the multiset of exact 

values in each bucket. For example, Table 1(b) is a 

generalized table, and Table 1(d) is the result of using 

multisets of exact values rather than generalized values. For 

the Age attribute of the first bucket, we use the multiset of 

exact values {22,22,33,52} rather than the generalized 

interval. The multiset of exact values provides more 

information about the distribution of values in each attribute 

than the generalized interval. Therefore, using multisets of 

exact values preserves more information than generalization. 

However, we observe that this multiset-based generalization 

is equivalent to a trivial slicing scheme where each column 

contains exactly one attribute, because both approaches 

preserve the exact values in each attribute but break the 

association between them within one bucket. For example, 

Table 1(e) is equivalent to Table 1(d). Now comparing Table 

1(e) with the sliced table shown in Table 1(f), we observe 

that while one-attribute-per-column slicing preserves 

attribute distributional information, it does not preserve 

attribute correlation, because each attribute is in its own 

column. In slicing, one groups correlated attributes together 

in one column and preserves their correlation. For example, 

in the sliced table shown in Table 1(f), correlations between 

Age and Sex and correlations between Zipcode and Disease 

are preserved. In fact, the sliced table encodes the same 

amount of information as the original data with regard to 

correlations between attributes in the same column. Another 

important advantage of slicing is its ability to handle high 

dimensional data. By partitioning attributes into columns, 

slicing reduces the dimensionality of the data. 

Each column of the table can be viewed as a sub-table with 

a lower dimensionality. Slicing is also different from the 

approach of publishing multiple independent sub-tables in 

that these sub-tables are linked by the buckets in slicing. 

3.3. Comparison with Bucketization 

To compare slicing with bucketization, we first note that 

bucketization can be viewed as a special case of slicing, 

where there are exactly two columns: one column contains 

only the SA, and the other contains all the QIs. The 

advantages of slicing over bucketization can be understood as 

follows. First, by partitioning attributes into more than two 

columns, slicing can be used to prevent membership 

disclosure. Our empirical evaluation on a real dataset shows 

that bucketization does not prevent membership disclosure. 

Second, unlike bucketization, which requires a clear 

separation of QI attributes and the sensitive attribute, slicing 

can be used without such a separation. For dataset such as the 

census data, one often cannot clearly separate QIs from SAs 

because there is no single external public database that one 

can use to determine which attributes the adversary already 

knows. Slicing can be useful for such data. Finally, by 

allowing a column to contain both some QI attributes and the 

sensitive attribute, attribute correlations between the sensitive 

attribute and the QI attributes are preserved. For example, in 

Table 1(f), Zipcode and Disease form one column, enabling 

inferences about their correlations. Attribute correlations are 

important utility in data publishing. For workloads that 

consider attributes in isolation, one can simply publish two 

tables, one containing all QI attributes and one containing the 

sensitive attribute. 

3.4. Privacy Threats 

When publishing microdata, there are three types of 

privacy disclosure threats. The first type is membership 

disclosure. When the dataset to be published is selected from 

a large population and the selection criteria are sensitive (e.g. 

only diabetes patients are selected), one needs to prevent 

adversaries from learning whether one’s record is included in 

the published dataset. 

The second type is identity disclosure, which occurs when 

an individual is linked to a particular record in the released 

table. In some situations, one wants to protect against identity 

disclosure when the adversary is uncertain of membership. In 

this case, protection against membership disclosure helps 

protect against identity disclosure. In other situations, some 

adversary may already know that an individual’s record is in 

the published dataset, in which case, membership disclosure 

protection either does not apply or is insufficient. 

The third type is attribute disclosure, which occurs when 

new information about some individuals is revealed, i.e., the 

released data makes it possible to infer the attributes of an 

individual more accurately than it would be possible before 

the release. Similar to the case of identity disclosure, we need 

to consider adversaries who already know the membership 

information. Identity disclosure leads to attribute disclosure. 

Once there is identity disclosure, an individual is re-

identified and the corresponding sensitive value is revealed. 

Attribute disclosure can occur with or without identity 

disclosure, e.g., when the sensitive values of all matching 

tuples are the same. 

