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Abstract: In an electron-ion plasma, ions can consider are fixed and electrons moving due to the high mass of ions relative 

to electrons. In a piece of metal, free electrons are almost like electrons in a plasma, and ions are stationary. By applying 

electric and magnetic fields, the behavior of these electrons can be predicted by studing the two-fluid electron-ion model. This 

paper derives a set of two-fluid (electron-ion) plasma equations based on the quantum magnetic hydrodynamic model 

(QMHD) for each of the two electron-ion fluids. We consider the electron-ion as two different types of particles and follow a 

path for discussion that is different from the usual path and obtain new dispersion equations. We consider the two regimes of 

non-spin and spin plasma separately and analyze the propagation of waves that correspond to perturbations in parallel and 

perpendicular to the external magnetic field, and obtain their vibrational modes. Then we return to the subject of the metal part 

and the ions and set the flow velocity of the ions to zero. Finally, we consider a one-dimensional grid of ions, at any given 

length L0, with one electron impurity as a Fermi polaron. We study its effect on ground state energy. Due to the long-range 

nature of the electron-ion interaction, these systems have several properties distinct from their ordinary counterparts such as 

the simultaneous presence of several stable. Surprisingly, the residue of electrons is shown to increase with the Fermi density 

for fixed interaction strength.  

Keywords: Fermi Polaron, Magnetized Two-Fluid Spin Quantum Plasmas, Quantum Hydrodynamic Plasmas,  

Spin-Spin Interaction, Spin-Magnetic Field Coupling 

 

1. Introduction 

Magneto-hydrodynamics (MHD) can consider a suitable 

formalism for studying magnetized plasma at scales larger 

than the ionic inertia length λ� � c ω�⁄  where ω� is the ionic 

plasma frequency [1-4]. At distances much smaller than λ���, 

we assume, ions are stationary due to their much larger mass 

than electrons, and electric currents are entirely the result of 

the motion of electrons. At these scales, quantum works are 

highlighted. One of these is when the thermal de Broglie 

wavelength of the plasma particles λ	 � 
 �k	Tm⁄  is about 

the average particle distance L� ≡ n�
�� �⁄

, i.e., λ	 ≿ L� . A 

method for considering the quantum effect is to correct the 

classical equations. It is natural to see differences between 

the classical and quantum models, for example, using the 

quantum hydrodynamic model to see new oscillating modes 

in a magnetic quantum plasma [5-7].  

This work is organized as follows: In Section 2, we use the 

two-fluid plasma equations and their oscillation modes 

concerning quantum effects such as Fermi pressure, Bohm 

pressure, and spin interactions [8-10]. We also get new 

dispersion modes by converting from the laboratory to the 

center of the mass system. In Section 3, we study free 

electrons and ions in a piece of metal. We assume, in the one-

dimensional grid of ions, at any given length ��, there is one 

electron impurity as a Fermi polaron. We study its effect on 

ground state energy by eliminating the degree of freedom of 

the impurity and replacing a generalized Hamiltonian of only 

ions (impurity removal) with the system's Hamiltonian. 

Finally, some conclusions are drawn in Section 4. 
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2. QMHD Equations and the Effects of 

Spin 

We first consider a plasma consisting of two fermionic 

fluids whose temperature is below the Fermi temperature. 

Then, we consider electron-ion as two different species and 

obtain our equations to the evolution of the spin current. We 

write the QMHD quantum equations for the two-fluid plasma 

of electron-ion located in the external magnetic field B. 

2.1. Two-Fluid Plasma Equations 

We use the method of many-particle quantum 

hydrodynamics for the two-fluid plasma equations. Let's start 

with the one particle and many particle Pauli equation [11, 12], 


���±��� �  �
!" �# − %&�! + %() *+�±��� − ,


!" -. /�±��� (1) 

0
������, … , �3 , 4� � 5����, … , �3 , 4�	          (2) 

Where ψ± � 8ψ9
ψ�

: , 	I+ � <10	01? , ψ±�r�  is the one-particle 

wave function, ����, … , �3 , 4�  is the many-particle wave 

function, r�  is the coordinates of each particle and N is the 

total number of particles in the system. Hamiltonian for 

electron- ion plasmas of particles moving with velocities 

B ≪ D is [13, 14], 

5 � E∑ G �
!"H.IJ

<
KL ± M
N OL,MP�?

