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Abstract: In this paper, we investigate the influence of the magnetic field and the temperature on the ground state energy of 

a weak coupling polaron in a spherical semiconductor quantum dot (QD) using the modified LLP method. The ground state 

energy of a weak coupling magneto-optical polaron is split into sub-energy levels and there is the degeneracy of the energy 

levels. It is also seen that the split energies are increasing functions of the electron-phonon coupling constant and decreasing 

functions of the magnetic field while the temperature is an increasing function of the cyclotron frequency for very low values 

of the longitudinal confinement length. 
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1. Introduction 

Due to the recent progress achieved in nanotechnology, it 

has become possible to fabricate low dimensional 

semiconductor structures. Special interest is being devoted to 

the quasi zero dimensional structures, usually referred to as 

quantum dots [1-9]. In such nanometer QD's, some novel 

physical phenomena and potential electronic device 

applications have generated a great deal of interest. This has 

laid a great challenge on theoretical physicists, that of 

developing the theory, based on the quantum mechanical 

regime. Recently, much effort [10-12] has been focused on 

exploring the polaron effect of QDs. Roussignol et al.[10] 

have shown experimentally and explained theoretically that 

the phonon broadening is very significant in very small 

semiconductor QDs. It has also been observed [11-12] that 

the polaron effect is more important if the dot sizes are 

reduced to a few nanometers. More recently, the related 

problem of an optical polaron bound to a Coulomb impurity 

in a QD has also been considered in the presence of a 

magnetic field. The theoretical investigation of the properties 

of the polaron has been done using the standard perturbation 

techniques [13], the variational Lee-Low-Pines method [14-

15] the modified LLP approach[16-17], the Feynman path 

integral method [18], numerical diagonalization [19] and by 

Green function methods [20]. The experimental data [21] 

showed, in particular, a large splitting width near the one-

phonon and two-phonon resonance in a InAs/GaAs QD. This 

was accounted for by the theoretical model via a numerical 

diagonalization of the Fröhlich interaction [19]. The required 

value of the Fröhlich constant was much larger (by a factor of 

two [19],) than that measured in bulk. In [18] using the 

Feynman path integral method, the authors observed that the 

quadratic dependence of the magnetopolaron energy is 

modulated by a logarithmic function and strongly depends on 

the Fröhlich electron–phonon coupling constant structure and 

cyclotron radius. Furthermore the effective electron-phonon 

coupling is enhanced by a high confinement and/or a strong 

magnetic field. In [21] the polaron energy in QDs was 

calculated using a Lee-Low-Pines (LLP) approach and it was 

found that the polaronic effect is more pronounced for small 

dot sizes. In [16], using a modified LLP approach, the 

number of phonons around the electron as well as the size of 

the polaron for the ground state and for the first two excited 

states is calculated via the adiabatic approach. It is important 

to note that, in the preceding works, the fact that the presence 
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of magnetic field induces the interaction of the electron with 

the magnetic field and the precession of this electron along 

the z −  axis have not yet been taken into consideration. It is 

also instructive from the works presented above, to recall that 

polarons are often classified according to the Fröhlich 

electron-phonon coupling constant. Because it recovers 

simultaneously all types of coupling which characterize the 

Fröhlich electron-phonon coupling, the Feynman path 

integral method [18] has been seen as one of the best. The 

main feature of the method presented here is the modification 

of the LLP approach [16] by introducing two new parameters 

1 2
b and b in the traditional LLP approach, which permits us 

to obtain an “all coupling” polaron theory. Here the coupling 

is weak if 
1 2

1b b= → , strong coupling if 
1 2

0b b= →  and 

intermediate between these ranges.  

In this work, we study the influence of the magnetic field 

and the total momentum on the polaron ground state energy. 

The article is organized as follows: in the second section, we 

describe the model and the Hamiltonian of the system and 

point out that, this Hamiltonian will be explicitly dependent 

on the Zeeman effect. In section 3, the analytical results of 

the ground state energy and of the polaron effective mass are 

obtained. In section 4, we present a brief result on the effect 

of temperature on the polaron, in section 5, we discuss our 

results and, then, we end with the conclusion. 

