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Abstract: An electromagnetic (EM) resonance based model derived from Maxwell's Equations is used with constraint 
conditions to characterize the quantum properties of both matter particles and photons. The model, as constrained by integer 
spin-orbit ratio, integer multiples of Planck's constant, angular momentum balance, charge balance, and EM resonance form, 
yields analytical results that are comparable to those from traditional quantum mechanics (QM), and electrodynamics (QED), 
but obtained with reduced analytical effort. EM compound resonance models are used to characterize quantum 
chromodymanics (QCD) quarks in neutrons and protons. It is also shown that EM resonance models give evidence that 
supports QCD “color-confinement” and “color-change” concepts. Analysis is limited to steady-state resonance forms. 
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1. Introduction 

The “Modern Physics” era can be characterized as one 
dominated by the development of analytical “behavioral 
models”. In this regard, Feynman spoke well when he said: 
“It is not philosophy we are after, but the behavior of real 
things”. 1 Indeed, during the twentieth century, the practice of 
developing causally based physical models was largely 
abandoned in favor developing mathematical descriptions 
that described observed physical behavior. The risk one takes 
when developing such a “behavioral” model, however, is that 
“one may be trying to solve a puzzle with missing pieces”. 
The observable data set used in the behavioral model may 
lack “hidden variables” information that is necessary to 
analytically portray system state and change of state 
accurately. 2,3 Complexity of analytical solution procedures is 
another potential problem. An analytical model may depend 
upon limitations imposed by the “available information set” 
in a way that can impact the complexity of its solution 
procedures. In this regard, the paper presented here describes 
a causally based EM resonance solution approach that aims 
at reducing the complexity of quantum theory solution 
procedures. Specifically, an EM resonance model derived 
from Maxwell's Equations is used with constraint conditions 
to obtain quantum solutions that otherwise would be 

available only from traditional quantum methods. As an 
Initial step, historical quantum theory developments are 
briefly reviewed to identify where an opportunity to use such 
EM based information was overlooked. 

2. A Brief Summary of Early Quantum 

Theory Developments 

The birth of the quantum age began in the year 1900, when 
Max Planck discovered that radiated electromagnetic energy 
E could only be emitted in full-wave form 4,5 

E=hν=hc/λr                                           (1) 

where h is Planck's constant, ν is radiation frequency, c is the 
speed of light in free space, and λr is the wavelength of the 
radiation. Later practice simply referred to such radiated 
energy quanta as a photons. In 1877, Boltzmann at the 
University of Vienna had published a theoretical paper where 
he conjectured that the energy states of a physical system 
could be discrete. Planck considered this possibility in 
developing the result shown in Eq. (1), and defined the basic 
set of physical units that can still be found in most quantum 
theory models. 

However, during the 1920s, both Planck and Einstein, 
perceiving that newly developed models in quantum 
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mechanics were incompletely defined, pursued alternative 
approaches to a unified field theory. 

The breakthrough event that enabled further development 
of quantum theory, however, came in 1924 from de Broglie, 
who wrote a one page PhD thesis at the Sorbonne in Paris. 
The deBroglie thesis, reviewed and approved by Einstein, 
asserted that a matter particle energy mc2 was equal to Planck 
photon energy 6,7 

mc2 =hν=hc/λr,                                        (2) 

and had a matter field wavelength defined by 

λm=h/p=(h/mv)(1-v2c2)½                                  (3) 

where m is particle rest mass, v is matter wave velocity, and p 
is particle momentum. This provided enough previously 
“hidden variables” information to show a minimal 
connection between photons and matter particles. 
Nevertheless, it was sufficient for Schrӧdinger to develop a 
new matter wave equation, while recovering from pneumonia 
at a sanatorium in Arosa, Austria in 1925. 8 

Unfortunately, an opportunity to show an even stronger 
connection between photons and matter was missed. Had the 
quantum researchers been familiar with microwave solutions 
to Maxwell's Equations, they might have developed 
resonance cavity solution forms that were not found until 
twenty years later. Such solutions were developed at the MIT 
Radiation Laboratory, 9 and by similar laboratories in 
Germany and Japan, for use in RADAR systems during 
World War II. However, since such research was classified 
SECRET, it was not publicly known until well after the war. 
As will be shown in this presentation, however, knowledge of 
such EM resonance forms can be of value in reducing the 
complexity of quantum solution procedures. 

