

American Journal of Networks and Communications
2015; 4(3-1): 45-53

Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/ajnc)

doi: 10.11648/j.ajnc.s.2015040301.18

ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Privacy preserving data publishing through slicing

Shivani Rohilla, Megha Sharma, A. Kulothungan, Manish Bhardwaj

Department of Computer science and Engineering, SRM University, NCR Campus, Modinagar, Ghaziabad, India

Email address:
shivani.engineer@gmail.com (S. Rohilla), megha.tech09@gmail.com (M. Sharma), kulosoft@gmail.com (A. Kulothungan),

aapkaapna13@gmail.com (M. Bhardwaj)

To cite this article:
Shivani Rohilla, Megha Sharma, A. Kulothungan, Manish Bhardwaj. Privacy Preserving Data Publishing through Slicing. American Journal

of Networks and Communications. Special Issue: Ad Hoc Networks. Vol. 4, No. 3-1, 2015, pp. 45-53. doi: 10.11648/j.ajnc.s.2015040301.18

Abstract: Microdata publishing should be privacy preserved as it may contain some sensitive information about an

individual. Various anonymization techniques, generalization and bucketization, have been designed for privacy preserving

microdata publishing. Generalization does not work better for high dimensional data. Bucketization failed to prevent

membership disclosure and does not show a clear separation between quasi-identifiers and sensitive attributes. There are

number of attributes in each record which can be categorized as 1) Identifiers such as Name or Social Security Number are the

attributes that can be uniquely identify the individuals. 2)Some attributes may be Sensitive Attributes(SAs) such as disease and

salary and 3) Some may be Quasi Identifiers (QI) such as zipcode, age, and sex whose values, when taken together, can

potentially identify an individual. Data anonymization enables the transfer of information across a boundary, such as between

two departments within an agency or between two agencies, while reducing the risk of unintended disclosure, and in certain

environments in a manner that enables evaluation and analytics post-anonymization. Here, we present a novel technique called

slicing which partitions the data both horizontally and vertically. It preserves better data utility than generalization and is more

effective than bucketization in terms of sensitive attribute.

Keywords: PPDP, AG, CG, PT

1. Introduction

Data Anonymization is a technology that convert clear text

into a non-human readable form. Data anonymization

technique for privacy-preserving data publishing has received

a lot of attention in recent years. Detailed data (also called as

micro-data) contains information about a person, a household

or an organization.

Data mining is the process of analysing data from different

perspectives and summarizing it into useful information.

Knowledge discovery from databases, techniques like

clustering, association rules, regression, classification,

decision trees, genetic algorithm etc. are used nowadays.

Data mining is also used in areas of Science and Engineering

such as genetics and bioinformatics.

In both generalization and bucketization, one first removes

identifiers from the data and then partitions tuples into

buckets. The two techniques differ in the next step.

Generalization transforms the QI-values in each bucket into

“less specific but semantically consistent” values so that

tuples in the same bucket cannot be distinguished by their QI

values. In bucketization, one separates the SAs from the QIs

by randomly permuting the SA values in each bucket. The

anonymized data consists of a set of buckets with permuted

sensitive attribute values.

Fig. 1.1. Anonymization of data

In this information age, data and knowledge extracted by

data mining techniques represent a key asset driving research,

innovation, and policy-making activities. Many agencies and

organizations have recognized the need of accelerating such

trends and are therefore willing to release the data they

collected to other parties, for purposes such as research and

the formulation of public policies. However the data

publication processes are today still very difficult. Data often

contains personally identifiable information and therefore

releasing such data may result in privacy breaches, this is the

46 Shivani Rohilla et al.: Privacy Preserving Data Publishing through Slicing

case for the examples of micro-data, e.g., census data and

medical data. This thesis studies how we can publish and

share micro data in a privacy-preserving manner. This present

an extensive study of this problem along three dimensions:

Designing a simple, intuitive, and robust privacy model,

Designing an effective anonymization technique that works

on sparse and high-dimensional data and developing a

methodology for evaluating privacy and utility tradeoffs.

Fig. 1.2. Privacy preserving model for data

1.1. Organization

Here, we are studying slicing for privacy-preserving data

publishing. Our contributions include the following. First, we

introduce slicing as a new technique for privacy preserving

data publishing. Slicing has several advantages when

compared with generalization and bucketization. It preserves

better data utility than generalization. It preserves more

attribute correlations with the SAs than bucketization. It can

also handle high-dimensional data and data without a clear

separation of QIs and SAs.

Second, we show that slicing can be effectively used for

preventing attribute disclosure, based on the privacy

requirement of ℓ-diversity. We introduce a notion called ℓ-

diverse slicing, which ensures that the adversary cannot learn

the sensitive value of any individual with a probability

greater than 1/ℓ.

Third, we develop an efficient algorithm for computing the

sliced table that satisfies ℓ-diversity. Our algorithm partitions

attributes into columns, applies column generalization, and

partitions tuples into buckets. Attributes that are highly-

correlated are in the same column; this preserves the

correlations between such attributes. The associations

between uncorrelated attributes are broken; the provides

better privacy as the associations between such attributes are

less-frequent and potentially identifying.

Fourth, we describe the intuition behind membership

disclosure and explain how slicing prevents membership

disclosure. A bucket of size k can potentially match kc tuples

where c is the number of columns. Because only k of the kc

tuples are actually in the original data, the existence of the

other kc −k tuples hides the membership information of

tuples in the original data.