2. Theory and Calculation 

The model we use consists of an electron confined in an 

isotropic potential box with tunable dimensions immersed in 

the field of the bulk longitudinal optical (LO)-phonon modes 

and interacting with an external magnetic field while the total 

momentum is directed along the z-axis. The dimensionless 

Hamiltonian describing the problem in Fröhlich units is given 

by [22] 

e ph e ph
H H H H −= + +                           (2.1) 

e
H  represents the electronic Hamiltonian and is given by  

2
2 2 2 2

2

1 1

2 2 2
e B ext J J

p
H m m z B g m

m
ρ ω µ= + Ω + −    (2.2) 

where p  is the momentum, 1 2andω ω  measure the 

confinement in the xy −  plane and the z −  direction 

respectively and 2 2 2

1 cω ωΩ = + . The fourth term of the 

Hamiltonian is the interaction of the magnetic moment with 

the total angular momentum J ; where Bµ is the Bohr 

Magneton, Jg is the Landé g  factor, Jm  is the magnetic 

total angular momentum with numbers ranging from J to J− . 

The Landé factor is given by 
( ) ( )

( )
1 13

2 2 1
J

S S L L
g

J J

+ − +
= +

+
; 

S  is the spin and L  is the angular momentum. 

phH
 
is the phonon Hamiltonian defined as 

ph Q Q

Q

H a a+=∑                            (2.3) 

Where ( )Q Qa a+
 are the creation (annihilation) operators for 

LO phonons of the wave vector ( , )zQ q q= , e phH −  
represents 

the electron-phonon Hamiltonian and is given by  

. .iQ r iQ r

e ph Q Q Q

Q

H V a e a e+ −
−  = + ∑            (2.4) 

QV and α  are the amplitude of the electron-phonon 

interaction and the coupling constant respectively given by  

1/4 1/2
4

2

LO

q

LO

V i
q m V

ω πα
ω

    =     
   

ℏ ℏ
             (2.5) 

1/22 2

2

LO

LO

me ωα
ω

  =   
  ℏ ℏ

                     (2.6) 

3. Ground State Energy 

Adopting the mixed-coupling approximation of [23] we 

propose a modification to the first Lee-Low-Pines (LLP)-

transformation by inserting two variational parameters

1 2b and b .  

Our new unitary transformation is now  

1 1 2exp ( ) ( )zi P b P zbρ ρ ρρ  = − + −  U P P            (3.1) 

With 

Q Q

Q

P p a a+= +∑                              (3.2) 

being the total momentum of the polaron while  

Q Q

Q

Qa a+=∑P                              (3.3) 

is the momentum of the phonon.  

The two new variational parameters are supposed to trace 

the problem from the strong coupling case to the weak 

coupling limit and to interpolate between all possible 

geometries.  

The second transformation is of the form [1] 

2
( )

Q Q Q

Q

u a a+= −∑U                     (3.4) 

where Qu  is a variational function. This transformation 

is called the displaced oscillator which is related to the 

phonon operators via the phonon wave vector through 

the relation 

2 0ph phφ =U                            (3.5) 

where 0ph  is the phonon vacuum state since at low 
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temperature there will be no effective phonons. 

Applying the transformation in (3.1) on the Hamiltonian, we 

obtain 

1 2 1 2

2
(1) 1 2 2 2 2 2 2

1 1 2 1

( . ) ( )2 2 . .

