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Abstract: In paper are considered laws of functioning of discrete determined dynamical systems and specific processes of 

functioning of such systems. As basic mathematical model of laws of functioning of systems are used automata models with a 

fundamentally new extension of these models to models with a countable infinite sets of states. This expansion is possible 

thanks to the proposed and developed by Tverdohlebov V. A. the mathematical apparatus of geometrical images of automaton 

mappings. Are presented results of development of regularization methods for partially set automata models of systems based 

on use of geometrical images of automatons mappings and numerical interpolation methods. Also in paper are considered a 

problem of complexity estimation of laws in a whole and specific processes of functioning of dynamic systems. For these 

purpose are used recurrent models and methods and also a specific mathematical apparatus of discrete riv-functions. Is spent 

classification by complexity estimations of automata models. 

Keywords: Discrete Dynamical System, Mathematical Model, Automata Model, Geometrical Image of Automaton, 

Recurrent Model, Interpolation, Discrete Riv-Function 

 

1. Introduction 

In the theory of experiments with automatons initial base 

is decoding of a contained of "black box". Initial data is the 

information on variants of a contained of black box. Under 

the general scheme of carrying out of experiment to a black 

box (to contents of a black box) are put influences, reaction 

to these influences is observed and on these supervision is 

construction logic conclusions. In control problems the 

automaton and family of automatons are set and it is required 

to define, contents of a black box is this allocated automaton 

or the automaton from the set family. In case of diagnosing it 

is supposed, that contents of a black box is the element of the 

set family of automatons and it is required to define what it is 

the automaton. By E. Mure [1], A. Gill [2], T. Hibbard [3] 

and other authors solve following problems: criteria of 

existence of the decision of a problem of recognition of a 

contained of black box are found; the basic method of 

construction of experiment on automaton recognition in the 

set family of automatons, including construction minimum 

on length of simple unconditional experiment (E. Mure, A. 

Gill) is developed. Further essentially important expansion of 

approaches and methods of technical diagnosing was 

representation of laws of functioning of automatons by 

geometrical images, i.e. numerical mathematical structures in 

the form of discrete numerical graphics [4]. If the automatons 

presented for the decision of control and diagnosing 

problems in their geometrical images to combine with 

analytically set curves search and construction of control and 

diagnostic experiments can be carried out on the basis of the 

decision of systems of the equations for the geometrical 

curves set analytically. 

In the basic works, containing development of the 

automata theory, the problem of regularization of automata 

on the basis of the uniform approach is not considered. There 

are problems, at which decision used methods assume 
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completely set laws of functioning of automatons, but in 

initial data these laws are presented partially. Fundamental 

mathematical results on regularization of partially set 

graphics are presented by classical methods of interpolation 

of Newton, Lagrange, Gauss, Bessel, spline-interpolation 

methods etc. Inapplicability of these methods for partially set 

automatons is connected with the symbolical form of the 

presentation of automatons by tables, matrixes, graphs, 

systems of the logic equations, etc. Presentation of laws of 

functioning of automata by numerical structures, offered and 

developed by V. A. Tverdokhlebov (see, for example, [4, 5]), 

allows to use classical methods of interpolation in the 

automata theory. In paper are developed methods of 

interpolation for partially set laws of functioning of the 

automatons, presented by geometrical images. 

One of fundamentals, making mathematical models of 

large-scale systems are the algorithms, realized by system 

according to its target mission. For an algorithmically 

solvable class of problems there is an infinite set of 

algorithms (solving a class of problems), which can be 

ordered on complexity. Realization of algorithms is generally 

connected with complexity of algorithm in the system, 

defining the major indicators: performance, a memory size, 

reliability, expenditure of energy etc. Number of variants of 

concept of complexity is sufficiently great and continues to 

increase in works of many researchers. For example, 

estimations of algorithms on their belong to NP and P classes 

(detail review see, for example, in work [6] and one of 

contemporary papers [7], in which Radoslaw Hofman show, 

that P not equal NP), Kolmogorov сomplexity [8], 

complexity from below, from above, complexity on the 

average, bit complexity (one of basic work in this area is [9]), 

multiplicate complexity, algebraic complexity, there are very 

large amount of works on asymptotical estimations of 

complexity (see, for example works [10, 11]), approximation 

complexity of analysis of graph structures [12, 13] and for 

identifying codes [14] etc. 

In the given work with use of the apparatus of geometrical 

images of automatons [4], it is offered and is investigated the 

estimation of complexity of laws of functioning of the 

discrete determined dynamic systems (automatons) on the 

basis of discrete riv-functions of kind )](),([)( ,
2

,
1

, ththtH kdkdkd = , 

where and )(,
1 th kd and )(,

2 th kd  - the finite discrete determined 

functions of a kind kd
h

, :{1, 2, …, d} →{0, 1, 2, …, k}, 

defined on initial segment of the natural scale, accepting 

values from initial segment of the natural scale and for any t, 

where 1 ≤ t ≤ d, d, k∈N 
+
, )(,

1 th kd ≤ )(,
2 th kd . Riv-function is set 

of such finite discrete determined functions of a kind kd
h

, , 

which satisfy to a condition: for any t, where 1 ≤ t ≤ d, d∈N 
+
, )(,

1 th kd ≤ )t(
,kd

h ≤ )(,
2 th kd . Borders )(,

1 th kd ≤ )(,
2 th kd , defined 

by function H
d,k

 and forming "corridor", are considered as 

geometrical images of laws of functioning of automatons (at 

the chosen set of input signals of the automaton and chosen 

order on set of input sequences). The graph of discrete 

function kd
h

, , where )(,
1 th kd ≤ )t(

,kd
h ≤ )(,

2 th kd , 1 ≤ t ≤ d, also 

is considered as a geometrical image of the automaton. Thus, 

the class ),( , mH kdΨ of the discrete determined automatons, 

defined by discrete riv-function )](),([)( ,
2

,
1

, ththtH kdkdkd =  and 

chosen number m - number of input signals of the automaton, 

consists of ∏
=

+−=Θ
d

t

kdkdkd ththtH

1

,
1

,
2

, )1)()(())((  automatons. 

In this work is offered the estimation of complexity of 

laws of functioning of the discrete determined dynamic 

systems (automatons) on the basis of geometrical 

representation of laws and use of discrete riv-functions. Is 

carried out the analysis of more than 10 million discrete riv-

functions. In clause are considered the riv-functions, 

containing more of 20 billion of discrete graphs, on which 

are synthesised laws of functioning of automatons. 

Specificity of all considered riv-functions is defined. As 

complexity indicators are considered the minimum and 

maximum number of states at the minimal automaton from 

the set of automatons, defined by riv-function. 

2. Geometrical Images of Lows of 

Functioning of Automatons 

It is known, that the apparatus of continuous numerical 

mathematics effectively uses infinite sets. In this connection 

Tverdohlebov V. A. was developed the new approach to 

construction of models of complex systems and methods of 

the analysis of such models, which are stated in works [4, 5]. 