Finally, we conduct extensive workload experiments. Our

results confirm that slicing preserves much better data utility

than generalization. In workloads involving the sensitive

attribute, slicing is also more effective than bucketization. In

some classification experiments, slicing shows better

performance than using the original data (which may overfit

the model). Our experiments also show the limitations of

bucketization in membership disclosure protection and

slicing remedies these limitations.

2. Existing Technology

There are two existing systems considered in this paper:

Generalization and bucketization with which slicing is

compared later.

Record linkage model attack and attribute linkage and

attribute linkage model attack are different attacks occurred

at the time of microdata publishing. There are some

principles of privacy preserving as follows:-

2.1. K-Anonymity

Samarati and Sweeney introduced k-anonymity as the

property that each record is indistinguishable with at least k-1

other records with respect to the quasi-identifier. In other

words, k-anonymity requires that each QI group contains at

least k records. k-anonymity is one of the most classic

models, which prevents joining attacks by generalizing or

suppressing portions of the released micro data so that no

individual can be uniquely distinguished from a group of size

k. k-Anonymity attributes are suppressed or generalized until

each row is identical with at least k-1 other rows.

2.1.1. K-Anonymity using Generalization

The generalization hierarchy transforms the k-anonymity

problem into a partitioning problem. Specifically, this

approach consists of the following two steps. The first step is

to find a partitioning of the dimensional space, where n is the

number of attributes in the quasi identifier, such that each

partition contains at least k records. Then the records in each

partition are generalized so that they all share the same quasi-

identifier value. The Generalization method substitutes the

values of a given attribute with more general values.

Generalization can be applied at the following levels.

Attribute Generalization (AG): generalization is performed at

the level of column; a generalization step generalizes all the

values in the column.

Cell Generalization (CG): generalization is performed on

single cells; as a result a generalized table may contain, for a

specific column, values at different generalization levels.

There are two types of generalization exist namely domain

generalization hierarchy and value generalization hierarchy.

The domain generalization hierarchy of a domain topic is a

lattice, where each vertex represents a generalized table that

is obtained by generalizing the involved attributes according

to the Corresponding domain tuple and by suppressing a

certain number of tuples to fulfill the k-anonymity constraint.

Figure illustrates an example of domain generalization

hierarchy obtained by considering marital status and sex its

quasi-identifying attributes i.e. by considering the domain

tuple (Ma, So). Each path in the hierarchy corresponds to a

generalization strategy according to which the original

private table PT can be generalized.

 American Journal of

Fig. 1.3. Domain generalization hierarchy

K-anonymity model for multiple sensitive

mentioned that there are three kinds of information

1)Identity Disclosure: When an individual

particular record in the published data

disclosure.

2)Attribute Disclosure: When sensitive

regarding individual is disclosed called as attribute

3)Membership Disclosure: When information

individual’s information belongs from data

not is disclosed is said to be membership disclosure.

2.1.2. Attacks on k-Anonymity

Here, we studied two attacks on

homogeneity attack and the background knowledge

1) Homogeneity Attack:

Sensitive information may be revealed based

information if the non sensitive information

is known to the attacker. If there is no

sensitive attributes for a particular block

getting sensitive information this method

positive disclosure.

2) Background Knowledge Attack:

If the user has some extra demographic

can be linked to the released data which helps

some of the sensitive attributes, then

information about an individual might

information. Such a method of revealing

known as negative disclosure.

2.1.3. Limitations of k-Anonymity

(1) K-anonymity cannot hide whether a given

in the database,

(2) K-anonymity reveals individuals' sensitive

(3) K-anonymity cannot protect against

background knowledge,

(4) Mere knowledge of the k-anonymization

be violated by the privacy,

(5) K-anonymity does not applied to

data without complete loss of utility.

(6) If a dataset is anonymized and pub

American Journal of Networks and Communications 2015; 4(3-1): 45-53

hierarchy

sensitive attributes

information disclosure.

individual is linked to a

 called as identity

sensitive information

attribute disclosure.

information regarding

data set is present or

disclosure.

 k-anonymity: the

knowledge attack.

based on the known

information of an individual

no diversity in the

 then it occurs. To

 is also known as

information which

helps in neglecting

then some sensitive

might be revealing

revealing information is

given individual is

sensitive attributes,

against attacks based on

anonymization algorithm can

 high-dimensional

published more than

once then special methods are required.

2.2. ℓ-Diverse Slicing

In the above example, tuple

bucket. In general, a tuple t

buckets. We now extend the above

case and introduce the notion

an adversary who knows all the

infer t’s sensitive value from the

to determine which buckets t

matching buckets of t. Tuple

matching buckets. Let p(t,B)

bucket B (the procedure for

described later in this section).

example, p(t1,B1) = 1 and p(t1

the adversary computes p(t, s),

sensitive value s. p(t, s) is calculated

probability. Specifically, let p(s

takes sensitive value s given

according to the law of total probability,

is:

p(t, s) =∑b

In the rest of this section, we

the two probabilities: p(t,B) and

Given a tuple t and a sliced bucket

is in B depends on the fraction

match the column values in B

does not appear in the corresponding

certain that t is not in B. In general,

match |B|c tuples, where |B| is

Without additional knowledge,

column values are independent;

tuples is equally likely to

probability that t is in B depends

tuples that match t.