3. A Particle Focused EM Resonance 

Template 

A previously published paper by our group, 10 gives strong 
evidence that there is a close relationship between quantum 
waves and EM waves, and furthermore suggests a close 
relationship between photons and matter. Such a view is also 
supported in a template, 11 that can map theoretical EM 
resonance properties to matter orbital and spin attributes. 
This template is developed as follows. Given a harmonic EM 
waveform propagating in a loss-less medium with frequency 
ω and electric field intensity E = E0e

iωt and magnetic field 
intensity H = H0e

iωt where E0 and H0 are field amplitude 
constants, and i = (-1)½, the appropriate governing form of 
Maxwell’s Equations is defined by the EM wave equation 
pair that assumes no existing matter 

2E+ω2ϵ0µ0E=0, and                                   (4) 

2H+ω2ϵ0µ0H=0                                       (5) 

where ϵ0 is the dielectric constant in free space, and µ0 is the 

permeability in free space. Within this framework, the 
resonance form must support the appropriate number of EM 
spins to be synchronous with traveling wave resonance at 
velocity 

v = c/β,                                            (6) 

where β is a factor which defines the number of EM full waves 
(eg; the number of spins), and c is the speed of light looking 
backward and forward along the traveling wave to yield 
respectively the observed backward and forward frequencies 11 

ωb=ω[(c-v)/(c+v)]1/2, and                           (7) 

ωf=ω[(c+v)/(c-v)]1/2 .                             (8) 

Now, let 

ζωb =(β-1)ω, (backward resonance), and                (9) 

ζωf =(β+1)ω, (forward resonance).              (10) 

Then, eliminating ω, one obtains 

ζ2=β2[1-(v/c)2]=β2-1                            (11) 

which defines the relativistic relationship between ζ and β 
where the constraints on β, β± 1, and v are determined by the 
specific form of the resonance. Eq. (11) can then be 
interpreted in terms of a variety of particular resonance forms 
shown in the following: 11 

� β=0, a meson spin-0 particle with v=vp=c2/vg→∞ as 
vg→0, and ζ2=-1, 

� β=½, a spin-½ particle with v=vg=c/2, vp=c2/vg=2c, 
and ζ2=-3/4, 

� β=1, a spin-1 photon particle with velocity v=c and 
ζ2=0, 

� β=N, (N≥2 & N±1 integers), an orbiting electron 
particle with v=c/N <c, and ζ2=N2-1, and 

� β→∞, a motionless free electron particle with orbital 
velocity v→0 and ζ2→∞ , 

where β is a spin attribute, and vp and vg are the phase wave 
and group wave velocity respectively of a wave packet focused 
set of harmonic components. Microwave analogs may then be 
defined for each of the above defined β categories. 10,11 

Analytically, these categories must be constrained by integer 
spin-orbit ratio, integer multiples of Planck constant, angular 
momentum balance in ground state, charge balance, and EM 
resonance form, to obtain quantitative results that are limited 
to steady state resonance forms. 

4. Some Analytical Results 

4.1. Quantum Mechanics 

In spherical polar coordinates, Ψ=RΘΦ, the steady-state 
form of the Schrödinger equation for Hydrogen atom is the 
differential equation 12 

(sin2θ/R)[d/dr(r2dR/dr)]+(sinθ/Θ)[d/dθ(sinθ dΘ/dθ)]+Φ-

1d2Φ/dϕ2+(2mr2sin2θ/h2)[(e2/4πϵ0)+E]=0          (12) 
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where R(r) describes how Ψ varies radially with θ and ϕ 
constant, Θ(θ) describes how Ψ varies with zenith angle θ 
along a sphere centered meridian with r and ϕ constant, and 
Φ describes how Ψ varies with azimuth angle ϕ along a 
sphere centered parallel with r and θ constant. Solving Eq. 
(12), one obtains the three quantum numbers: 13 

Principal quantum number n = 1, 2, 3 . . . . where En=E1/n
2 

(orbital kinetic energy) 
Orbital quantum number l = 0, 1, 2, 3 . . . (n-1) where 

L=[l(l-1)]1/2h (angular momentum) 
Magnetic quantum number mr = 0, ±1, ±2. . . . ±l where 

LZ=mrh (magnetic field vector) 
As shown, the kinetic energy level of an orbiting electron 

is inversely proportional to the square of the Principle 
quantum number. At ground level (eg; n=1), the electron 
kinetic energy E1=-13.60 eV and diminishes to almost zero as 
the electron orbit reaches the mass shell of the atom. 
Magnetic quantum number, on the other hand, essentially 
obeys Maxwell's Equation for an orbiting charged particle 
with angular momentum that can be parallel or anti-parallel 
to an applied magnetic field. It therefore is equal to orbital 
quantum number 

mr=±l=±(n-1).                                    (13) 

Orbital quantum number, on the other hand, is more 
complex. At ground state level, l=0, therefore implying that 
orbiting electron angular momentum appears to be fully 
balanced by the opposite angular moment of the proton 
nucleus. Above ground state, however, it appears that the 
angular moment of the particle is not completely balanced 
until electron orbit reaches the hydrogen particle mass shell. 
At such a point, the orbiting electron is essentially free. It is 
worth noting, however, that angular momentum of the 
particle is 13 

L=[l(1-1)]1/2h.                                   (14) 

Since Eq. (17) defines a fractional form of Planck's 
constant, the result is open to question as a steady state form. 