A developed principle is placing of discrete structures on 

continuous geometrical curves, set analytically. For this 

purpose instead of next-state function and output function of 

automaton is considered a automaton mapping, i.e. 

symbolical mathematical structures of a kind (input 

sequence, output sequence). Geometrical image γs of laws of 

functioning (see works [4, 5]) of initial finite determined 

automaton As = (S, X, Y, δ, λ, s) with sets of states S, input 

signals X, output signals Y and next-state function δ: S×X→S 

and functions of outputs λ: S×X→Y it is defined on the basis 

of introduction of a linear order ω in automata mapping 

{ }∪
*

)),(,(

Xp

s psp

∈

λ=ρ′
, where )),,((),( xpsps ′δλ=λ , at p=p′x. 

Automaton mapping ρs (set of pairs) is ordered by linear 

order ω, defined on the basis of an order ω1 on X* and set by 

following rules: 

Rule 1. On set Х some linear order ω 1 (which we will 

designate 1≺ ) is entered 

Rule 2. An order ω 1 on Х we will extend to a linear order 

on set Х
*
, believing, that 

a. For any words *
21, Xpp ∈ with unequal length (|p1 | ≠ | p2 

|) |p1 | <|p2 | → 211 pp ≺ ; 

b. For any words *
21, Xpp ∈  for which |p1 | = |p2 | and p1 ≠ 

p2, their relation in the order of ω1 repeats the relation 

of the incoincident letters of words, nearest at the left in 

p1 and p2. The order ω 2 on set of words Y
* 

is similarly 

defined. 
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After introduction on set X
*
 of a linear order ω1, we 

receive linearly ordered set ),( 1ω′ρ′=ρ ss , where 1ω′  - an order 

on sρ′ , induced rather ω1 on X
*
. Having a linear order ω2, 

defined on set Y and having placed set of points ρs in system 

of coordinates D1 with an axis of abscisses (X 
*
, ω1) and an 

axis of ordinates (Y, ω2), we receive a geometrical image γs 

of laws of functioning of initial finite determined automaton 

As = (S, X, Y, δ, λ, s). Linear orders ω1 and ω2 allow to replace 

elements of sets X
*
 and Y by their numbers r1(p) and r2(p) on 

these orders. As a result are defined two forms of geometrical 

images, first, as symbolical structure in system of coordinates 

D1, and secondly, as numerical structure in system of 

coordinates with integer or real positive semiaxes. 

3. The Method of Recognition of 

Automatons by Their Geometrical 

Images 

Let automaton A0 is mathematical model of efficient 

technical system and the family of automatons IiiA ∈=α }{  

represents set I of failures of technical system. We will 

assume, that these automatons are set by geometrical image 

γ0 and family of geometrical images Iii ∈γ=β }{ . In the 

developed method of recognition geometrical images γ0 and 

Iii ∈}{γ  rely located on analytically set geometrical curve L0 

and family of analytically set geometrical curves IiiLL ∈= }{ . 

Then equality ∅=∪
Ii

iLL

∈
0 }{∩}{ , where {L0} and IiiL ∈}{  - sets 

of points of curves, is defined the decision of a problem of 

the control with use of simple unconditional experiment. 

Definition 3.1. Let L - a geometrical curve and ∆ - a piece 

on an axis of abscisses, on which the part of curve L (or all 

curve L) is defined. This part of a curve we will designate L 

(∆). 

Theorem 3.1. Let initial automaton A0 = (S, X, Y, δ, λ, s0) 

have a geometrical image γ0, located on curve L0 and 

IiiA ∈ }{=α  - a family of initial automatons, where Ai = (Si, 

X, Y, δi, λi, i
s0 ), i0 ∈ Ss

i
, and Iii ∈}{γ=β  - a family of their 

geometrical images, located accordingly on curves from 

family IiiLL ∈= }{ . If ( ) ( ) ∅=∆∆ iLL ∩0 , Ii ∈ , is carried out and 

in a piece ∆ of abscissa axis are defined some points of 

geometrical image γ0 and geometrical images from family β, 

then piece ∆ contains the decision of a problem of 

recognition of the automaton concerning of family α by 

simple unconditional experiment. 

The proof. Let I = {1, 2, …, k}. We will present system of 

equalities ( ) ( ) ∅=∆∆ }{∩}{ ji LL , Iji ∈, , i ≠ j, as conjunction of 

separate statements: 

( ( ) ( ) ∅=∆∆ }{∩}{ 21 LL )&( ( ) ( ) ∅=∆∆ }{∩}{ 31 LL ) & … & & 

( ( ) ( ) ∅=∆∆ }{∩}{ 2-k kLL ) &( ( ) ( ) ∅=∆∆ }{∩}{ 2-k kLL ). If *Xp ∈  on 

construction of geometrical images as binary relations p is 

the first coordinate of some points in all geometrical images 

γi, Ii ∈ . From equality ( ) ( ) ∅=∆∆ }{∩}{ 21 LL , follows, that at any 

choice *Xp ∈ , at which ∆∈)(1 pr , )(≠)( 21 pp γγ and the 

observable behaviour of automaton A1 and A2 is recognized 

by simple unconditional experiment. Similar conclusions 

take place for all equalities from conjunction of separate 

statements, i.e. all pairs of automatons of a kind (Ai, Aj), 

Iji ∈, , Iji ≠, , are recognized by output sequences on the 

general input sequence p, i.e. by simple unconditional 

experiment. 

On the basis of the theorem 1 is offered the method (with 4 

stages) of recognition of the automaton, which laws of 

functioning are set by the geometrical images, located on 

analytically set curves. 

Stage 1. Construction (choice) of family IiiLL ∈= }{  of 

geometrical curves and an arrangement on them of 

geometrical images of laws of functioning of automatons 

from family of automatons IiiA ∈}{=α . 

Stage 2. For system of equalities ∅=}{∩}{ i jLL , Iji ∈, , i ≠ 

j, is defined the family of decisions }{ ji∆ , Iji ∈, , i ≠ j. 

Stage 3. Piece ∩
ji

ji

≠
∆=∆ , which on construction satisfies to 

following conditions, is defined: 

1. If ∅≠∆ , then each point of a piece ∆, which is the first 

coordinate of points of geometrical images of automatons 

from family of automatons α, defines the decision of a 

problem of recognition of the automaton in family of 

automatons by simple unconditional experiment. 

2. If ∅=∆  then for chosen concrete geometrical curves Li, 

Ii ∈ , and the placing of geometrical images of laws of 

functioning of automatons on these curves, the decision of a 

problem of recognition of the automatons in family of 

automatons by simple unconditional experiment does not 

exist. 

Stage 4. According to conditions ∅≠∆  or ∅=∆  is defined 

the concrete decision of a problem of recognition of the 

automaton in family of automatons by simple unconditional 

experiment or the conclusion becomes, that for family α of 

automatons, and the chosen family of geometrical curves L 

and the chosen arrangement of geometrical images on curves 

the decision of a problem of recognition of the automaton in 

family of automatons by simple unconditional experiment 

does not exist. 