We formalize the above analysis.

between t’s column values {t[C

column values {B[C1],B[C2], ·

≤ c − 1) be the fraction of occurrences

let fc(t,B) be the fraction of occurrences

B[Cc − {S}]). Note that, Cc −

in the sensitive column. For example,

= 1/4 = 0.25 and f2(t1,B1) = 2/

0 and f2(t1,B2) = 0. Intuitively,

degree on column Ci, between

each possible candidate tuple

original tuple, the matching degree

product of the matching degree

Q1_i_c fi(t,B). Note that Pt f(

matching bucket of t, f(t,B) =

matching buckets, t’s total matching

is f(t) = PB f(t,B). The probability

p(t,B) =f(t,B)/f(t)

Computing p(s|t,B). Suppose

determine t’s sensitive value,

 47

required.

tuple t1 has only one matching

 can have multiple matching

above analysis to the general

 of ℓ-diverse slicing. Consider

the QI values of t and attempts to

the sliced table. He first needs

 may reside in, i.e., the set of

Tuple t can be in any one of its

 is the probability that t is in

for computing p(t,B) will be

section). For example, in the above

1,B2) = 0. In the second step,

), the probability that t takes a

calculated using the law of total

s|t,B) be the probability that t

 that t is in bucket B, then

probability, the probability p(t, s)

 p(t,B)p(s|t,B) (1)

we will show how to compute

and p(s|t,B).Computing p(t,B):

bucket B, the probability that t

fraction of t’s column values that

B. If some column value of t

corresponding column of B, it is

general, bucket B can potentially

is the number of tuples in B.

knowledge, one has to assume that the

independent; therefore each of the |B|c

 be an original tuple. The

depends on the fraction of the |B|c

analysis. We consider the match

C1], t[C2], · · · , t[Cc]} and B’s

· · · ,B[Cc]}. Let fi(t,B) (1 ≤ i

occurrences of t[Ci] in B[Ci] and

occurrences of t[Cc −{S}] in

 {S} is the set of QI attributes

example, in Table 1(f), f1(t1,B1)

/4 = 0.5. Similarly, f1(t1,B2) =

Intuitively, fi(t,B) measures the matching

 tuple t and bucket B. Because

tuple is equally likely to be an

degree between t and B is the

degree on each column, i.e.,f(t,B) =

t,B) = 1 and when B is not a

 0. Tuple t may have multiple

matching degree in the whole data

probability that t is in bucket B is:

Suppose that t is in bucket B, to

value, one needs to examine the

48 Shivani Rohilla et al.:

sensitive column of bucket B. Since the

contains the QI attributes, not all sensitive

sensitive value. Only those sensitive values

match t’s QI values are t’s candidate

Without additional knowledge, all candidate

(including duplicates) in a bucket are equally

D(t,B) be the distribution of t’s candidate sensitive

bucket B. Definition 6 (D(t,B)). Any sensitive

associated with t[Cc − {S}] in B is a candidate

value for t (there are fc(t,B) candidate sensitive

B, including duplicates). Let D(t,B) be the

candidate sensitive values in B and

probability of the sensitive s in the distribution.

For example, in Table 1(f), D(t1,B1) = (dyspepsia

0.5) and therefore D(t1,B1)[dyspepsia] = 0

p(s|t,B) is exactly D(t,B)[s], i.e., p(s|t,B) =D

Slicing. Once we have computed p(t,B) and

able to compute the probability p(t, s) based

(1). We can show when t is in the data, the

takes a sensitive value sum up to 1.

Fact 1. For any tuple t ∈ D, Ps p(t, s) = 1.

ℓ-Diverse slicing is defined based on the

Definition(7) for ℓ-diverse slicing: A tuple

diversity iff for any sensitive value s,

p(t, s) ≤ 1/ℓA sliced table satisfies ℓ-diversity

tuple in it satisfies ℓ-diversity.

Our analysis directly show that from an

table, an adversary cannot correctly learn the

of any individual with a probability greater

that once we have computed the probability

a sensitive value, we can also use slicing

measures such as t-closeness.

2.2.1. Attacks on L-Diversity

In this section we studied two attacks

Skewness attack and the Similarity attack.

1) Skewness Attack :l-diversity cannot

disclosure whenever the overall distribution

satisfied.

2) Similarity Attack :When the sensitive

are distinct but also semantically similar,

learn important information.

2.2.2. Limitations of L-Diversity

While the l-diversity principle represents

with respect to k-anonymity in protecting

disclosure, it has several drawbacks. It is

achieve l – Diversity and it also may not

privacy protection.