1 2 2

1 1
( )

2 2 2

2 ( ) ( ) 2 ( ) z z

B ext J J

i b q b q z i b q b q ziQ r iQ r

z z z z z Q Q Q Q Q

Q Q

p
H H m m z B g m b P

m

b p P b P b p P a a V a e e a e e

ρ ρ

ρ ρ
ρ ρ ρ

ρ ω µ−

− + ++ + −

= = + Ω + + + − +

 + − + − + − + + + ∑ ∑

U U P

P P P
   (3.6) 

Applying the transformation (3.4) on (3.6) and expressing in Fröhlich units i.e. 2 1
LO

m ω= = =ℏ , we obtain the ground state 

energy 
g

ε  

( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( )

2
0 02 2 2 2 2 2 2 2 2

2 1 1 1

1 02 2 2 2 2

1 2 1

1 2 1 2

02 2 2 2

2 2 2

1 1
0 0 2

4 4

1 0 0 2 0 0

0 exp . exp . exp . exp . 0

2

g e B ext J J e

Q z e ph ph e

Q

Q Q e z z e

Q

z z z

z B g m b P b P b

u b q b q b p P

V u i b q b q z iQ r i b q b q z iQ r

b P b P b

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ε ρ ω µ

ρ ρ

= − ∇ + Ω + + + − + +

+ + + + − + − +

+ − + − + − +      

+ − +

∑

∑

P P

P P P

P ( )( ) ( ) ( )( )2
0 1 0

20 0 2 0 0e ph z z z z z ph eb p Pρ + − + −P P P P

                   (3.7) 

where 

( ) ( )1

Q Q Q

Q

Qu a a+= +∑P                      (3.8) 

and 

( )0 2

Q

Q

Qu=∑P                         (3.9) 

To evaluate this expression, we introduce the linear 

combination operators of the position and momentum of the 

electron by the following relation: 

1

2

1

2

( )
2

( )
2

( )
2

( )
2

z z z

z z

m
p

x i
m

m
p

x i
m

µ µ µ

µ µ µ

µ

λ σ σ

σ σ
λ

λ σ σ

σ σ
λ

+

+

+

+

= +

= −

= +

= − −

ℏ

ℏ

ℏ

ℏ

                (3.10) 

where the index µ refers to the x and y  directions, 
1

λ  and 
2

λ

are variational parameters, while σ  and σ
+ are respectively 

the annihilation and creation operators for the electron. Using 

the following commutator, ,x p iµ υ µυδ  =   ℏ  and performing the 

required calculations, we may write the ground state energy 

as: 

( ) ( )( )
( ) ( ) ( )( )

22
2

0 02 2 2 21 2 2

1 1 1

1 2

2
0 02 2 2 2 2 2 2 2 2

1 2 2 2 2

2
2 4 2 4

1 2 2

g B ext J J

Q z z z z z Q Q Q

Q Q

B g m b P b P b

u b q b q b P b P b V u S

ρ ρ ρ ρ
λ λ ωε µ

λ λ
Ω= + + + + + − + +

+ + + + − + −∑ ∑

P P

P P
                               (3.11) 

with 

( ) ( )1 20 exp . exp . 0Q e z eS i b q b q z iQ rρ= ± + ±                                                 (3.12) 

which can be rewritten as 

( ) ( )
22

2 2

1 2

1 2

exp 1 exp 1
2 2

z

Q

qq
S b b

λ λ
  

= − − − −  
   

                                               (3.13) 

Minimizing (3.11) with respect to the variational function 
Q

u we obtain 
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( )( ) ( )( )0 02 2 2 2 2 2

1 2 1 21 2 2z z z z Q Q Qb q b q b q P b q P u V Sρ ρ
 + + + − + − =
 

P P                                      (3.14) 

Solving (3.14) with respect to 
Q

u , with the assumption 

that 
( )0P  differs from the total momentum by a scalar factor 

( )( )0
Pη η=P , we get 

( ) ( )2 2 2 2 2 2

1 2 1 21 2 1 2 1

Q Q

Q

z z z

V S
u

b q b q b qP b q Pρ η η
=

+ + − − − −
  (3.15) 

Substituting (3.15) into (3.11) we obtain 

( ) ( )

( )
( ) ( ) ( ) ( )

22
2 22 2 2 21 2 2

1 2

1 2

2 2 2 2 2 2 2 2
1 2

2
2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2

1 1
2 4 2 4

1
2

1 2 1 2 1 1 2 1 2 1

g B ext J J z

Q Q z Q Q

Q Q
z z z z z z

B g m b P b P

V S b q b q V S

b q b q b qP b q P b q b q b qP b q P

ρ

ρ ρ

λ λ ωε µ η η
λ λ

η η η η

Ω= + + + + + − + − +

+ +
+ −

   + + − − − − + + − − − −   
∑ ∑

  (3.16) 

But ( )g Pε  may be well represented by the first two terms 

of a power series expansion in 2P  as in [23] 

( ) ( ) ( )
2

40 0 ...
2

g g

P
P Pε ε β= + + +             (3.17) 

where 1β −  gives the effective mass of the polaron. 