4. The Method of Recognition of 

Automaton in Pair of Automatons by 

Geometrical Images 

For automaton recognition in the set family of automatons 

is offered to represent sequences of the second coordinates of 

points of geometrical images of automatons by sequences of 

values of the characteristic functions, reflecting an 

arrangement of values of elements in initial sequences. On 

the basis of the analysis of sequences of the characteristic 

functions, constructed for sequences of the second 

coordinates of points of geometrical images of automaton, 

the problem of recognition of the automaton are solved. 

Definition 4.1. On set Y
*
 we will define family Yyy ∈ϕ=Φ }{  

of characteristic functions by a rule: for any Yy ∈  and any 
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sequence 
kiii yyy ...

21
=ξ  )(...)()()(

21 kiyiyiyy yyy ϕϕϕ=ξϕ , where 

0)( =ϕ
jiy y , if yy

ji ≠ , and 1)( =ϕ
jiy y , if yy

ji = . 

The method consists of following stages: 

Stage 1. For automaton A1 = (S1, X, Y, δ1, λ1, s01) and A2 = 

(S2, X, Y, δ2, λ 2, s02), making an exclusive class and set in the 

geometrical images d
1γ  and d

2γ , where dd
i =γ || , }2,1{∈i , 

sequences d
1ξ  and d

2ξ  the second coordinates of points of 

geometrical images are constructed. 

Stage 2. For everyone Yy ∈  and for each of sequences d
1ξ , 

d
2ξ  values )( 1

d
y ξϕ  and )( 2

d
y ξϕ  characteristic function yϕ  are 

defined. 

Stage 3. For everyone Yy ∈  is defined the least length 

ry( )( 1
d

y ξϕ , )( 2
d

y ξϕ ) of not equal initial pieces of sequences 

)( 1
d

y ξϕ  and )( 2
d

y ξϕ . The initial piece of length r = 
Yy ∈

min

(ry( )( 1
d

y ξϕ , )( 2
d

y ξϕ )) unequivocally defines the least on length 

sequence of input signals for simple unconditional 

experiment on automaton recognition in pair of automatons. 

The method is proved by the following theorem. 

Theorem 4.1. The problem of recognition of the automaton 

by simple unconditional experiment in pair of automatons A1 

and A2 where A1=(S1, X, Y, δ1, λ1, s01) and A2 = (S2, X, Y, δ2, 

λ2, s02), S1 ∩ S2 = ∅ , has the decision in only case when when 

for some Yy ∈ characteristic function φy satisfies to condition 

≠ξϕ )( 1
d

y )( 2
d

y ξϕ  for sequences d
1ξ  and d

2ξ  of lengths 

∑
−

=
=

1

1

2

||
n

i

iXd , where n = |S1 | + | S2 |, of the second coordinates 

of points of geometrical images of automatons A1 and A2. 

5. Interpolation for Regularization of 

Laws of Functioning of Automatons 

The choice and application of a method of interpolation by 

implication correspond to acceptance and realization of a 

hypothesis, that the method of interpolation, applied to the 

numerical graphic, representing partially set geometrical 

image of the automaton, enough precisely regularize points 

of a geometrical image, i.e. is enough exact regularize 

partially set laws of functioning of the automaton. Therefore, 

validity of the results, received with use of the chosen 

method of interpolation, is shown to a substantiation of 

correctness of a hypothesis. In the given paragraph methods 

of a choice of a hypothesis (a choice of a concrete method of 

interpolation) are investigated and developed for concrete 

classes of automatons on an example of a choice of more 

exact method of interpolation from two methods of 

interpolation: Newton and Lagrange (under the similar 

scheme also is carried out the analysis of Gauss, Bessel etc. 

methods). These methods include following stages: 

1. Stage. It is defined and obviously is constructed the 

class U of automatons, in which partially set 

automatons by method of interpolation of their partial 

geometrical images regularize to full geometrical 

images. The set of methods of interpolation are choose 

for research (in the given chapter the set include 

Newton's and Lagrange methods). 

2. Stage. For interpolation are defined base points (in work 

for research are considered 2 variants of a choice of 

base points of interpolation: use as base points tops of 

geometrical images of autonomous subautomatons and 

use as base points of interpolation of those tops of 

geometrical images of laws of functioning of 

automatons, which are located on the straight lines, 

parallel to an axis of abscisses). 

3. Stage. Choice of the length d of geometrical image, by 

which partial representation the geometrical image of 

laws of functioning of the automaton is interpolated. 

4. Stage. To base points of interpolation, chosen at a stage 

2, are applied Newton's and Lagrange interpolation 

methods. 

5. Stage. Results of interpolation are represented by 

following numerical indicators: 

a. For everyone initial automaton and each method of 

interpolation is defined the number of correctly 

restored (regularized) tops of a geometrical image of 

laws of functioning of the automaton; 

b. - For a considered class of automatons and the set 

length d of geometrical images of laws of functioning 

of automatons are calculated numerical indicators N
dn  

- number of automatons in a considered class, for 

which by Newton's method it is correctly restored 

more points, than by method Lagrange, L
dn  - number 

of automatons in a considered class, for which by 

method Lagrange it is correctly restored more points, 

than by Newton's method and NL
dn - number of 

automatons in a considered class, for which Newton's 

and Lagrange methods have identical efficiency. 

6. Stage. Choice of function for an estimation of efficiency 

of methods of interpolation, i.e. for definition of the 

most effective method in an investigated set of 

interpolation methods. In paper is offered and used 

function 
NL
d

L
d

N
d

NL
d

L
d

N
dNL

d
L
d

N
d

n)n ,max(n

n)n ,min(n
  -  1) n ,n ,F(n

+
+= , with the 

following condition 0 n n n NL
d

L
d

N
d ≠++ , where N

dn , L
dn , 

LN
dn  defined higher in stage 5, which values allows to 

compare efficiency of Newton's and Lagrange methods. 

Properties of function F are presented in [5]. 

Theorems 5.1, 5.2 contain results of the analysis of 

efficiency of application of Newton's and Lagrange methods 

to partially set geometrical images of autonomous 

subautomatons of automatons from a class of (4,2,2)-

automatons (more than 67 million initial automatons) at 

various values of length of an initial piece of a geometrical 

image. 

Theorem 5.1. Let base points of interpolation for partially 

set geometrical image of length d of each automaton A=(S, X, 

Y, δ, λ, s0) from class of (4,2,2)-automatons are points of 

geometrical images of autonomous subautomatons A1=(S, 

{0}, Y, δ1, λ1, s01) and A2=(S, {1}, Y, δ2, λ2, s02) of automaton 
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A. Then for Newton's and Lagrange methods at d=30 in a 

class of initial (4,2,2) - automatons is true relation N
dn  > L

dn  

and function F accepts value ( ) 65,0 n ,n ,nF NL
30

L
30

N
30 =  (method of 

interpolation of Newton with an assessment 0.65 more 

precisely, than a method of Lagrange). 