3. Slicing

Generally in privacy preserving, there

due to the presence of the adversary’s background

in real life application. Data contains sensitive

about individuals.These data when published

privacy. The current practice in data publishing

on policies and guidelines as to what types

Shivani Rohilla et al.: Privacy Preserving Data Publishing through Slicing

 sensitive column

sensitive values can be t’s

values whose QI values

 sensitive values.

candidate sensitive values

equally possible. Let

sensitive values in

sensitive value that is

candidate sensitive

sensitive values for t in

 distribution of the

 D(t,B)[s] be the

distribution.

dyspepsia :0.5, flu :

.5. The probability

D(t,B)[s].ℓ-Diverse

and p(s|t,B), we are

based on the Equation

 probabilities that t

1.

 probability p(t, s).

tuple t satisfies ℓ-

diversity iff every

an ℓ-diverse sliced

the sensitive value

greater than 1/ℓ. Note

probability that a tuple takes

slicing for other privacy

 on l-diversity: the

cannot prevent attribute

distribution is skewed and

sensitive attribute values

 an adversary can

represents an important step

protecting against attribute

is very difficult to

 provide sufficient

is loss of security

background knowledge

sensitive information

published violate the

publishing relies mainly

types of data can be

published and on agreements

The approach alone may lead to

insufficient protection. Privacy

(PPDP) provides methods and

information while preserving data

like bucketization, generalization

privacy however they exhibit

overcome this problem an algorithm

3.1. Architecture of Slicing and

Fig. 1.4. Slicing

Let T be the microdata table

attributes: A = {A1,A2, . . . ,A

are {D[A1],D[A2], . . . ,D[A

represented as t = (t[A1], t[A2]

≤ d) is the Ai value of t.

Definition 1 (Attribute partition

partition consists of several

attribute belongs to exactly

attributes is called a column.

columns C1,C2, . . . ,Cc, then ∪

i1 6= i2 ≤ c, Ci1 ∩ Ci2 = ∅.

For simplicity of discussion,

sensitive attribute S. If the data

attributes, one can either consider

consider their joint distribution.

contains S. Without loss of generality,

contains S be the last column C

the sensitive column. All other

contain only QI attributes.

Definition 2 (Tuple partition

consists of several subsets of T

to exactly one subset. Each subset

Specifically, let there be b buckets

i=1Bi = T and for any 1 ≤

∅.Definition 3 (Slicing). Given

of T is given by an attribute partition

For example, Table 1(e) and Table

In Table 1(e), the attribute

Slicing

 on the use of published data.

to excessive data distortion or

Privacy-preserving data publishing

and tools for publishing useful

data privacy. Many algorithms

generalization have tried to preserve

exhibit attribute disclosure. So to

algorithm called slicing is used.

and Formulization

Slicing Architecture

table to be published. T contains d

,Ad} and their attribute domains

Ad]}. A tuple t ∈ T can be

2], ..., t[Ad]) where t[Ai] (1 ≤ i

partition and columns). An attribute

 subsets of A,such that each

 one subset. Each subset of

column. Specifically, let there be c

∪c i=1Ci = A and for any 1 ≤

discussion, we consider only one

data contains multiple sensitive

consider them separately or

distribution. Exactly one of the c columns

generality, let the column that

Cc. This column is also called

other columns {C1,C2, . . . ,Cc−1}

 and buckets). A tuple partition

T, such that each tuple belongs

subset of tuples is called a bucket.

buckets B1,B2, . . . ,Bb, then ∪b

 i1 6= i2 ≤ b, Bi1 ∩ Bi2 =

Given a microdata table T, a slicing

partition and a tuple partition.

Table 1(f) are two sliced tables.

 partition is {{Age}, {Sex},

 American Journal of Networks and Communications 2015; 4(3-1): 45-53 49

{Zipcode}, {Disease}} and the tuple partition is {{t1, t2, t3,

t4}, {t5, t6, t7, t8}}. In Table 1(f), the attribute partition is

{{Age, Sex}, {Zipcode, Disease}} and the tuple partition is

{{t1, t2, t3, t4}, {t5, t6, t7, t8}}. Often times, slicing also

involves column generalization.

Definition 4 (Column Generalization). Given a microdata

table T and a column Ci = {Ai1,Ai2, . . . ,Aij}, a column

generalization for Ci is defined as a set of non-overlapping j-

dimensional regions that completely cover D[Ai1] × D[Ai2]

× . . . × D[Aij]. A column generalization maps each value of

Ci to the region in which the value is contained.

Column generalization ensures that one column satisfies

the k-anonymity requirement. It is a multidimensional

encoding and can be used as an additional step in slicing.

Specifically, a general slicing algorithm consists of the

following three phases: attribute partition, column

generalization, and tuple partition. Because each column

contains much fewer attributes than the whole table, attribute

partition enables slicing to handle high-dimensional data. A

key notion of slicing is that of matching buckets.

Definition 5 (Matching Buckets). Let {C1,C2, . . . ,Cc} be

the c columns of a sliced table. Let t be a tuple, and t[Ci] be

the Ci value of t. Let B be a bucket in the sliced table, and

B[Ci] be the multiset of Ci values in B. We say that B is a

matching bucket of t iff for all 1 ≤ i ≤ c, t[Ci] ∈ B[Ci]. For

example, consider the sliced table shown in Table 1(f), and

consider t1 = (22,M, 47906, dyspepsia). Then, the set of

matching buckets for t1 is {B1}.