!3LQ� ∓ STLMP� ± M

!"H.IJ

	-. /LMP�) − �
! ∑ G UMV
V

"H.IJV NV -LM. -WLXY3L,WZL + ∑ MV

["H.IJV NV -. \] × OL,MP�_3LQ�      (3) 

Where N`, N��  are numbers of electrons and ions 

correspondingly, a � aM + aLX , φ�̀ cd  is the external scalar 

potential acting on the particle with number i, A�,`cd  is the 

external magnetic potential, σ� is the Pauli matrixes. Let us 

describe the physical meaning of different terms in the 

Hamiltonian �3�. The first term describes kinetic energy; The 

second term is the potential energy of charges in the external 

electric field. The third term is the Potential energy due to 

magnetic moments' interaction with the external magnetic 

field. These three terms are related to the motion of each 

particle in the external electromagnetic field. The fourth term 

is the spin-spin interaction. The fifth term is the interaction of 

the spin-electric-magnetic field correspondingly [15-18]. 

In a piece of metal, free electrons and ions are almost like 

electrons and ions in an electrically neutral degenerate plasma 

composed of two species as a two-fluid electron-ion system. We 

introduce the velocity for each species of particles iM,LX��, 4� 	�
	jM,LX��, 4�kM,LX��, 4�, where u`,�� is their fluid velocities. In the 

following, we consider ions to be protons for simplicity. The 

Fermi pressure for each fluid P̀ ,n is equal to, 

#o,Mp � !
q jMp]oMp � �3r!�! �⁄ 
V

q"H.s
jMp

q �⁄ 	          (4) 

where Eu`n  is the Fermi energy of species e and p, ]oMp �

V
!" \3r!jMp_! �⁄

. At first, we can write the continuity 

equation for electrons and protons as, 

��jM.p + K. \jM.pkM.p_ � 0                      (5) 

The basic set of equations that we use for the plasma using 

the quantum hydrodynamic model are as follows [19, 20], 

&M.pjMp\�� + kMp . K_kMp + K#Mp − xHs
V
!"H.s

	K 8yV�xHs
�xHs

: = ∓SjMp\] + kMp × /_ ∓ M
xHs
!"H.sN \zMp . K_{Mp+


V�|}
!~|.}

∇\∂�S�
`n ∂�S�

`n_  (6) 

And, 

�� 	zp � + M
"sN zp × {p                    (7) 

�� 	zM � − M
"HN zM × {M                    (8) 

Where p`n is the partial scalar pressure and the {p is the 

generalized magnetic field, 

{p ≡ / + ℏ
!Mxs

	K\jpK. zp_	             (9) 

{M ≡ / − ℏ
!MxH

	K(jMK. zM)	           (10) 

The Maxwell equations for neutral, non-relativistic 

systems are, 

K × ] = − �
N ��/, K × / = [UM

N \jpkp − jMkM_ + �
N ��] (11) 

In Eq. (6), the second and third terms on the left show the 

contribution of pressure to the motion of the particles. The 

first term on the right represents the Lorentz force; the 

second term shows spin interaction with the non-uniform 

magnetic field, and the third term shows spin interaction with 

non-uniform spin. Now, we convert the two-fluid equations 

to a single fluid. 

2.2. Investigation of Spin Wave Propagation and Vibration 

Modes 

Before starting the discussion, we state some definitions, 

& ≡ &M + &p , � ≡ &M &⁄ , &k� = &MkM + &pkp  and 

k� = (1 − �)kp + �kM . Corresponding to the density of the 

electric current i = S\jpkp − jMkM_, we also introduce the 

spin current density � = 	�\jpkp − jMkM_, where � = M
", we 

can conclude, 

kM = k� − �(���)
x �                             (12) 

kp = k� + ��
x �                                (13) 

According to the definition of the mean velocity u� and the 

total density n , the continuity equation and equations of 

motion for each species become, 

��j + K. (jk�) = 0	                            (14) 
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μmddu` + �
x ∇p` − ℏV

!�~ ∇ <∇V√�
√� ? = −e(E + u` × B) − Mℏ

!�"N z�MK{M
� + ℏV

!�" K\��z�M��z�M_                          (15) 

(1 − μ)&ddu� + �
x	 ∇p� − ℏV

!(���)~ ∇ <∇V√�
√� ? = S(] + k� × /) + Mℏ

!(���)"N z��K{p
� + ℏV

!(���)" K\��z����z��_           (16) 

And, 

�� 	zp = M
(���)" zp × {p                                                                             (17) 

�� 	zM = − M
�" zM × {M                                                                               (18) 