Theorem 5.2. Let base points of interpolation for partially 

set geometrical image of length d of each automaton A=(S, X, 

Y, δ, λ, s0) from class of (4,2,2)-automatons are points of 

geometrical images of autonomous subautomatons A1=(S, 

{0}, Y, δ1, λ1, s01) and A2=(S, {1}, Y, δ2, λ2, s02) of automaton 

A. Then for Newton's and Lagrange methods at d=254 in a 

class of initial (4,2,2) - automatons is true relation N
dn  > L

dn  

and function F accepts value ( ) 14,0 n ,n ,nF NL
254

L
254

N
254 =  (method of 

interpolation of Newton with an assessment 0.14 more 

precisely, than a method of Lagrange). 

Proofs of theorems 5.1, 5.2 contains, for example, in [5]. 

6. Complexity Estimation Methods of 

Automata Models of Discrete 

Dynamical Systems 

6.1. Problem Statement 

The finite determined automaton is set by finite 

geometrical image of laws of functioning (on a finite 

section). It is required to define the top and bottom borders 

for number of states without obvious construction of next-

state function and output function of automaton. The method 

of the decision of a problem is based on theorems, in which 

for various configurations of borders of areas on planes and 

assumptions, that the geometrical image of the automaton is 

in these areas, the top and bottom estimations for number of 

states in reduced form of automaton are defined. For each 

considered configuration of borders of areas on a plane are 

defined: 

a. The maximal number of conditions of a reduced form of 

the automaton, which geometrical image it is located in 

borders of considered area on a plane; 

b. The minimal number of conditions of a reduced form of 

the automaton, which geometrical image it is located in 

borders of considered area on a plane. 

The received estimations extend on all automatons, 

geometrical images are limited by configurations of the top 

and bottom borders of area on a plane. 

Set of configurations of borders of the investigated areas 

on a plane: 

1. The rectangular form of area (the top and bottom 

borders represent direct, parallel axes of abscisses); 

2. A configuration, in which borders are presented by the 

sequences, defining approach of fundamental mathematical 

constants (π, e, (
2

51+=ϕ so-called gold section), 2 , 3 2 , 

ln(2), ln(10), ∑
∞

=
=ζ

1
3

1
)3(

x x
, constant of Catalan ∑

∞

= +
−=

0
2

)12(

)1(

n

n

n
C , 

Euler's constants ],[ ,
2

,
1

, kdkdkd hhH = etc.). 

6.2. Descrete Riv-Functions 

The finite The finite discrete determined riv-functions of a 

kind ],[ ,
2

,
1

, kdkdkd hhH = , where )(,
1 th kd and )(,

2 th kd  - the finite 

discrete determined functions of a kind kd
h

, : {1, 2, …, d} → 

{0,1,2, …, k}, defined on initial section of the natural scale, 

accepting values from initial section of a natural scale and 

satisfying to a condition: for any t, where 1 ≤ t ≤ d, d∈N 
+
, 

)(,
1 th kd ≤ )(,

2 th kd . Riv-function represents set of such finite 

discrete determined functions of a kind kd
h

, , which satisfy 

to a condition: for any t, where 1 ≤ t ≤ d, d∈N 
+
, )(,

1 th kd ≤

)(
,

th
kd

≤ )(,
2 th kd . The offered name of function represents 

reduction from an english word river. 

Let's give formal definitions. 

Definition 6.1. Function h
d,k

 of kind h
d,k

: {1, 2, …, d} → 

{0, 1, 2, …, k} where, +∈ Nkd ,  we will name discrete 

determined integer (d, k)-function (or simple (d, k)-function). 

Definition 6.2. Discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH = , 

where kdh ,
1  and kdh ,

2 - (d, k) -functions and for any t where 1 ≤ 

t ≤ d, d∈N
+
, )(,

1 th kd ≤ )(,
2 th kd , we will be name set of such (d, 

k)-functions kd
h

, , for which the condition is satisfied: for 

any t, where 1 ≤ t ≤ d, )(,
1 th kd ≤ )(

,
th

kd ≤ )(,
2 th kd . 

Definition 6.3. In discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  (d, 

k)-function )(,
1 th kd  ( )(,

2 th kd ) we will be name the bottom (top) 

border of discrete riv-function )(, tH kd . 

Definition 6.4. For the set discrete riv-function 

],[ ,
2

,
1

, kdkdkd hhH =  set of all (d, k) – the functions )(
,

th
kd , 

satisfying to a condition: for any t where 1 ≤ t ≤ d, d∈N 
+
, 

)(,
1 th kd ≤ )(

,
th

kd ≤ )(,
2 th kd , we will designate ))((W , tH kd . 

Definition 6.5. In discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  

number of (d, k) – the functions )(
,

th
kd , satisfying to a 

condition: for any t where 1 ≤ t ≤ d, d∈N 
+
, )(,

1 th kd ≤ )(
,

th
kd ≤

)(,
2 th kd , we will designate )( ,kdHΘ . 

Definition 6.6. For (d, k) – function kd
h

,  sequence <

)1(
,

2
kd

hpr ,…, )2(
,

2
kd

hpr , )(
,

2 dhpr
kd > of the second coordinates 

of pairs a kind (t, )(
,

th
kd ) where 1 ≤ t ≤ d, d∈N 

+
, we will 

designate ξ( kd
h

, ). 

(d, k) -function of kind kd
h

, , because the range of 

definition is linearly ordered, is unequivocally defined by 

corresponding sequence of the second coordinates of pairs a 

kind (value of argument, value of function), i.e. sequence of a 

kind ξ( kd
h

, ) = < )1(
,

2
kd

hpr ,…, )2(
,

2
kd

hpr , )(
,

2 dhpr
kd >. 

Therefore the task of discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  is 

equivalent to definition of function of a kind

)](),([
,

2
,

1
, kdkdkd

hhH ξξ= . 
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Definition 6.7. For the set discrete riv-function 

],[ ,
2

,
1

, kdkdkd hhH = set of all sequences of a kind ξ( kd
h

, ) = <

)1(
,

2
kd

hpr ,…, )2(
,

2
kd

hpr , )(
,

2 dhpr
kd >, satisfying to a condition: 

for any t where 1 ≤ t ≤ d, d∈N 
+
, )(

,
12 thpr

kd ≤ )(
,

2 thpr
kd ≤

)(,
22 thpr kd , we will designate )( ,kdHΞ . 

Definition 6.8. For the set discrete riv-function 

)](),([)(
,

22
,

12
,

thprthprtH
kdkdkd =  and chosen t where 1 ≤ t ≤ d, 

d∈N 
+
, value of size ( )(,

22 thpr kd - )(
,

12 thpr
kd +1) we will 

designate ν( )(, tH kd ). 