Table 1: An original microdata table and its anonymized

versions using various anonymization techniques

Table 1(a). The original table

Age Sex Zipcode Disease

22 M 47906 Dyspepsia

22 F 47906 Flu

33 F 47905 Flu

52 F 47905 Bronchitis

54 M 47302 Flu

60 M 47302 Dyspepsia

60 M 47304 Dyspepsia

64 F 47304 Gastritis

Table 1(b). The generalized table

Age Sex Zipcode Disease

[20-52]

[20-52]

[20-52]

[20-52]

*

*

*

*

4790*

4790*

4790*

4790*

Dyspepsia

Flu

Flu

Bronchitis

[54-64]

[54-64]

[54-64]

[54-64]

*

*

*

*

4730*

4730*

4730*

4730*

Flu

Dyspepsia

Dyspepsia

Gastritis

Table 1(c). The Bucketized table

Age Sex Zipcode Disease

22

22

33

52

M

F

F

F

47906

47906

47905

47905

Flu

Dyspepsia

Bronchitis

Flu

54

60

60

64

M

M

M

F

47302

47302

47304

47304

Gastritis

Flu

Dyspepsia

dyspepsia

Table 1(d). Multiset based generalization

Age Sex Zipcode Disease

22:2,33:1, 52:1

22:2,33:1, 52:1

22:2,33:1, 52:1

22:2,33:1, 52:1

M:1,F:3

M:1,F:3

M:1,F:3

M:1,F:3

47905:2,

47906:2

47905:2,

47906:2

47905:2,

47906:2

47905:2,

47906:2

Dyspepsia

Flu

Flu

Bronchitis

54:1,60:2, 64:1

54:1,60:2, 64:1

54:1,60:2, 64:1

54:1,60:2, 64:1

M:3,F:1

M:3,F:1

M:3,F:1

M:3,F:1

47302:2,

47304:2

47302:2,

47304:2

47302:2,

47304:2

47302:2,

47304:2

Flu

Dyspepsia

Dyspepsia

Gastritis

Table 1(e). One attribute per column slicing

Age Sex Zipcode Disease

22

22

33

52

F

M

F

F

47906

47905

47906

47905

Flu

Flu

Dyspepsia

Bronchitis

54

60

60

64

M

F

M

M

47302

47304

47302

47304

Dyspepsia

Gastritis

Dyspepsia

Flu

Table 1(f). The sliced table

(Age,Sex) (Zipcode,Disease)

(22,M)

(22,F)

(33,F)

(52,F)

(47905,Flu)

(47906,Dysp.)

(47905,Bronchitis)

(47906,Flu)

(54,M)

(60,M)

(60,M)

(64,F)

(47304,Gast.)

(47302,Flu)

(47302,Dysp.)

(47304,Dysp.)

3.2. Comparison with Generalization

There are several types of recodings for generalization.

The recoding that preserves the most information is local

50 Shivani Rohilla et al.: Privacy Preserving Data Publishing through Slicing

recoding. In local recoding, one first groups tuples into

buckets and then for each bucket, one replaces all values of

one attribute with a generalized value. Such a recoding is

local because the same attribute value may be generalized

differently when they appear in different buckets. We now

show that slicing preserves more information than such a

local recoding approach, assuming that the same tuple

partition is used. We achieve this by showing that slicing is

better than the following enhancement of the local recoding

approach. Rather than using a generalized value to replace

more specific attribute values, one uses the multiset of exact

values in each bucket. For example, Table 1(b) is a

generalized table, and Table 1(d) is the result of using

multisets of exact values rather than generalized values. For

the Age attribute of the first bucket, we use the multiset of

exact values {22,22,33,52} rather than the generalized

interval. The multiset of exact values provides more

information about the distribution of values in each attribute

than the generalized interval. Therefore, using multisets of

exact values preserves more information than generalization.

However, we observe that this multiset-based generalization

is equivalent to a trivial slicing scheme where each column

contains exactly one attribute, because both approaches

preserve the exact values in each attribute but break the

association between them within one bucket. For example,

Table 1(e) is equivalent to Table 1(d). Now comparing Table

1(e) with the sliced table shown in Table 1(f), we observe

that while one-attribute-per-column slicing preserves

attribute distributional information, it does not preserve

attribute correlation, because each attribute is in its own

column. In slicing, one groups correlated attributes together

in one column and preserves their correlation. For example,

in the sliced table shown in Table 1(f), correlations between

Age and Sex and correlations between Zipcode and Disease

are preserved. In fact, the sliced table encodes the same

amount of information as the original data with regard to

correlations between attributes in the same column. Another

important advantage of slicing is its ability to handle high

dimensional data. By partitioning attributes into columns,

slicing reduces the dimensionality of the data.

Each column of the table can be viewed as a sub-table with

a lower dimensionality. Slicing is also different from the

approach of publishing multiple independent sub-tables in

that these sub-tables are linked by the buckets in slicing.

3.3. Comparison with Bucketization

To compare slicing with bucketization, we first note that

bucketization can be viewed as a special case of slicing,

where there are exactly two columns: one column contains

only the SA, and the other contains all the QIs. The

advantages of slicing over bucketization can be understood as

follows. First, by partitioning attributes into more than two

columns, slicing can be used to prevent membership

disclosure. Our empirical evaluation on a real dataset shows

that bucketization does not prevent membership disclosure.

Second, unlike bucketization, which requires a clear

separation of QI attributes and the sensitive attribute, slicing

can be used without such a separation. For dataset such as the

census data, one often cannot clearly separate QIs from SAs

because there is no single external public database that one

can use to determine which attributes the adversary already

knows. Slicing can be useful for such data. Finally, by

allowing a column to contain both some QI attributes and the

sensitive attribute, attribute correlations between the sensitive

attribute and the QI attributes are preserved. For example, in

Table 1(f), Zipcode and Disease form one column, enabling

inferences about their correlations. Attribute correlations are

important utility in data publishing. For workloads that

consider attributes in isolation, one can simply publish two

tables, one containing all QI attributes and one containing the

sensitive attribute.