Comparing (3.16) and (3.17) we obtain for the ground state 

energy 

2 222

1 2 2

2 2 2 2
1 2 1 2

2 4 2 4 1

Q Q

g B ext J J

Q z

V S
B g m

b q b q

λ λ ωε µ
λ λ

Ω= + + + + −
 + + 

∑                                                 (3.18) 

Substituting for QS  in (3.13), the ground state energy in (3.18) finally becomes 

22
2 2 2

1 222
1 21 2 2

2 2 2 2
1 2 1 2

exp (1 ) exp (1 )

2 4 2 4 1

z
Q

g B ext J J

Q z

qq
V b b

B g m
b q b q

λ λλ λ ωε µ
λ λ

  
− − − −  Ω    = + + + + −

 + + 
∑                              (3.19) 

which we rearrange as  

g g B ext J JE B g mε µ= +                                                                                   (3.20) 

where 

22
2 2 2

1 222
1 21 2 2

2 2 2 2
1 2 1 2

exp (1 ) exp (1 )

2 4 2 4 1

z
Q

g

Q z

qq
V b b

E
b q b q

λ λλ λ ω
λ λ

  
− − − −  Ω    = + + + −

 + + 
∑                                          (3.21) 

 

Under the influence of the magnetic field along the z −  

direction with the polaron in the 1S  state, the angular 

momentum is 0L =  , the spin is 
1

2
S = ±  and the total 

momentum is 
1

2
J S L= + = . These values show that the 

ground state split into four levels as given below:  

01 01

02 02

1 2 2 2

4 4
1 2

3 3

g B ext g B ext

g B ext g B ext

E B and E B

E B and E B

ε µ ε µ

ε µ ε µ

= + = −

= + = −
    (3.22) 

4. Temperature Effect 

The polaron is no longer in the ground state entirely at a 

finite temperature. In such a case, the properties of the 

polaron are described by the statistical average of the phonon 

number. The average number of bulk LO phonons is given 

according to the quantum statistics theory as 

1

0 exp 1
g

B

N
K T

ε −
  

= −  
   

                     (4.1) 

where 
B

K  is the Boltzmann constant and T is the 
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5. Numerical Results and Discussions

For the numerical results, we consider the weak

case, i.e. 
1 2

1b b= = . In this part, we display the plot 

ground state energy versus the electron

Figure 1. Split ground state energies of polaron in

Figure 2. Split ground state energies of polaron in

Energy Levels of Weak Coupling Magneto-Optical Polaron and Temperature Effect in 

Spherical Quantum Dot 

iscussions 

the weak coupling 

display the plot of the 

ectron-phonon coupling 

strength and the cyclotron frequency

temperature versus the cyclotron frequency and 

phonon coupling constant with the following polaron units: 

( )* *

0 2LO LOR and r mω ω= =ℏ ℏ

Split ground state energies of polaron in1S  state as functions of coupling constant α with 1 20.7, 0.4 5.0l l and= = =

state energies of polaron in1S  state as functions of coupling constant α with 1 20.7, 0.4 40.0l l and= = =

Optical Polaron and Temperature Effect in   

the cyclotron frequency and that of the 

temperature versus the cyclotron frequency and the electron-

with the following polaron units: 

) 1
2

LO LO  

 

1 20.7, 0.4 5.0cl l and ω= = = . 