For set discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  and discrete 

(d, k)-function kd
h

, , for which is satisfied the condition: for 

any t, where 1 ≤ t ≤ d, d∈N 
+
, )(,

1 th kd ≤ )(
,

th
kd ≤ )(,

2 th kd , size 

ν( kdH , (t)), where 1 ≤ t ≤ d, d∈N 
+
, defines number of 

various values, which the element with number t (i.e. element 

)(
,

2 thpr
kd ) can accept in sequence ξ( kd

h
, ) = < )1(

,
2

kd
hpr …,

)2(
,

2
kd

hpr )(
,

2 dhpr
kd >, satisfying to a condition: for any t, 

where 1 ≤ t ≤ d, d∈N 
+
, )(

,
12 thpr

kd ≤ )(
,

2 thpr
kd ≤ )(,

22 thpr kd . 

Theorem 6.1. Cardinality )( ,kdHΘ  of set )(W ,kdH  of 

discrete (d, k)-functions, defined by discrete riv-function 

],[ ,
2

,
1

, kdkdkd hhH = , is equal ∏
1

,
1

,
2 )1)(-)((

d

t

kdkd thth

=
+ . 

The proof. 

Whereas the task of discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  

is equivalent to definition of function of a kind 

)](),([
,

2
,

1
, kdkdkd

hhH ξξ= , where 1 ≤ t ≤ d, d∈N 
+
, value )( ,kdHΘ  

for discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  can be defined on 

the basis of the analysis of number of sequences of a kind 

ξ( kd
h

, ) = < )1(
,

2
kd

hpr …, )2(
,

2
kd

hpr )(
,

2 dhpr
kd >, satisfying to a 

condition: for any t, where 1 ≤ t ≤ d, d∈N 
+
, )(

,
12 thpr

kd ≤

)(
,

2 thpr
kd ≤ )(,

22 thpr kd . 

For everyone t where 1 ≤ t ≤ d, d∈N 
+
, element )(

,
2 thpr

kd  

of the sequence ξ( kd
h

, ), satisfying to a condition )(
,

12 thpr
kd ≤

)(
,

2 thpr
kd ≤ )(,

22 thpr kd , can accept following values )(
,

12 thpr
kd , 

)(
,

12 thpr
kd +1, )(

,
12 thpr

kd +2, …, )(,
22 thpr kd , i.e. ν( )(, tH kd ) = 

( )(,
22 thpr kd - )(

,
12 thpr

kd +1) various values. The general number 

in pairs not equivalent sequences of a kind ξ( kd
h

, ) = <

)1(
,

2
kd

hpr ,…, )2(
,

2
kd

hpr )(
,

2 dhpr
kd > of len d is defined as 

product on all t, where 1 ≤ t ≤ d, d∈N 
+
, of numbers 

ν( )(, tH kd ). It means, that number of various sequences of a 

kind ξ(
kd

h
,

) = < )1(
,

2
kd

hpr ,…, )2(
,

2
kd

hpr , )(
,

2 dhpr
kd >, 

satisfying to a condition: for any t where 1 ≤ t ≤ d, d∈N
+
, 

)(
,

12 thpr
kd ≤ )(

,
2 thpr

kd ≤ )(,
22 thpr kd , is defined by expression 

∏
=

d

t 1

ν( )(, tH kd ) = ∏
=

+−
d

t

kdkd thprthpr

1

,
12

,
22 )1)()(( . Hence, value 

)( ,kdHΘ  for the set discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  is 

defined by expression of kind 

∏
=

+−=Θ
d

t

kdkdkd ththtH

1

,
1

,
2

, )1)()(())(( .□ 

For example, capacity )( ,kdHΘ of set )(W ,kdH  of the 

discrete (d, k) -functions, defined by discrete riv-function 

],[ ,
2

,
1

, kdkdkd hhH = , where d=40, k=9, )(
,

1 th
kd  - characteristic 

function for prime numbers, and the top border )(
,

2 th
kd  is set 

by the first 40 digits of number π, makes more than 10
27

. 

6.3. Estimation of Complexity of Laws and Processes of 

Functioning of Automatons with Use of Descrete  

Riv-Functions 

The finite The In clause are considered the initial finite 

determined automatons of type of Mile of kind 

),,,,,(A 0s0
sYXS λδ= , where S - set of states, X - set of input 

signals, Y - set of output signals, and SXS →×δ : – next-state 

function, YXS →×λ : – output function, and Ss ∈0 - an initial 

state of the automaton. The automaton function on steps in 

abstract integer non-negative time +∈ Nt , according to 

dynamics equations: s(t+1) = δ(s(t), x(t)), y(t) = λ(s(t), x(t)). 

In the given work is used the apparatus of geometrical 

images of laws of functioning of the automatons, for the first 

time offered by V. A. Tverdohlebov in 1995г. and later 

developed in work [4]. Transformation of phase pictures to 

geometrical images of laws of functioning of the automaton, 

offered and developed by V. A. Tverdohlebov, has allowed to 

represent phase pictures by uniform mathematical structures - 

broken lines with numerical coordinates of points. To V. A. 

Tverdohlebov is shown, that sequence of elements from the 

finite set, combined with linear order on set of input words, 

defines laws of functioning of the discrete determined 

dynamic system (automaton). 

V. A. Tverdohlebov is offered and developed a method of 

synthesis of laws of functioning of the automaton on the set 

sequence (see, for example, [4, 5]). Entered discrete riv-

function ],[ ,
2

,
1

, kdkdkd hhH =  represents the set (d, k) –functions, 

which specificity because the range of definition (d, k)- 

function, is linearly ordered, presented-function by sequences 

of the second coordinates of pairs a kind (argument of 

function, value of function). In the given work such 

sequences are considered as sequence of the second 

coordinates of points of geometrical images of initial 

automatons. Thus, discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  at 

chosen set X = {x1, x2, …, xk} of input signals of the 

automaton and a linear order ω1 on set X
*
 of input sequences 

defines geometrical images of family Iis
i

A ∈=α }{
0

 of initial 

automatons. (Other interpretation of set ))(( , tH mnΞ  of 

sequences, defined by discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  

is possible also. Discrete riv-function ],[ ,
2

,
1

, kdkdkd hhH =  as a 



112 Anton S. Epifanov:  Regularization, Recognition and Complexity Estimation Methods of Automata Models of  

Discrete Dynamical Systems in Control Problem 

whole defines behaviour of one finite determined automaton 

of type of Mile A = (S, X, Y, δ, λ). For set discrete riv-

function ],[ ,
2

,
1

, kdkdkd hhH =  each sequence ξ( kd
h

, ) )( ,kdHΞ∈  

defines behaviour of the initial automaton (A, s0), where 

Ss ∈0 . Accordingly capacity of set of state so defined 

automaton is ∏
1

,
1

,
2

, )1)()(())((
d

t

kdkdkd ththtH

=
+=Θ .) 