Adding Eqs. (15), (16), and considering #M + #p ≈ #o =	 \�UV_V �⁄ ℏV
q"�(���) jq �⁄ ≡ ��jq �⁄ , and using total spin currents density, 

we obtain the equation of evolution for u, 

��k� + ��
" Kj! �⁄ − ℏV

!"V�(���) 	K <yV√x
√x ? = �

x (� × /)+
Mℏ

!"VN � �
(���) zp ×  K × 8/ + ℏN

!M 	K × \jK × zp_:)+�
� zM ×  K ×

8/ − ℏN
!M 	K × (jK × zM):)�+

ℏV
!"V  �

(���) K\��z�
p��z�

p_ + �
� K\��z�M��z�M_)                                  (19) 

Or, 

��k� = �
x (� × /) − ��

" Kj! �⁄ + ℏV
!"V�(���) 	K <yV√x

√x ?+
Mℏ

!"VN 	
�

(���)� z̅ × (K × /) + Mℏ
!"VN � �

(���) Sn × ∇ ×  ℏ�
!`� 	∇ × \n∇ ×

Sn_+− �
� zM × K × 8 ℏN

!Mx 	K × (jK × zM):)� + K  �(1 − �) "VNV
	!xVMV �!)                                     (20) 

Where, we used the multiplication properties of the operators. Finally, it can obtain, 

��k� = �
x (� × /) − ��

" Kj! �⁄ + ℏV
!"V�(���) 	K <yV√x

√x ?+
Mℏ

!"N 	
�

(���)� z̅ × (K × /) + 	�(1 − �) "VNV
!xVMV �� × K × ��+ Mℏ

!"N  �
(���) z�

pK ×
8 ℏN
!Mx 	K × \jK × zp_:− �

� z�MK × 8− ℏN
!Mx 	K × (jK × zM):)+K  �(1 − �) "VNV

!xVMV �!)                               (21) 

Or, 

��k� = �
x (� × /) + Mℏ

!"N 	
�

(���)� z̅ × (K × /)+

�(1 − �) "V
!xVMV �� × (K × �)� + ∇  �(1 − �) "V

!xVMV �!) − ��
" ∇n! �⁄ +	 ℏV

!~V�(���) 	∇ <∇V√�
√� ?              (22) 

On the other hand, using Eqs. (6), (10), and (11), we can write, 

E = −∂dA − ∇φ = −	u` × B	 +	 ℏV
!`�~ ∇ <∇V√�

√� ? − �~
` ��kM − ��

M ∇p` − ℏM
!�"V z�MK{M

� + ℏV
!�"V K\��z�M��z�M_             (23) 

Calculating curl on both sides of Eq. (14), all terms resulting 

from the gradient become zero. So, the evolution of the 

magnetic field become, 

��/ = K × �k� × /� + �"
M ���K × k�� + Mℏ

!"V Kz × K/ (24) 

Adding two Eqs. (7) and (9), we obtain, 

��z̅ = M
" 	z̅ ×  / + ℏ

!xM 	∇(j∇. z̅))                (25) 

Let us consider the equilibrium state where B = Bz¡ , 

〈u〉 = 0 , k = k(0, sinT , cos T) , where φ  is the angle 

between wave vector and magnetic field. 

For Parallel propagation, k ∥ B , the linear perturbations 

around the equilibrium state. Using Eqs. (8) , (9) , (10) , 
(14), (15), (16), (17), and (18), we can write, 

¨
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0
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­
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©
©
©©
©
©
ªzP
z®j
¯®
¯Pkxk®k°«

¬
¬
¬¬
¬
¬
­

= 0	  (26) 

Where, A� ≡  1 + μ(1 − μ) "V±V
`V ) , A! ≡ k cosT =

L(���)"
M , A� ≡ i �"²

M ,  A[ ≡ `
�" <1 + ℏ±V

!M ? , Aq = <1 +
ℏM±

!�"V? sin T 	≡ 0, η = �
�(���) <

q
�

��
" + �

[
ℏV
~V k!?, �� = \�UV_V �⁄ ℏV

q"�(���)  

and B ≡ ω k⁄ . The spin effect appears only in the four 

elements G−0 ´ µ⁄
O[

	 −O[
−0 ´ µ⁄ Y and does not appear in the rest of 

them. Use the properties of determinants, we have [21, 22], 
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det�8 × 8� � det�6 × 6� 	× det	 ·−0/ −O[
O[ −0/· � 0    (27) 