By comparison, constraints for the above defined EM 
resonance template require an electron with an integer 
number of spins per orbit and an integer multiple of Planck's 
constant. In this regard, consider the orbiting electron of a 
Hydrogen atom in its ground energy state with a fine 
structure (spin-orbit coupling) constant σ-1. A commonly 
quoted fine structure (eg; spin/orbit) value is approximately 
137.03604, 14 which unfortunately views the locus of the 
atomic nucleus as fixed in space. Clearly, such a quoted value 
is not an integer. It should be noted, however, that using the 
electron “reduced mass” method, the quoted fine structure 
value may be corrected to satisfy the integer number of spins 
per orbit cited above. Making such a correction 11 

α-1 =137.03604 ( me’/me)½  ≈ 137.0000                 (15) 

where me is the mass of an orbiting electron, mp is the mass 
of the nucleus, me’ is the reduced electron mass, 
me’/me=mp/(mp+me)=0.99945. 15 Viewing the electron orbit 

locus as a “slow wave” structure with Bohr radius re = λcα
-

1/2π where λc is the electron Compton wave length, one 
obtains a resonance condition with approximately 137 
electron spins per orbit at base orbit. In this case, β=α-1=137 
(the corrected spin-orbit coupling constant), with (β+1) = 
138 looking forward, and (β-1) = 136 looking backwards. 
But, what about the orbits with numbers below 137? Note 
here also that electron orbital velocity at the base level is 
c/137, and that its angular momentum value must be the 
lowest integer multiple of Planck constant, simply h. Since 
the orbits below that the level β<α-1=137 would therefore 
have an angular momentum values that are a fraction of h, 
they are invalid. Orbit levels with β>α-1=137 also have gaps 
as result of the integer multiple of h requirement and due to 
particle kinetic and potential energy mismatch. In this case, 
all valid orbit levels would be those that are an integer 
multiples of a 137 spin orbit value and correspond to nh 
where n is an integer. 

Now consider electron kinetic energy E1 at ground level 
that can be represented by 

E1=me v2/2= me (c/α-1)2/2.                         (16) 

where v is electron orbital velocity c/α-1. At the nth level, this 
becomes 

En=me (nv)2/2= me (c/nα-1)2/2,                      (17) 

Thus, it can be seen then that En=E1/n
2, the same as 

traditional QM. Eq.(17) therefore uniquely defines the only 
other electron orbital states that can be validly occupied (eg; 
β=n2α-1). 

Other quantum numbers also depend directly on n. If there 
were no impact from the proton nucleus, the orbital quantum 
number l could be expected to be integer multiples of 
Planck’s constant h, and therefore equal to n. However, since 
angular momentum must balance when n=1, the proton 
impact must generally be equal and opposite to that of the 
orbiting electron when l=0 (eg; be equal to -h). Since the 
proton nucleus must also have the minimum existing integer 
number of spins, its spin-orbit ratio is uniquely equal to one. 
Therefore, the proton has no significant orbital attribute as 
shown below in Eq. (18), and its orbital quantum impact is 
independent is of the electron orbital state. Therefore, l=n-1. 
Angular momentum balance of the Hydrogen atom, however, 
fails as a stable resonance form above the ground state, due 
to the l=n-1 attribute. 

From Maxwell's Equations, an orbiting charged particle 
constitutes a source of magnetism. Thus, it can be expected 
to generate a magnetic field vector LZ in a direction z that can 
be associated with the orbital quantum number l. The vector 
direction z is defined by the presence of an external magnetic 
field can be parallel or anti-parallel to the applied external 
field. Thus, the implied Magnetic quantum value for the EM 
resonance chart must be equivalent to mr=±1=±(n-1) with 
multiple integer values of h. 

From the foregoing then, it can be seen that the results 
derived via the constraints on the EM resonance template 
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given above substantially agree with the Schrödinger 
equation results. The orbiting electron resonance case just 
described can be termed a “Simple Resonance” method since 
it can be defined by single orbital resonance tones. It can 
happen, however, that a “Compound Resonance” set may be 
required to define a valid orbital resonance condition, that 
otherwise may appear invalid as a Simple resonance. This is 
the exactly case for the proton nucleus of the Hydrogen atom 
at the ground state. As will be shown, the form must be 
defined as a quark based Compound Resonance. 11 

4.2. Quantum Chromodynamics 

To begin, consider the equation for balanced angular 
momentum at ground state in a Hydrogen atom: 

pr=mvr=me(c/α-1)re=mp(c/ᾶ-1)rp=ħ,                       (18) 

where re is the Bohr radius of the electron orbit, rp is the 
radius of proton orbit, ᾶ-1 represents the spin/orbit coupling 
constant for proton orbital resonance and ħ=h/2π the reduced 
Planck constant. Note, however, that charge based 
electrostatic attraction can significantly impact angular 
momentum balance in the atom. A corrected form of Eq. (18) 
must therefore be used to determine information about an 
“equivalent” orbital resonance condition of the proton 
nucleus in the atom. Moreover, a Compound Resonance form 
is also required to validly define the orbital resonance 
conditions of the neutron based quark components. 