Definition 6.9. Family Iis
i

A ∈=α }{
0

 of the finite determined 

automatons of type of Mile, where ),,,,(
0 iiis YXSA

i
λδ= , 

iSs
i
∈0 , |X | = m and |Y | = l, which geometrical images are set 

by sequences of set )( ,kdHΞ , defined by discrete riv-function 

],[ ,
2

,
1

, kdkdkd hhH = , we will designate ),,( , lmH kdΨ . 

The number of automatons in family ),,( , lmH kdΨ  is 

∏
1

,
1

,
2

, )1)()(())((
d

t

kdkdkd ththtH

=
+=Θ . 

The detailed description of a method of synthesis of the 

automaton on sequence, and also a method of check of 

equivalence of states of the automaton by it geometrical 

image contains in the monography [4]. We will note only the 

basic moments of a method of synthesis of the automaton on 

sequence. If as the task of laws of functioning of the 

automaton is considered the sequence ξ( kd
h

, ) = < )1(
,

2
kd

hpr , 

)2(
,

2
kd

hpr , …, )(
,

2 dhpr
kd >, then its interpretation joins 

splitting of sequence ξ on pieces of length m, where m = |X |. 

Each piece at such splitting defines functioning of the 

automaton for a concrete state of memory. If set of conditions 

of the automaton is *}{
XppsS ∈= , and next-state function δ 

define by rules s0=s ε and δ(sp, x) = spx, then function δ 

appears standard for all automatons with set of input signals 

X. Specificity of automatons is shown, that on infinite set of 

states for each automaton classes of equivalent states are 

allocated. At synthesis of laws of functioning of the 

automaton is essential the way of regularization of next-state 

functions δ of the automaton. Various ways of regularization 

of next-state functions of the automaton are possible: cyclic 

regularization, regularization in an initial state, state can 

generate by random generator (from set of possible states), 

etc. In a case, when 







≠

|||| X

d

X

d
, where |X | - number of input 

signals of the automaton, and d - the length of sequence <

)1(
,

2
kd

hpr , )2(
,

2
kd

hpr , …, )(
,

2 dhpr
kd >, (on which laws of 

functioning of the automaton are constructed), regularization 

is required and for function of output λ. In the given part of 

work at research of properties of families of the automatons, 

set by discrete riv-functions, regularization of next-state 

functions is carried out by all specified ways, and value of 

capacity of the set of input signals and length of initial pieces 

of sequences are chosen in such manner, that 







=

|||| X

d

X

d
, 

therefore regularization of λ is not required. Let's consider 

regularization of next-state function δ of the automaton of 

type of Mile A = (S, X, Y, δ, λ), constructed on sequence ξ of 

length d, provided that 
m

d
 = 









m

d
, where m = | X |. Let 





































=τ
m

m

d
1-

 and b = 

















1-

m

d
 - τ ·m. When 

m

d
 = 









m

d
 

constructed on sequence ξ of length d automaton A has 
m

d
 

states (i.e. n = |S | = 
m

d
) and for states sτ + 1, sτ + 2, …, sn next-

state function δ of automaton A is necessary for 

regularization. And in a case, when ≠τ
m

m

d








1-

 (i.e. b > 0), 

for next-state-function of automaton A for a state sτ + 1 are 

certain values ),( 1 ν+τδ xs , where b≤≤ ν1 , and values 

),( j1 xs +τδ , where m≤j≤b 1+ , is required to regularized. 

Definition 6.10. A type of regularization of next-state 

function δ of the finite determined automaton of type of Mile 

),,,,( λδ= YXSA , where |X| = m, constructed on numerical 

sequence ξ lengths d, at which: 

a. At b = 0 1s),( =δ ji xs , where τ +1 ≤ i ≤ n, 1 ≤ j ≤ m; 

b. At b > 0 1s),( =δ ji xs , where τ +2 ≤ i ≤ n, 1 ≤ j ≤ m, and 

11 ),( sxs =δ ν+τ , where b≤≤ ν1 ; 

let's name regularization in an initial state (or 

regularization of type 1). 

Definition 6.11. A type of regularization of next-state 

function δ of the finite determined automaton of type of Mile 

),,,,( λδ= YXSA , where | X | = m, constructed on numerical 

sequence ξ lengths d, at which: 

a. At b=0 σ=δ s),( ji xs , where τ +1 ≤ i ≤ n, 1 ≤ j ≤ m, 

( )( ) 1mod)1( +µ+⋅−=σ jmi , 






=µ
m

d
; 

b. At b> 0 σ=δ s),( ji xs , where τ +2 ≤ i ≤ n, 1 ≤ j ≤ m, 

( )( ) 1mod)1( +µ+⋅−=σ jmi , 






=µ
m

d
, and 

1
),( 1 σν+τ =δ sxs , 

where b≤≤ ν1 , ( )( ) 1mod1 +µ+⋅τ=σ jm  and 






=µ
m

d
; 

let's name cyclic regularization (or regularization of type 2). 

In paper are considered the specific families of automatons 

),,( , lmH kdΨ , defined by discrete riv-functions of kind 

],[ ,
2

,
1

, kdkdkd hhH = , where 2
,

21
,

1 , СhСh kdkd == , С1, С2 ∈ N 
+
, and 

С2 - С1+1 = l, l ≥ 2 and m∈N 
+
, m ≥ 2. 

Theorem 6.2. Let ],[ ,
2

,
1

, kdkdkd hhH =  - the discrete riv-

function, where 2
,

21
,

1 , СhСh kdkd == , С1, С2 ∈N 
+
, С2 - С1+1 = l, 

l ≥ 2 and m ∈ N 
+
, m ≥ 2, and for family of automatons 

),,( , lmH kdΨ  the condition l
m 

≥ 








m

d
 is satisfied, then at any 

way of regularization of next-state function δ of the 

automaton in family ),,( , lmH kdΨ  reduced automaton 

(automatons) with the maximum number of states has no 

more than 








m

d
 states. The estimation is achievable. 
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The proof. 

Let's prove the theorem statement under the following 

plan. Each automaton from the family of automatons 

),,( , lmH kdΨ , defined by discrete riv-function kdH , , before 

minimisation has 








m

d
 states (the method of construction of 

the automaton by numerical sequence see, for example, in 

work [4]). In discrete riv-function kdH ,  we will allocate so 

much initial parts, how many in pairs various broken lines of 

length m, take places in a rectangle l×m, i.e. l
m 

parts. We will 

assume, that the geometrical image of the automaton from 

family ),,( , lmH kdΨ  begins a part of the broken line, 

consisting from sequentially located (and in any order, but 

exact one time) in pairs various l
m
 broken lines of length m. 

Then in the table of outputs of the automaton, constructed on 

such broken line, will contain l
m 

various columns, i.e. 

automaton states with numbers from 1 to l
m 

are 1- 

recognizable states, so also simply recognizable states. In a 

case, when the condition l
m 

≥ 








m

d
 is satisfied, all 









m

d
 are 1- 

recognizable, so also are simply recognizable states. 