 

1 20.7, 0.4 40.0cl l and ω= = = . 
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Figure 3. Split ground state energies of polaron in

Figure 4. Temperature of polaron in 1S

In figures 1 and 2 we have plotted the energy of 

polaron in the ground state as a function of the electron 

phonon coupling constant α  for 
1 20.7, 0.4 5.0l l and= = =

(Fig. 1), 
1 2

0.7, 0.4 40.0
c

l l and ω= = =
 
(Fig. 2)

are the energies of the polaron for J and g

respectively. The split energies are increasing 

coupling constant α . The increase of the 

coupling constant makes electrons to interact

phonons. This result is in agreement with

Shu-Ping Shan et al in [24-26] 

In Figure 3, we have plotted the polaron 

function of the cyclotron 

1 2
0.2, 0.3 6.5l l and α= = = . From here, it is 

split energies are decreasing functions 

frequency. As the magnetic field gets stronger, 

moves away from the center and gets closer to the surface 

American Journal of Modern Physics 2015; 4(4): 158-164  

 

Split ground state energies of polaron in1S  state as functions of cyclotron frequency cω with 1 2l l and= = =

1S  state as function of cyclotron frequency cω :(a) 1 20.25, 0.75l l= =

the energy of the 

as a function of the electron 

1 20.7, 0.4 5.0cl l and ω= = =
0.7, 0.4 40.0 (Fig. 2). 

01 02
andε ε  

4
2

3
J JJ and g= =  

increasing functions of the 

the electron-phonon 

interact with more 

agreement with that obtained by 

, we have plotted the polaron energies as a 

cyclotron frequency for 

it is seen that the 

 of the cyclotron 

As the magnetic field gets stronger, the electron 

away from the center and gets closer to the surface 

along the axis, resulting to a decrease 

the bulk LO phonon to the binding energy

important in the control and modulation of 

optoelectronic devices [27] 

In figure 4, we have plotted the temperature of 

as a function of cyclotron frequency for 

(Fig. 4a) and 
1 2

0.5, 0.25l l= = (Fig. 4b). From figure 4a,

seen that the temperature is 

cyclotron frequency for high value

confinement length. When the medium is large,

that the temperature should 

temperature increases with the decrease of the longitudinal 

confinement length. The magnetic field is 

supplementary confinement to the electron

temperature has to increase when it increase

the electron is highly confined 

that direction becomes more importan

the medium. These results are 

 163 

 

1 20.2, 0.3 6.5l l and α= = = . 

 

0.25, 0.75  (b) 1 20.5, 0.25l l= = . 

to a decrease in the contribution of 

LO phonon to the binding energy. This is very 

important in the control and modulation of the intensity of 

In figure 4, we have plotted the temperature of the polaron 

as a function of cyclotron frequency for 
1 2

0.25, 0.75l l= =
0.5, 0.25 (Fig. 4b). From figure 4a, it is 

 a decreasing function of the 

high values of the longitudinal 

ngth. When the medium is large, it is normal 

should decrease. In Fig. 4a, the 

with the decrease of the longitudinal 

The magnetic field is considered as a 

supplementary confinement to the electron and thus, the 

to increase when it increases (Fig. 4b). When 

 in one direction, the motion in 

more important, thereby heating up 

results are in in accordance with those 
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obtained in [28-29]. 

6. Conclusion 

In conclusion, with the use of the modified LLP method, 

we have studied the energy of a weak coupling polaron and 

the effect of temperature in an anisotropic QD subjected to a 

magnetic field and interacting with the momentum along the

z −  direction. It is found that there is the splitting and 

degeneracy of the energy levels. We also see that the split 

energies are increasing functions of the coupling constant and 

decreasing functions of the cyclotron frequency. The 

enhancement of the coupling strength is very important in the 

construction of quantum computers since it leads to the 

conservation of its internal properties such as superposition 

states against the influence of its environment, which can 

induce the construction of coherent states and cause 

coherence quenching. So, we have more flexible and tunable 

methods than the parabolic and the asymmetrical QD to 

restrain quantum decoherence, for example, extending the 

effective confinement lengths appropriately and choosing 

polar materials with weaker coupling strength. We also see 

that, the temperature is a decreasing function of the cyclotron 

frequency at a certain value of the transverse confinement 

length. When the electron is more confined in the 

longitudinal direction, the temperature is an increasing 

function of the cyclotron frequency.  