For slicing, we consider protection against membership 

disclosure and attribute disclosure. It is a little unclear how 

identity disclosure should be defined for sliced data (or for 

data anonymized by bucketization), since each tuple resides 

within a bucket and within the bucket the association across 

different columns are hidden. In any case, because identity 

disclosure leads to attribute disclosure, protection against 

attribute disclosure is also sufficient protection against 

identity disclosure. 

We would like to point out a nice property of slicing that is 

important for privacy protection. In slicing, a tuple can 

potentially match multiple buckets, i.e., each tuple can have 

more than one matching buckets. This is different from 
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previous work on generalization and bucketization, where 

each tuple can belong to a unique equivalence-class (or 

bucket). In fact, it has been recognized that restricting a tuple 

in a unique bucket helps the adversary but does not improve 

data utility. We will see that allowing a tuple to match 

multiple buckets is important for both attribute disclosure 

protection and attribute disclosure protection. 

4. Methodology 

The key intuition that slicing provides privacy protection is 

that the slicing process ensures that for any tuple, there are 

generally multiple matching buckets. Slicing first partitions 

attributes into columns. Each column contains a subset of 

attributes. Slicing also partition tuples into buckets. Each 

bucket contains a subset of tuples. This horizontally 

partitions the table. Within each bucket, values in each 

column are randomly permutated to break the linking 

between different columns. This algorithm consists of three 

phases: attribute partitioning, column generalization, and 

tuple partitioning. We now describe the three phases:- 

4.1. Attribute Partitioning 

Highly correlated attributes are grouped together into one 

column in this attribute partitioning technique.There are three 

steps : 

4.1.1. Equal Width Partitioning 

There are two types of attribute: continuous and 

categorical. So, in this step, continuous attribute are 

converted into categorical attribute. 

In equal width partitioning, we first divide the range into N 

intervals of equal size: uniform grid if A and B are the lowest 

and highest values of the attribute. 

Width of intervals will be W=(B-A)/N 

4.1.2. Measures of Correlation 

Here,we calculate relation between two attributes..Let two 

attributes A₁ and A₂ with domains {V₁₁,V₁₂,……….V₁n₁} and 

{V₂₁,V₂₂,………V₂n₂} respectively. Their domain sizes are 

thus n₁ and n₂. Therefore, Mean square contingency 

coefficient formula is used. 

4.1.3. Attribute Clustering 

In this step,k-medoid clustering algorithm is used to 

partition attribute into columns as follows:- 

The most common realisation of k-medoid clustering is the 

Partitioning Around Medoids (PAM) algorithm: 

Algorithm 1.1 

1. Initialize: randomly select (without replacement) k of 

the n data points as the medoids 

2. Associate each data point to the closest medoid. 

("closest" here is defined using any valid distance 

metric, most commonly Euclidean distance, Manhattan 

distance or Minkowski distance) 

3. For each medoid m 

For each non-medoid data point o 

Swap m and o and compute the total cost of the 

configuration 

4. Select the configuration with the lowest cost. 

5. Repeat steps 2 to 4 until there is no change in the 

medoid. 

There can be a cluster based attribute slicing algorithm 

also as in existing systems, equal width discretization is used 

so it cannot handle skew data properly.So,to solve this 

problem,we proposed a new algorithm in proposed 

method,we use cluster based attribute algorithm for 

converting the continuous attribute into categorical 

attribute.This algorithm shows: 

Input: Vector of real valued data a=(a₁,a₂…….a₁₁) and 

number of clusters to be determined k. 

Goal: To find partition of data in k distinct clusters. 

Output: The set of cut points tₒ,t₁……...tk with 

tₒ<t₁<……..tn that defines discretization of adom(A). 

Algorithm 1.2: 

1. Compute amax=max{a₁,a₂,…….an} and 

amin=min{a₁,a₂………..an} 

2. Choose the centres as the first k distinct values of the 

attribute A. 

3. Arrange them in increasing order 

i.e.c[1]<c[2]<………c[k]. 

4. Define boundary points bo=amin, 

bj = (c[j]+c[j+1]) /2 for j=1 to k-1, bk=amax 

5. Find the closest cluster to ai. 

6. Recompute the centres of the cluster as the average of 

the values in each cluster. 