3.4. Privacy Threats

When publishing microdata, there are three types of

privacy disclosure threats. The first type is membership

disclosure. When the dataset to be published is selected from

a large population and the selection criteria are sensitive (e.g.

only diabetes patients are selected), one needs to prevent

adversaries from learning whether one’s record is included in

the published dataset.

The second type is identity disclosure, which occurs when

an individual is linked to a particular record in the released

table. In some situations, one wants to protect against identity

disclosure when the adversary is uncertain of membership. In

this case, protection against membership disclosure helps

protect against identity disclosure. In other situations, some

adversary may already know that an individual’s record is in

the published dataset, in which case, membership disclosure

protection either does not apply or is insufficient.

The third type is attribute disclosure, which occurs when

new information about some individuals is revealed, i.e., the

released data makes it possible to infer the attributes of an

individual more accurately than it would be possible before

the release. Similar to the case of identity disclosure, we need

to consider adversaries who already know the membership

information. Identity disclosure leads to attribute disclosure.

Once there is identity disclosure, an individual is re-

identified and the corresponding sensitive value is revealed.

Attribute disclosure can occur with or without identity

disclosure, e.g., when the sensitive values of all matching

tuples are the same.

For slicing, we consider protection against membership

disclosure and attribute disclosure. It is a little unclear how

identity disclosure should be defined for sliced data (or for

data anonymized by bucketization), since each tuple resides

within a bucket and within the bucket the association across

different columns are hidden. In any case, because identity

disclosure leads to attribute disclosure, protection against

attribute disclosure is also sufficient protection against

identity disclosure.

We would like to point out a nice property of slicing that is

important for privacy protection. In slicing, a tuple can

potentially match multiple buckets, i.e., each tuple can have

more than one matching buckets. This is different from

 American Journal of Networks and Communications 2015; 4(3-1): 45-53 51

previous work on generalization and bucketization, where

each tuple can belong to a unique equivalence-class (or

bucket). In fact, it has been recognized that restricting a tuple

in a unique bucket helps the adversary but does not improve

data utility. We will see that allowing a tuple to match

multiple buckets is important for both attribute disclosure

protection and attribute disclosure protection.

4. Methodology

The key intuition that slicing provides privacy protection is

that the slicing process ensures that for any tuple, there are

generally multiple matching buckets. Slicing first partitions

attributes into columns. Each column contains a subset of

attributes. Slicing also partition tuples into buckets. Each

bucket contains a subset of tuples. This horizontally

partitions the table. Within each bucket, values in each

column are randomly permutated to break the linking

between different columns. This algorithm consists of three

phases: attribute partitioning, column generalization, and

tuple partitioning. We now describe the three phases:-

4.1. Attribute Partitioning

Highly correlated attributes are grouped together into one

column in this attribute partitioning technique.There are three

steps :

4.1.1. Equal Width Partitioning

There are two types of attribute: continuous and

categorical. So, in this step, continuous attribute are

converted into categorical attribute.

In equal width partitioning, we first divide the range into N

intervals of equal size: uniform grid if A and B are the lowest

and highest values of the attribute.

Width of intervals will be W=(B-A)/N

4.1.2. Measures of Correlation

Here,we calculate relation between two attributes..Let two

attributes A₁ and A₂ with domains {V₁₁,V₁₂,……….V₁n₁} and

{V₂₁,V₂₂,………V₂n₂} respectively. Their domain sizes are

thus n₁ and n₂. Therefore, Mean square contingency

coefficient formula is used.

4.1.3. Attribute Clustering

In this step,k-medoid clustering algorithm is used to

partition attribute into columns as follows:-

The most common realisation of k-medoid clustering is the

Partitioning Around Medoids (PAM) algorithm:

Algorithm 1.1

1. Initialize: randomly select (without replacement) k of

the n data points as the medoids

2. Associate each data point to the closest medoid.

("closest" here is defined using any valid distance

metric, most commonly Euclidean distance, Manhattan

distance or Minkowski distance)

3. For each medoid m

For each non-medoid data point o

Swap m and o and compute the total cost of the

configuration

4. Select the configuration with the lowest cost.

5. Repeat steps 2 to 4 until there is no change in the

medoid.

There can be a cluster based attribute slicing algorithm

also as in existing systems, equal width discretization is used

so it cannot handle skew data properly.So,to solve this

problem,we proposed a new algorithm in proposed

method,we use cluster based attribute algorithm for

converting the continuous attribute into categorical

attribute.This algorithm shows:

Input: Vector of real valued data a=(a₁,a₂…….a₁₁) and

number of clusters to be determined k.

Goal: To find partition of data in k distinct clusters.

Output: The set of cut points tₒ,t₁……...tk with

tₒ<t₁<……..tn that defines discretization of adom(A).

Algorithm 1.2:

1. Compute amax=max{a₁,a₂,…….an} and

amin=min{a₁,a₂………..an}

2. Choose the centres as the first k distinct values of the

attribute A.

3. Arrange them in increasing order

i.e.c[1]<c[2]<………c[k].