Solving det�6 × 6� � 0, normal modes without spin can 

obtain, and solving the remaining determinant, normal modes 

related to spin can obtain. The frequency of this spin mode is 

equal to ´ ≡ ´¸¹, so, 

ωº» = ℏ`
!�~ k� + `

�~ k	                         (28) 

For electron-proton state, Eq. (28) can rewrite as, 

´¸¹ = 8.9 × 10�![µ� + 1.8 × 10��µ 

Parallel propagation has an acoustic mode with the 

characteristic equation, Gω k⁄ −1
−η ω k⁄ Y  n

	u¼	) = 0 , or 

·´ µ⁄ −1
−� ´ µ⁄ · = 0. It's solution is ω

! = ηk! = �
�(���) <

q
�

��
" +

�
[

ℏV
~V k!? µ!  or ω

! = 7.4 × 10��k! + 3.7 × 10�½k[ . The 

second term is explicitly related to ℏ and is therefore derived 

from quantum properties and becomes dominant for µ ≥
10�¿. For Perpendicular propagation, k ⊥ B, we can write, 
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Where A� ≡  1 + μ(1 − μ) "V±V
`V ) , A! ≡ �(���)~

` k cosT =
0 , A� ≡ i �"²

M ,  A[ ≡ `
�" <1 + ℏ±V

!M ? , Aq = <1 + ℏM±
!�"V? 	≡ 0 , 

η = �
�(���) <

q
�

��
" + �

[
ℏV
~V k!? , �� = \�UV_V �⁄ ℏV

q"�(���)  and B ≡ ω k⁄ . 

We must consider the remaining elements corresponding to 

(uc, bc, u¼, and	b¼). The result is, 

<Ã
Ä?

[ − 8�9 HℏÅ
VÆÇV:

�9�(���)ÇV
HV ±V <²

±?
! − �

�(���) <
q
�

��
" + �

[
ℏV
"V µ!? = 0 (30) 

Or, 

´[ − 8�9 HℏÅ
VÆÇV:±V

�9�(���)ÇV
HV ±V ´! − ±È

�(���) <
q
�

��
" + �

[
ℏV
"V µ!? = 0 (31) 

3. Electrons as an Impurity 

We study the effect of the motion of an electron on a one-

dimensional grid of ions as an impurity and its effect on 

ground state energy. 

3.1. Hamiltonian and L. L.P Transformation 

We assume that the density of ions is much higher than 

that of electrons. Again, for simplicity, we assume our 

system is electron-proton. At any given length ℒ�, there is 

one electron impurity as a Fermi polaron. We study its effect 

on ground state energy. By eliminating the degree of freedom 

of the impurity, we replace a generalized Hamiltonian of only 

protons (impurity removal) with the system’s Hamiltonian. 

We use the Variation-Method [23] and the Lee-Low-Pines 

(LLP) transformation [24-26] for the system's ground state. 

The Hamiltonian of the entire system is [27-29], 

H = H` + Hn                               (32) 

H = n}V
!~ + ∑ n|ÊV

!�~
Ë�Q� + Ì ∑ δ\x`� − xn_Ë�Q�            (33) 

Where, Ì  shows the strength of the interaction of each 

proton with the electron impurity. or, 

H` = Ï dxÐ
� ψ`

Ñ(x) <− �
!�~

ÒV
ÒcV?ψ`(x)              (34) 

and, 

5p = Ï �ÓÔ
�  �p

Ñ(Ó) <− �
!�"

ÕV
ÕPV?�p(Ó)+Ì�M

Ñ(Ó)�p
Ñ(Ó)�p(Ó)�M(Ó)Ö                                       (35) 

Where L is the total length of the grid. The system stays in the polaron state, defined as the minimum energy state at a given 

total momentum Q = pn + ∑ p`�Ë�Q�  or ∑ p�Ë9��Q�  where pË9� ≡ pn. For simplicity, we assume the protons have a constant mean 

distance d� = 1, n = ℒ� d�⁄ . In this case, the share of spin in the system Hamiltonian is [30-32], 

H = −ξÄ ∑ CÚ,`
ÑÚ 	CÛ,` + Ì ∑ ÜÝ,p

Ñ ÜÝ,pÜÝ,M
Ñ ÜÝ,M − � ∑ ÜÝ,p

Ñ ÜÝ,pÝÝ                                             (36) 