7. Find the closest cluster to ai from the possible   

clusters {j-1,j,j+1} 

8. Determination of cut points:- 

tₒ = amin 

for i= 1to k-1 

do 

ti=(c[i]+c[i+1]) /2 

9. end for 

10. tk=amax 

11. Apply formula of measures of correlation 

12. Apply attribute clustering algorithm 

13. Apply attribute partitioning algorithm 

4.2. Column Generalization 

First, column generalization may be required for 

identity/membership disclosure protection. If a column value 

is unique in a column, a tuple with this unique column value 

can only have one matching bucket. This is not good for 

privacy protection as in the case of 

generalization/bucketization where each tuple can belong to 

one equivalent class. 

� Given microdata table T and column 

Ci={Ai1,Ai2,…..Aij} 

� Column generation for Ci is defined as set of non-

overlapping j-dimensional regions that completely 

cover D[Ai1] x D[Ai2] x ……. D[Aij] 

� Column gen. maps each value of Ci to the region in 

which the value is contained. 

� It may be required for membership disclosure 
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protection and privacy protection.  

4.3 Tuple Partitioning 

The algorithm maintains two data structures:  

1) A queue of buckets Q and  

2) A set of sliced buckets SB. 

Initially, Q contains only one bucket which includes all 

tuples and SB is empty. For each iteration, the algorithm 

removes a bucket from Q and splits the bucket into two 

buckets . If the sliced table after the split satisfies l-diversity, 

then the algorithm puts the two buckets at the end of the 

queue Q Otherwise, we cannot split the bucket anymore and 

the algorithm puts the bucket into SB.When Q becomes 

empty, we have computed the sliced table. The set of sliced 

buckets is SB. 

Algorithm 1.3 for Tuple partitioning 

1. Q = {T}, SB = ϕ. 

2. While Q is not empty 

3. Remove the first bucket B from Q, Q = Q − {B}. 

4. Split B into two buckets B1 and B2, as in Mondrian. 

5. If diversity-check (T, Q ∪ {B1, B2} ∪ SB, ℓ) 

6. Q = Q ∪ {B1, B2}. 

7. Else SB = SB ∪ {B}. 

8. Return SB. 

Algorithm 1.4 for Diversity-Check 

1. For each tuple t ∈ T, L[t] = ϕ. 

2. For each b 3. Record f (v) for each column value v in 

bucket B. 

4. for each tuple t ∈ T 

5. Calculate p(t,B) and find D(t,B). 

6. L[t] = L[t] ∪ {hp (t, B), D (t, B) i}. 

7. for each tuple t ∈ T 

8. Calculate p(t, s) for each s based on L[t]. 

9. If p(t, s) ≥ 1/ℓ, return false. 

10. Return true…buckets B in T* 

5. Experimental Results 

5.1. Membership Disclosure Protection 

We evaluate the effectiveness of slicing in membership 

disclosure protection. We first show that bucketization is 

vulnerable to membership disclosure. In both the OCC-7 

dataset and the OCC-15 dataset, each combination of QI 

values occurs exactly once. This means that the adversary 

can determine the membership information of any individual 

by checking if the QI value appears in the bucketized data. If 

the QI value does not appear in the bucketized data, the 

individual is not in the original data. Otherwise, with high 

confidence, the individual is in the original data as no other 

individual has the same QI value. 

We then show that slicing does prevent membership 

disclosure. We perform the following experiment. First, we 

partition attributes into c columns based on attribute 

correlations. We set c ∈ {2, 5}. In other words, we compare 

2-column-slicing with 5-column-slicing. For example, when 

we set c = 5, we obtain 5 columns. In OCC-7,{Age, Marriage, 

Gender} is one column and each other attribute is in its own 

column. In OCC-15, the 5 columns are: {Age, Work class, 

Education, Education-Num, Cap-Gain, Hours, Salary}, 

{Marriage, Occupation, Family, Gender}, {Race,Country}, 

{Final -Weight}, and {Cap-Loss}. 

Then, we randomly partition tuples into buckets of size p 

(the last bucket may have fewer than p tuples). As described 

above, we collect statistics about the following two measures 

in our experiments: (1) the number of fake tuples and (2) the 

number of matching buckets for original v.s. the number of 

matching buckets for fake tuples. The number of fake tuples. 