4. Define boundary points bo=amin,

bj = (c[j]+c[j+1]) /2 for j=1 to k-1, bk=amax

5. Find the closest cluster to ai.

6. Recompute the centres of the cluster as the average of

the values in each cluster.

7. Find the closest cluster to ai from the possible

clusters {j-1,j,j+1}

8. Determination of cut points:-

tₒ = amin

for i= 1to k-1

do

ti=(c[i]+c[i+1]) /2

9. end for

10. tk=amax

11. Apply formula of measures of correlation

12. Apply attribute clustering algorithm

13. Apply attribute partitioning algorithm

4.2. Column Generalization

First, column generalization may be required for

identity/membership disclosure protection. If a column value

is unique in a column, a tuple with this unique column value

can only have one matching bucket. This is not good for

privacy protection as in the case of

generalization/bucketization where each tuple can belong to

one equivalent class.

� Given microdata table T and column

Ci={Ai1,Ai2,…..Aij}

� Column generation for Ci is defined as set of non-

overlapping j-dimensional regions that completely

cover D[Ai1] x D[Ai2] x ……. D[Aij]

� Column gen. maps each value of Ci to the region in

which the value is contained.

� It may be required for membership disclosure

52 Shivani Rohilla et al.: Privacy Preserving Data Publishing through Slicing

protection and privacy protection.

4.3 Tuple Partitioning

The algorithm maintains two data structures:

1) A queue of buckets Q and

2) A set of sliced buckets SB.

Initially, Q contains only one bucket which includes all

tuples and SB is empty. For each iteration, the algorithm

removes a bucket from Q and splits the bucket into two

buckets . If the sliced table after the split satisfies l-diversity,

then the algorithm puts the two buckets at the end of the

queue Q Otherwise, we cannot split the bucket anymore and

the algorithm puts the bucket into SB.When Q becomes

empty, we have computed the sliced table. The set of sliced

buckets is SB.

Algorithm 1.3 for Tuple partitioning

1. Q = {T}, SB = ϕ.

2. While Q is not empty

3. Remove the first bucket B from Q, Q = Q − {B}.

4. Split B into two buckets B1 and B2, as in Mondrian.

5. If diversity-check (T, Q ∪ {B1, B2} ∪ SB, ℓ)

6. Q = Q ∪ {B1, B2}.

7. Else SB = SB ∪ {B}.

8. Return SB.

Algorithm 1.4 for Diversity-Check

1. For each tuple t ∈ T, L[t] = ϕ.

2. For each b 3. Record f (v) for each column value v in

bucket B.

4. for each tuple t ∈ T

5. Calculate p(t,B) and find D(t,B).

6. L[t] = L[t] ∪ {hp (t, B), D (t, B) i}.

7. for each tuple t ∈ T

8. Calculate p(t, s) for each s based on L[t].

9. If p(t, s) ≥ 1/ℓ, return false.

10. Return true…buckets B in T*

5. Experimental Results

5.1. Membership Disclosure Protection

We evaluate the effectiveness of slicing in membership

disclosure protection. We first show that bucketization is

vulnerable to membership disclosure. In both the OCC-7

dataset and the OCC-15 dataset, each combination of QI

values occurs exactly once. This means that the adversary

can determine the membership information of any individual

by checking if the QI value appears in the bucketized data. If

the QI value does not appear in the bucketized data, the

individual is not in the original data. Otherwise, with high

confidence, the individual is in the original data as no other

individual has the same QI value.

We then show that slicing does prevent membership

disclosure. We perform the following experiment. First, we

partition attributes into c columns based on attribute

correlations. We set c ∈ {2, 5}. In other words, we compare

2-column-slicing with 5-column-slicing. For example, when

we set c = 5, we obtain 5 columns. In OCC-7,{Age, Marriage,

Gender} is one column and each other attribute is in its own

column. In OCC-15, the 5 columns are: {Age, Work class,

Education, Education-Num, Cap-Gain, Hours, Salary},

{Marriage, Occupation, Family, Gender}, {Race,Country},

{Final -Weight}, and {Cap-Loss}.

Then, we randomly partition tuples into buckets of size p

(the last bucket may have fewer than p tuples). As described

above, we collect statistics about the following two measures

in our experiments: (1) the number of fake tuples and (2) the

number of matching buckets for original v.s. the number of

matching buckets for fake tuples. The number of fake tuples.

Figure shows the experimental results on the number of fake

tuples, with respect to the bucket size p. Our results show

that the number of fake tuples is large enough to hide the

original tuples. For example, for the OCC-7 dataset, even for

a small bucket size of 100 and only 2 columns, slicing

introduces as many as 87936 fake tuples, which is nearly

twice the number of original tuples (45222). When we

increase the bucket size, the number of fake tuples becomes

larger. This is consistent with our analysis that a bucket of

size k can potentially match kc –k fake tuples. In particular,

when we increase the number of columns c, the number of

fake tuples becomes exponentially larger. In almost all

experiments, the number of fake tuples is larger than the

number of original tuples. The existence of such a large

number of fake tuples provides protection for membership

information of the original tuples. The number of matching

buckets. We categorize the tuples (both original tuples and

fake tuples) into three categories: (1) ≤ 10: tuples that have at

most 10 matching buckets, (2) 10−20: tuples that have more

than 10 matching buckets but at most 20 matching buckets,

and (3) > 20: tuples that have more than 20 matching buckets.