 

References 

[1] R. T. Senger and A. Erçelebi. Solid State Phys, 22,169 (1998) 

[2] Y.B. Yu., S.N.Zhu, K. X.Guo. Solid State Commun, 132 (10), 
689 (2004) 

[3] Liang, X.X., Gu, S.W., Lin, D.L. Phys. Rev. B., 34 (4), 2807 
(1986) 

[4] Zhu, K.D., Kobayashi, T. 92 (4), 353 (1994) 

[5] Licari, J.J., Evrard, R. Phys. Rev. B., 15 (4), 2254 (1977) 

[6] Das Sarma S. and Mason B.A. Ann. phy.NY,163 (1), 78 (1985) 

[7] Licari J.J. Solid State Commun, 29 (8), 625 (1979) 

[8] Comas F., Trallero-inner, C, Riera, R. Phys. Rev. B., 39(9), 
5907 (1989) 

[9] Yu Yi-Fu, Xiao Jing-Lin, Yin Ji-Wen and Wang Zi-Wu. 
Chinese Physics B., 17(6), 2236 (2007) 

[10] P. Roussignol, D. Ricard and C. Flytzanis. Phys. Rev. Lett., 62, 
312 (1989) 

[11] K. D. Zhu and S. W. Gu. J. Phys.: Condens. Matter, 4, 1291 
(1992) 

[12] S. Mukhopadhyay and A. Chatterjee. J. Phys.: Condens. 
Matter, 8 (22), 4017 (1996) 

[13] K. D. Zhu and S. W. Gu. Phys. Lett. A., 163 (5-6), 435 (1992) 

[14] A. Chatterjee and S. Mukhopadhyay. Acta Phys. Polon. B., 32 
(2), 473 (2001) 

[15] S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. 
Zeman, A. Lemaıtre, and J. M. Gerard. Phys. Rev. Lett., 83 
(20), 4152 (1999) 

[16] ZherSamak, Bassam Saqqa. An - Najah Univ. J. Res. (N. Sc.), 
23, 15 (2009) 

[17] ZherSamak, BassamSaqqa. An - Najah Univ. J. Res. (N. Sc.), 
24, 55 (2010) 

[18] T. Stauber, R. Zimmermann, and H. Castella. Phys. Rev. B., 
62 (11), 7336 (2000) 

[19] M. Tchoffo , L .C. Fai, N.Issofa, S.C.Kenfack, J.T.Diffo, A. 
MODY. International Journal of Nanoscience 8 (4), 455 (2009) 

[20] T. Inoshita, H. Sakaki. Phys. Rev. B., 46(11), 7260 (1992) 

[21] Satyabrata, Sahoo. Phys. letters A., 238 (6), 390 (1998) 

[22] Erçelebi A. and R. T. Senger, R.T. J. Phys.: Condens. Matter, 
6(28), 5455 (1994) 

[23] A. J. Fotue, S. C. Kenfack, H. Fotsin, M. Tiotsop, L. C. Fai 
and M. P. Tabue Djemmo physical science international 
journal, 6 (1), 25 (2015) 

[24] Shu-Ping Shan, Shi-Hua Chen and Jing-Lin Xiao, QD J. low 
Temp Phys 176, 93(2014) 

[25] Ji-Wen Yin, Wei –ping Li, Yi-Fu Yu and Jing-lin xiao, J. low 
Temp Phys (2011) 163, 53(2011) 

[26] S.H. Chen, J. L. International Journal of Modern Physics B. 
22 (16), 2611(2008) 

[27] N. Kervan, T. Altanhan, A. Chatterjee. Phys. Lett. A. 315 (3-4), 
280(2003) 

[28] Jing-Lin Xiao, J. Low Temp Phys 168, 297(2012) 

[29] Cui-Lan Zhao and Jing-Lin Xiao, J. Low Temp Phys 160, 209 
(2010) 

 

 