Where, CÚn
Ñ

 and CÚ,n  is the creation and annihilation operators for an electron at xÚ , CÚ,`
Ñ

, and CÚ,` for proton at xÛ , μ is 

chemical potential and ξÄ = nV
!�~ . The operator CÚ,`n

Ñ
 creates a proton with momentum p  and spin index p.  The system 

Hamiltonian in Eq. (36) can also write as, 

5 = −2ß±ÜÝ,M
Ñ 	Üà,p + ∑ \áÝ − �_ÜÝ,M

Ñ ÜÝ,MÝ +
â
3 ∑ Ü�,p

Ñ�,Ý,Ý	́ Ü�,pSL(±	́�±).	PÆÜÝ,M
Ñ ÜÝ	́,M                             (37) 

Where CÄ,n = �
√Ë ∑ e��	Ä.	cä� C�,n  and 

CÄ,`
Ñ = �

√Ë ∑ e�	Ä.	cä� 	C�,` are the electron and proton operators 

in the momentum space, and N is the number of sites in the grid. 

The parameter Ì is also called the strength of interaction with 

the scattering length α ≡ !æ
ç . To study the physics of Polaron, 

we assume there is only one electron impurity particle. We want 

to eliminate the degree of freedom of the impurity by the unitary 

transformationU = exp�−ip. x� . This transformation operator 
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LLP for the annihilation operator Cn` is, 

UCn`U�� � Cn`e�n.c	               (38) 

Where, p � ∑ xÚ��Ú CÚ,n
Ñ CÚ,n  is the operator of the total 

momentum of the protons, xÚ�� is the inverse grid vector, and 

X � ∑ xÚC�n
Ñ C�n�  is the operator of electron impurity 

coordinates. The above unitary transformation equation is 

called Lee- Low- Pins (LLP). This transformation introduces 

to separate the degrees of freedom of the electron and the 

proton base in a Bose medium of phonons [33, 34]. We 

transform the spin-electron and spin-proton operators CÄ` and 

CÄn  to UÑCÄ`U � e��Ä.cCÄ`  and UÑCÄnU � e��Ä.cCÄn.  As a 

result, the share of spins in Hamiltonian is [35, 36], 

H � ∑ C�`
Ñ� C�`  êë! ∑ e���ì�í�.�î� 	) ' 	∑ \á� $ �_� Ü�p

Ñ Ü�p '∑ 	Ü�	́M
Ñ Ü�	́M�	́ <â

3 ∑ ÜÝp
Ñ Ü�pÝ,� ?               (39) 

Where 	d  is the distance vector between two adjacent 

protons, as can be seen, this variation method disrupts the 

conservation of the system's total momentum. Part of the 

protons' momentum is transferred to the electron, eliminating 

the degree of freedom of the impurity particle. Therefore, for 

a given total momentum 	pd�d, the contribution of only the 

protons Hamiltonian can be written as, 

5p,M � ∑ \áÝ $ �_ÜÝ,p
ÑÝ ÜÝ,p ' â

3 ∑ ÜÝ,p
Ñ Ü�,pÝ,� + 

ïÅ
! ∑ S�L�p�ð�.xñx                                          (40) 

Now, we create a wave function as |�ó � ô|0óp to find the 

approximate ground state of the original Hamiltonian. Then 

by using the impurity state and the inverse of the 

transformation, we get the original state of the initial 

Hamiltonian with a constant momentum. 

By adding one electron impurity and inverse 

transformation, the eigenstate of the primary Hamiltonian 

state in Eq. �37� can express as a new state. This situation is 

similar to the existence of a hole at the top of the Fermi 

electrons. According to the variation method, the ground 

state of Hamilton H can write in terms of the imaginary time 

evolution of the wave function |ψ�τ�ó � e�ö÷|ψ�0�ó where 

ψ�0�ó shows the initial state. The ground state of Eq. �39� 

can be written in terms of a wave function as the state ø�ù�ú�û 
holds in the following differential equation, 

�ü|��ú�ó � $�5 $ 〈5〉�|��ú�ó	            (41) 

And for �ù�ú�, 

�üø�ùû � $�5 $ 〈5〉�ø�ùû = $ôý\Üþ�
Ñ |0óM_⨂ô∅�ô"� ]	"́ô"∅ø0ópÖ                                       (42) 

Where 〈5〉 � 〈��ú�|5|��ú�〉 and ]� � ��ùø5ø�ùû � ��ø5pMø�û  are the average energy of wave function ��ú� and �ù�ú� . By 

calculating the variation energy ] � ��ø5��ø�û , using the relations C�,nÑ � �
! \¯�,þ $ 0¯!,þ_ , Üþ,p	 � �

! \¯�,þ ' 0¯!,þ_  and some 

mathematical calculation, we obtain, 

] � ��ø5pMø�û � �
! ∑ á�� $ �

! a� ' â
! ' 

�
[ ∑ �5���,Ý�,Ý ��"��,Ý ' $ ïÅ

! ∑ S�Lþ.	� \��øSLí.
ø�û_ $ �
[ � ∑ ��,Ý�,Ý ��"��,Ý	  (43) 

where, the function � is defined as � ≡ G0	
�Ë

	�Ë
0 Y, Eq. �43� has the minimum energy as, 

]"Lx � 1 ' �
Uà $ �9àV�
V

!à <� ' !
à? ' �T                                                              (44) 

where, � � �
àU ���D4�j�� $ �� ' ��D4�j�� ' ��� and T � �

!UàV �j �9�à�
�V
�9�à9
�V. 

 

Figure 1. The plot shows the number of protons and one Fermi polaron in a 

1D grid as the chemical potential. The results obtained with theory and the 

��z (matrix product state) method is in perfect agreement. The parameters 

used in this figure are Ì ß±⁄ � 3, #�X� � 0, and a � 80. 

 

Figure 2. The ground state energy of an electron in a 1D grid as the 

interaction strengthÌ ß⁄ , withap � 75, #�X� 	� 	0, and a � 100. 
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Figure 3. Plot shows the average momentum #̅L"p  of the impurity as a 

function of the total momentum #̅�X��� for different values � (ground state). 

The top lines to bottom are for � � 1, 4, 8, 12, respectively. 

3.2. Analysis 

The state pd�d � 0 is completely consistent with what was 

obtained using the MPS method without determining the total 

momentumpd�d . It shows that the ground state has a total 

momentum magnitude of zero. We obtain the Polaron energy 

as]p�#�X� , Ì� � ]�#�X� , Ì� $ ]�#�X� � 0, Ì � 0� . Note that 

the energy of the non-interactive system E�pd�d � 0, Ì � 0� 

can be calculated exactly. In Figure 1, it can be seen that the 

ground state energy changes smoothly in terms of interaction. 

At the infinitely large repulsion limit Ì → '∞, it creates one 

electron impurity like a hard and effective wall, which results 

in energy of ]p → 2ß±. In contrast to the sizeable attractive 

interaction limit Ì → $∞, the electron impurity pairs firmly 

with a proton. Therefore, energy tends to have a limit value 

of ]M → Ì ' 2ß±. 

4. Conclusion 

In this paper, a set of two-fluid electron-ion plasmas 

equations based on the hydrodynamic model was written and 

briefly discussed its various terms and the role of spin in 

spin-spin and spin-magnetic field interactions. These 

equations showed what dispersion relations to expect if 

turbulence occurs in equilibrium plasma. Here, we take a 

path for discussion that differs from the typical path taken in 

other articles and obtain new dispersion equations. We also 

examined the limits of weak and strong magnetic fields and 

the effect of spin polarization on ripple waves in plasma. 

Again, assuming that the external magnetic field is weak, we 

obtained a quasi-sound wave due to differences in the 

distribution of electron-proton states. We found that the spin-

current evolution in magnetized plasma creates a new 

dispersion mode. We also showed that we have only the fast 

mode in the direction perpendicular to the waves' 

propagation direction. The speed of this mode is equal to the 

speed of the mode in the parallel direction plus an additional 

term that depends on the system's characteristics. For high-

density plasma, this correction is negligible. However, for 

very low densities and weak magnetic fields, this effect is 

significant. 

We have studied the polaron properties in a homogeneous 

Fermi gas of electron in a proton base by using a variation 

method in the one-dimension grid (Fermi gas in one-

dimension). We assume the density of protons is much higher 

than that of electrons. There is one electron impurity in the 

one-dimensional grid of protons at any given length �� as a 

Fermi polaron. We study its effect on ground state energy. By 

eliminating the degree of freedom of the impurity, we replace 

a generalized Hamiltonian of only protons (impurity removal 

and consider the proton grid as it is in a Bose medium of 

phonons. The ground state was obtained for a total fixed 

momentum via imaginary time evolution for the various 

parameters. Also, by using the system Hamiltonian, we 

obtained the minimum energy and energy of the system. 
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