Figure shows the experimental results on the number of fake 

tuples, with respect to the bucket size p. Our results show 

that the number of fake tuples is large enough to hide the 

original tuples. For example, for the OCC-7 dataset, even for 

a small bucket size of 100 and only 2 columns, slicing 

introduces as many as 87936 fake tuples, which is nearly 

twice the number of original tuples (45222). When we 

increase the bucket size, the number of fake tuples becomes 

larger. This is consistent with our analysis that a bucket of 

size k can potentially match kc –k fake tuples. In particular, 

when we increase the number of columns c, the number of 

fake tuples becomes exponentially larger. In almost all 

experiments, the number of fake tuples is larger than the 

number of original tuples. The existence of such a large 

number of fake tuples provides protection for membership 

information of the original tuples. The number of matching 

buckets. We categorize the tuples (both original tuples and 

fake tuples) into three categories: (1) ≤ 10: tuples that have at 

most 10 matching buckets, (2) 10−20: tuples that have more 

than 10 matching buckets but at most 20 matching buckets, 

and (3) > 20: tuples that have more than 20 matching buckets. 

For example, the “original-tuples(≤ 10)” bar gives the 

number of original tuples that have at most 10 matching 

buckets and the “fake-tuples(> 20)” bar gives the number of 

fake tuples that have more than 20 matching buckets. 

Because the number of fake tuples that have at most 10 

matching buckets is very large, we omit the“fake-tuples(≤ 

10)”bar from the figures to make the figures more readable. 

Our results show that, even when we do random grouping, 

many fake tuples have a large number of matching 

buckets.For example, for the OCC-7 dataset, for a small p = 

100 and c = 2, there are 5325 fake tuples that have more than 

20 matching buckets; the number is 31452 for original tuples. 

The numbers are even closer for larger p and c values. This 

means that a larger bucket size and more columns provide 

better protection against membership disclosure. Although 

many fake tuples have a large number of matching buckets, 

in general, original tuples have more matching buckets than 

fake tuples. As we can see from the figures, a large fraction 

of original tuples have more than 20 matching buckets while 

only a small fraction of fake tuples have more than 20 tuples. 

This is mainly due to the fact that we use random grouping in 

the experiments. The results of random grouping are that the 

number of fake tuples is very large but most fake tuples have 

very few matching buckets. When we aim at protecting 

membership information, we can design more effective 
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grouping algorithms to ensure better protection against 

membership disclosure. The design of tuple grouping 

algorithms is left to future work. 

6. Discussions and Future Work 

A new approach called slicing is for privacy-preserving 

microdata publishing. Slicing overcomes the limitations of 

generalization and bucketization and preserves better utility 

while protecting against privacy threats. We illustrate how to 

use slicing to prevent attribute disclosure and membership 

disclosure. Our experiments show that slicing preserves 

better data utility than generalization and is more effective 

than bucketization in workloads involving the sensitive 

attribute. 

The general methodology proposed by this work is that: 

before anonymizing the data, one can analyze the data 

characteristics and use these characteristics in data 

anonymization. The rationale is that one can design better 

data anonymization techniques when we know the data 

better.We show that attribute correlations can be used for 

privacy attacks.We have also shown that cluster based 

attribute slicing can also be done to achieve attribute 

partitioning. 

This work motivates several directions for future research. 

First, in this paper, we consider slicing where each attribute 

is in exactly one column. An extension is the notion of 

overlapping slicing, which duplicates an attribute in more 

than one columns. This releases more attribute correlations. 

For example, in Table 1(f), one could choose to include the 

Disease attribute also in the first column. That is, the two 

columns are {Age,Sex,Disease} and {Zipcode,Disease}. This 

could provide better data utility, but the privacy implications 

need to be carefully studied and understood. It is interesting 

to study the tradeoff between privacy and utility . 

Second, we plan to study membership disclosure 

protection in more details. Our experiments show that 

random grouping is not very effective. We plan to design 

more effective tuple grouping algorithms. 

Third, slicing is a promising technique for handling high-

dimensional data. By partitioning attributes into columns,we 

protect privacy by breaking the association of uncorrelated 

attributes and preserve data utility by preserving the 

association between highly-correlated attributes. For example, 

slicing can be used for anonymizing transaction databases, 

which has been studied recently in. 

Finally, while a number of anonymization techniques have 

been designed, it remains an open problem on how to use the 

anonymized data. In our experiments, we randomly generate 

the associations between column values of a bucket.This may 

lose data utility. Another direction to design data mining 

tasks using the anonymized data computed by various 

anonymization techniques. 
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