Therefore, at any way of regularization of next-state function 

δ of the automaton in family ),,( , lmH kdΨ  the reduced 

automaton (automatons) with the maximum number of 

conditions has no more 








m

d
 conditions. The estimation is 

achievable.□ 

Let's consider a specific way of regularization of next-state 

function δ of the automaton of type of Mile A = (S, X, Y, δ, 

λ), constructed on sequence ξ lengths d, provided that 
m

d
=










m

d
, where m = |X | and l = |Y |. Let 





































=τ
m

m

d
1-

 and b = 



















1-

m

d
 - τ ·m. In a case, when l

m
 ≥ τ, next-state function δ 

of the automaton for states s1, s2, …, s τ is defined by a 

standard rule (set of states of the automaton is necessary set 

*}{
XppsS ∈= , and next-state function δ of the automaton is 

defined by rules s1=sε and δ(sp, x) =spx), and for states sτ + 1, sτ 

+ 2, …, sn next-state function δ of the automaton A is required 

for regularization. And, when ≠τ
m

m

d








1-

 (i.e. b> 0), for 

next-state function δ of the automaton A for a state sτ + 1 are 

certain values ),( 1 ν+τδ xs , where b≤≤ ν1 , and values 

),( j1 xs +τδ , where m≤j≤b 1+ , is required to regularization. 

In a case, when l
m
 <τ, next-state function δ of the 

automaton for states with numbers 1, 2, …, l
m
 also is defined 

by a standard rule, and for states with numbers l
m 

+1, l
m 

+2, …, 








m

d
-1, 









m

d
 next-state function δ of the automaton A 

is required to regularization. Let η = l
m
 and ),min(1 τη=τ . In 

definition 6.12 is offered the specific way of regularization to 

next-state function. 

Definition 6. 12. A way of regularization to next-state 

function δ of the finite determined automaton of type of Mile 

),,,,( λδ= YXSA , where | X | = m, |Y | = l, constructed on 

numerical sequence ξ lengths d, at which 

&s),(&...&s),(&s),( 11121111 111
=δ=δ=δ +τ+τ+τ mxsxsxs  

&s),(&...&s),(&s),(& 22122112 111
=δ=δ=δ +τ+τ+τ mxsxsxs  

… … … … … … … … … … … … … … 

&s),(&...&s),(&s),(&
111 1211 ηη+τη+τη+τ =δ=δ=δ mxsxsxs  

&s),(&s),(&...

...&s),(&s),(&

11211

121111

11

11

=δ=δ

=δ=δ

+η+τ−+η+τ

+η+τ+η+τ

mm xsxs

xsxs
 

… … … … … … … … … … … … … … 

ηη−ηη =δ=δ=δ=δ s),(&s),(&...&s),(&s),(& 121 mnmnnn xsxsxsxs  

let's name regularization of type 3. 

The theorem 6.3 is contained the condition (is resulted at 

use of a specific way of regularization (a way 3) of next-state 

function δ of the automaton), sufficient for achievement of 

the maximum estimation of number of states in the reduced 

automaton from family ),,( , lmH kdΨ , equal 








m

d
 states. 

Theorem 6. 3. Let ],[ ,
2

,
1

, kdkdkd hhH =  - discrete riv-function 

where 2
,

21
,

1 , СhСh kdkd == , С1, С2 ∈N 
+
, С2 - С1+1 = l, l ≥ 2, and 

m ∈ N 
+
, m ≥ 2, and for the family of automatons 

),,( , lmH kdΨ , defined by riv-function kdH , , is satisfied 

condition mml )(  ≥ 








m

d
 - l

m
-1, then at a way 3 of 

regularization to next-state function δ of the automaton in 

family ),,( , lmH kdΨ  the reduces automaton (automatons) with 

the maximum number of states has no more, than 








m

d
 states. 

The estimation is achievable. 

The proof. 

Let's prove the theorem statement under the following 

plan. Each automaton from the family of automatons 

),,( , lmH kdΨ , defined by discrete riv-function kdH , , before 

minimisation has 








m

d
 conditions (the method of 

construction of the automaton on numerical sequence see, for 

example, work [4]). In discrete riv-function kdH ,  we will 

allocate so much initial parts, how many in pairs various 

broken lines of length m, take places in a rectangle l×m, i.e. 

l
m 

parts. We will assume, that the geometrical image of the 

automaton from family ),,( , lmH kdΨ  begins a part of the 

broken line, consisting from sequentially located (and in any 

order, but exact one time) in pairs various l
m
 broken lines of 

length m. Then in the table of outputs of the automaton, 

constructed on such broken line, will contain l
m 

various 

columns, i.e. automaton states with numbers from 1 to l
m 

are 

1- recognizable states, so also simply recognizable states. For 

a designation of a subset of set of states of the automaton, 

consisting of states with numbers l
m 

+1, l
m 

+2, …, 








m

d
-1, 










m

d
, we will use symbol S′. We will consider a case, when 
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l
m
 < 









m

d
, i.e. ∅≠′S , (the case, when the condition l

m 
≥ 









m

d
 

is satisfied is considered in a theorem 2). Each condition 

Ss ′∈′  will be necessarily is 1-equivalent to any condition 

from set (S\S′) (since in the table of outputs of the automaton 

for each column with number l
m 

+1, l
m 

+2, …, 








m

d
-1, 









m

d
 

there will be an identical column with number from 1 to l
m
). 

We will show, that at use of a way of regularization to next-

state function δ of the automaton all states from set S′ will be 

2- recognizable and, besides, any conditions s and s′ where 

Ss ∈ , Ss ′∈′ , which are 1-equivalent, are recognizable 

conditions. Because any two conditions with numbers from 1 

to l
m

 are recognizable, at use of a way 3 of regularization to 

next-state function δ of the automaton for any states s′ and s″ 

from set S′, provided that mml )(  ≥ 








m

d
 - l

m
-1, exists input 

signal x ∈ X, such, that, if s′ ≠ s″, then the following 

condition is satisfied: 
21

),(&),( ii sxssxs =′′δ=′δ , where 

)\(,
21

SSss ii ′∈  and 
21 ii ss ≠ . It means, that any two states s′ 

and s″ from set S′ are 2- recognizable, so also simply 

recognizable. Besides, at use of a way 3 of regularization to 

next-state function δ of the automaton, provided that mml )(  ≥ 










m

d
 - l

m
-1, for any states s and s′ where Ss ∈ , Ss ′∈′ , exists 

sequence *Xp ∈  of length 2, such, that the condition is 

satisfied 
21

),(&),( jj spssps =′δ=δ , where )\(,
21

SSss jj ′∈  and 

21 jj ss ≠ . Because states )\(,
21

SSss jj ′∈  are 1- recognizable, 

any two states s and s ′ where Ss ∈ , Ss ′∈′ , are 3- 

recognizable and so also simply recognizable states. As a 

result is had, that all 








m

d
 states from set of states S are in 

pairs not equivalent, that proves the theorem statement. □ 

6.4. Example of Estimation of Complexity 

Example 1. Whereas information on the real law of 

functioning of concrete complex discrete dynamic system has 

huge dimension, and the law is known only partially and is 

required the decision of additional problems on 

regularization it to completely set law, we will spend an 

illustration of the offered method of an estimation of 

complexity on an example, in which the top and bottom 

borders of riv-function are presented by known mathematical 

sequences. On fig. 1 are shown the example of concrete riv-

function ],[ ,
2

,
1

,
1

kdkdkd
hhH = , where d=40, k=9, )(

,
1 th

kd  - 

characteristic function for Fibonacci numbers, and the top 

border )(
,

2 th
kd  is defined by the first 40 digits of number π. 