For example, the “original-tuples(≤ 10)” bar gives the

number of original tuples that have at most 10 matching

buckets and the “fake-tuples(> 20)” bar gives the number of

fake tuples that have more than 20 matching buckets.

Because the number of fake tuples that have at most 10

matching buckets is very large, we omit the“fake-tuples(≤

10)”bar from the figures to make the figures more readable.

Our results show that, even when we do random grouping,

many fake tuples have a large number of matching

buckets.For example, for the OCC-7 dataset, for a small p =

100 and c = 2, there are 5325 fake tuples that have more than

20 matching buckets; the number is 31452 for original tuples.

The numbers are even closer for larger p and c values. This

means that a larger bucket size and more columns provide

better protection against membership disclosure. Although

many fake tuples have a large number of matching buckets,

in general, original tuples have more matching buckets than

fake tuples. As we can see from the figures, a large fraction

of original tuples have more than 20 matching buckets while

only a small fraction of fake tuples have more than 20 tuples.

This is mainly due to the fact that we use random grouping in

the experiments. The results of random grouping are that the

number of fake tuples is very large but most fake tuples have

very few matching buckets. When we aim at protecting

membership information, we can design more effective

 American Journal of Networks and Communications 2015; 4(3-1): 45-53 53

grouping algorithms to ensure better protection against

membership disclosure. The design of tuple grouping

algorithms is left to future work.

6. Discussions and Future Work

A new approach called slicing is for privacy-preserving

microdata publishing. Slicing overcomes the limitations of

generalization and bucketization and preserves better utility

while protecting against privacy threats. We illustrate how to

use slicing to prevent attribute disclosure and membership

disclosure. Our experiments show that slicing preserves

better data utility than generalization and is more effective

than bucketization in workloads involving the sensitive

attribute.

The general methodology proposed by this work is that:

before anonymizing the data, one can analyze the data

characteristics and use these characteristics in data

anonymization. The rationale is that one can design better

data anonymization techniques when we know the data

better.We show that attribute correlations can be used for

privacy attacks.We have also shown that cluster based

attribute slicing can also be done to achieve attribute

partitioning.

This work motivates several directions for future research.

First, in this paper, we consider slicing where each attribute

is in exactly one column. An extension is the notion of

overlapping slicing, which duplicates an attribute in more

than one columns. This releases more attribute correlations.

For example, in Table 1(f), one could choose to include the

Disease attribute also in the first column. That is, the two

columns are {Age,Sex,Disease} and {Zipcode,Disease}. This

could provide better data utility, but the privacy implications

need to be carefully studied and understood. It is interesting

to study the tradeoff between privacy and utility .

Second, we plan to study membership disclosure

protection in more details. Our experiments show that

random grouping is not very effective. We plan to design

more effective tuple grouping algorithms.

Third, slicing is a promising technique for handling high-

dimensional data. By partitioning attributes into columns,we

protect privacy by breaking the association of uncorrelated

attributes and preserve data utility by preserving the

association between highly-correlated attributes. For example,

slicing can be used for anonymizing transaction databases,

which has been studied recently in.

Finally, while a number of anonymization techniques have

been designed, it remains an open problem on how to use the

anonymized data. In our experiments, we randomly generate

the associations between column values of a bucket.This may

lose data utility. Another direction to design data mining

tasks using the anonymized data computed by various

anonymization techniques.

References

[1] Aggarwal.C, “On K-Anonymity and the Curse of
Dimensionality,” Proc. Int‟l Conf.Very Large Data Bases
(VLDB), 2005.

[2] Brickell.J and Shmatikov, “The Cost of Privacy:Destruction of
Data Mining Utility in Anonymized Data Publishing”,
Proc.ACM SIGKDD int‟l conf. Knowledge Discovery and
Data Mining (KDD), 2008.

[3] Ghinita.G,Tao.Y, and Kalnis.P, “OnThe Anonymization of
Sparse High Dimensional Data,” Proc. IEEE 24th Int‟l Conf.
Data Eng. (ICDE), 2008.

[4] He.Y and Naughton.J, “Anonymization of Set-Valued Data via
Top-Down, local Generalization,” Proc.IEEE 25th Int‟l
Conf.Data Engineering (ICDE), 2009.

[5] Inan.A,Kantarcioglu.M,and Bertino.e, “Using Anonymized
Data for Classification,” Proc. IEEE 25th Int‟l Conf. Data
Eng. (ICDE), pp. 429-440, 2009.

[6] Li.T and Li.N, “On the Tradeoff between Privacy and Utility
in Data Publishing,” Proc.ACM SIGKDD Int‟l
Conf.Knowledge Discovery and Data Mining (KDD), 2009.

[7] Li.N, Li.T, “Slicing: The new Approach for Privacy
Preserving Data publishing”, IEEE Transaction on knowledge
and data Engineering, vol.24, No, 3, March 2012.

[8] L. Kaufman and P. Rousueeuw. Finding Groups in Data: an
Introduction to Cluster Analysis. John Wiley& Sons, 1990.

[9] X. Xiao and Y. Tao. Anatomy: simple and effective privacy
preservation. In VLDB, pages 139–150, 2006.

[10] X. Xiao and Y. Tao. Output perturbation with query relaxation.
In VLDB, pages 857–869, 2008.

[11] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing
transaction databases for publication. In KDD, pages 767–775,
2008