 

Figure 1. Image of discrete riv-function ],[ ,
2

,
1

,
1

kdkdkd
hhH = . 

On the basis of the spent analysis of riv-function, 

represented on fig. 1, are received concrete upper and lower 

estimates of number of states of automaton in the minimal 

form for all family of automatons (more than 10
28

 

automatons), defined by this riv-function. In case, when 

geometrical image of automaton model of concrete discrete 

dynamic system is in the specified borders, then can specify 

precisely an interval of values for number of states in the 

minimal form of automaton model of system (accuracy to set 

of input signals of the automaton) without obviously 

constructing of the automaton and minimization. For this riv-

function and cardinality of set of input signals of the 

automaton equal, for example, 10, least number of states of 

the minimal form of the automaton equal two, and the 

greatest - 4, i.e. at any of 10
28

 automatons (in the minimal 

form), defined by riv-function on fig. 1, cannot be less, than 

two states and cannot be more than 4 states. 

Example 2. We will construct an estimation on the basis of 

the theorem 6. 3. Let ],[ ,
2

,
1

, kdkdkd hhH =  - discrete riv-function, 

where 2
,

21
,

1 , СhСh kdkd == , С1, С2 ∈ N
+
, С2 - С1+1 = l. We will 

consider a class of automaton, at which |X | = 1000, |Y | = 320, 

i.e. it is had С2 - С1+1 = 320. We will admit, that length of an 

analyzed initial piece of geometrical images d = 10
10

. Then the 

number of automaton in the family, defined by specified riv-

function, is equal 
1010320 . On the basis of the theorem 3 we 

have, that the minimal automaton (automatons) with the 

greatest number of states has no more, than 10
7
 states. 
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7. Conclusion 

In given article on the basis of use of the apparatus of 

geometrical images of automatons are offered methods and the 

algorithms, developed for recognition of laws of functioning of 

discrete determined dynamic systems (automatons), set by the 

automaton mappings, placed on analytically set geometrical 

curves. Methods are proved by corresponding theorems. In 

paper are stated models and the methods developed for 

interpolation of partially set laws of functioning of automatons, 

set by the automata mappings placed on geometrical curves, 

using base points of the interpolation, selected on the basis of 

selection of autonomous subautomatons. 

In paper is offered the estimation of complexity of laws of 

functioning of the discrete determined dynamic systems 

(automatons) on the basis of geometrical representation of 

laws and use of discrete riv-functions. Is carried out the 

analysis of more than 10 million the discrete riv-functions, 

formed by fundamental mathematical sequences of length to 

80 signs, taken from bank [15]. Also are considered the riv-

functions, containing more of 20 billion of discrete graphs, 

on which laws of functioning of automatons are synthesised. 

Specificity of all considered riv-functions is defined. As 

complexity indicators are considered: kmin - the minimum 

number of conditions at the reduced automaton in family 

),,( , lmH kdΨ , kmax - the maximum number of conditions at the 

reduced automaton in family ),,( , lmH kdΨ . The number of 

states of modeling system is one of the fundamental 

characteristics, used at designing and system manufacturing. 

The offered method of an estimation of complexity of laws of 

functioning of the discrete determined automatons can be 

applied to get exact bottom and exact top estimations of 

number of states at the minimal automaton only on the basis 

of the analysis of a geometrical image of the automaton, 

without obvious construction of next-state and output 

functions of automaton and carrying out the subsequent 

minimization, which practical realization for automatons 

with large number of states even with use of modern 

computing systems is essentially complicated. The basic 

parameters, used in an offered method, are length of a 

considered initial piece of a geometrical image of the 

automaton - d, number of input signals of the automaton - m 

and number of output signals of the automaton - l. In view of 

that the basic criteria for reception of estimations in an 

offered method are only ratios of sizes d, m, l, and in a 

method recursive procedures of construction aren't used, the 

method can be used for the big finite sizes d, m, l. Use of the 

apparatus of geometrical images of the automatons, offered 

and developed by V. A. Tverdokhlebov (see, for example, 

[4]), allows to consider geometrical curves and numerical 

sequences with automata interpretation, i.e. as ways of the 

task of laws of functioning of automatons. It allows to build 

automaton models of the discrete determined systems 

without restrictions on number of states. The offered method 

is based on use of geometrical representation of laws of 

functioning of automatons and allows to give concrete 

estimations on number of states for any, as is wished great, 

values of sizes d, m, l, that can be used in practice at 

designing of systems for carrying out analysis on number of 

states of possible variants of realization of system for 

purpose of a choice of system with the least number of states. 

The number of states of modeling system is one of the 

fundamental characteristics, used at designing and system 

manufacturing. The offered method of an estimation of 

complexity of laws of functioning of the discrete determined 

automatons can be applied to get exact bottom and exact top 

estimations of number of states at the minimal automaton 

only on the basis of the analysis of a geometrical image of 

the automaton, without obvious construction of next-state 

and output functions of automaton and carrying out the 

subsequent minimization, which practical realization for 

automatons with large number of states even with use of 

modern computing systems is essentially complicated. The 

basic parameters, used in an offered method, are length of a 

considered initial piece of a geometrical image of the 

automaton - d, number of input signals of the automaton - m 

and number of output signals of the automaton - l. In view of 

that the basic criteria for reception of estimations in an 

offered method are only ratios of sizes d, m, l, and in a 

method recursive procedures of construction aren't used, the 

method can be used for the big finite sizes d, m, l. Use of the 

apparatus of geometrical images of the automatons, offered 

and developed by V. A. Tverdokhlebov (see, for example, 

[4]), allows to consider geometrical curves and numerical 

sequences with automata interpretation, i.e. as ways of the 

task of laws of functioning of automatons. It allows to build 

automaton models of the discrete determined systems 

without restrictions on number of states. The offered method 

is based on use of geometrical representation of laws of 

functioning of automatons and allows to give concrete 

estimations on number of states for any, as is wished great, 

values of sizes d, m, l, that can be used in practice at 

designing of systems for carrying out analysis on number of 

states of possible variants of realization of system for 

purpose of a choice of system with the least number of states. 
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