Recall that the Bore radius a0=5.3x1011m in the ground 
state requires a balance between kinetic energy mev

2/2 and 
potential energy due to electrostatic attraction (e2/4πϵ0r

2). 
Also note that charge balance in the Hydrogen atom can be 
defined by: 

e2=ħc/α-1=mλcc2/α-1,                            (19) 

where λc=ħ/mc is the Compton wavelength, and m is the rest 
mass of a charged particle. Since electron charge ee and 
proton charge ep must balance, Eq. (19) implies that 

ee
2=meλcec2/α-1=ep

2=mpλcpc2/ᾶ-1                     (20) 

where λcp is the Compton wavelength of the proton, and an 
equivalent electron wavelength defined by: 

λce/2π=a0.                                      (21) 

Since the proton has no significant orbital motion, proton 
spin orbit ratio ᾶ-1=1, and one may define an “equivalent” 
proton orbit wavelength, that takes into account the impact of 
particle electrostatic attraction, as 

λ’cp/2π≈a0/1836α- 1≈rp'.                      (22) 

Assume then that QCD values for mass and charge are 
correct with quark “up” and “down” for charge and mass 
defined as 16.17 

mu = md = mp/3                             (23) 

ep
2= 2eu

2+ ed
2,                               (24) 

eu
2= (2/3ep)2, ed

2= (1/3ep)2,                      (25) 

where eu
2defines the “up” quark charge, ed

2 defines “down” 
quark charge, and mu, mass for quark “up”, and md, quark 
“down”. The quark attributes for the proton Compound quark 
resonance components must fulfill the requirements for a 
valid orbital resonance defined in the following. 11 

eu
2 = 4mpλ’cpc2/9α-1= (2ep/3) 2,                          (26) 

λu/2π ≈4rp'/9=[(4/9) rp'/1],                         (27) 

ed
2=mpλ'cpc2/9α-1=(ep/3)2, and                         (28) 

λd/2π ≈rp'/9=[(1/3) rp'/3].                         (29) 

Eqs. (26-29) show that the orbital locus of a quark “up” is 
ru =(4/9)rp' and a quark “down” is rd =(1/3)rp'. This fulfills an 
expectation that a quark orbital locus must be inside the 
radius of the proton orbit.  It can also be seen from Eqs. (26-
29), that a proton composed of two “up” quarks and a single 
“down” quark has charge which balances that of an electron 

ep
2 = [(mpλcp'c2/9α-1)1/2-2(4mpλcp'c2/9α-1)1/2]2=        

[ed – 2eu]2=ee
2,                 (30) 

and a neutron composed of two “down” quarks and a single 
“up” quark is charge neutral   

en
2= [2(mpλcp'c2/9α-1)1/2-(4mpλcp'c2/9α-1)1/2]2=          

[2ed -eu]2=0                      (31) 

Eqs. (26-29) also indicate that the quark “up” and “down” 
constituents of the proton are a valid orbital Compound 
Resonance per the template requirement defined above, since 
the positively charged “up” quark has β=1, and the negatively 
charged “down” quark, β=3. When these results are joined to 
another from a paper by our group 18 which shows that a half-
spin particle can be modeled as a micro-black-hole, this is 
provides evidence to support the concept of 
chromodynamic ”color confinement”. Specifically, one 
cannot access a quark as an isolated particle because of the 
micro-black-hole attribute that applies to protons and 
neutrons. Since discussion here is limited to stable particles, 
it should be noted that second and third generation quarks 
such as “charm”, “strange”, “top” and “bottom” quickly 
decay to be come “up” and “down” quarks, and therefore are 
not discussed.   

Now consider the concept of chromodynamic “color 
change”. This is frequently defined in terms of the Beta 
decay process in an isolated neutron population that 
transforms neutrons into protons. The “standard model” for 
particles represents such a process as one that converts a 
neutron “down” quark constituent to an “up” quark, after 
colliding with a virtual W- boson with large mass, to yield a 
proton, an electron, and an anti-neutrino. The process is 
usually portrayed in terms of a QED style “Feynman 
Diagram” that otherwise would be limited to characterizing 
only “weak interactions”. 19,20  The standard model, however, 
proceeds to portray such a particle collision result 
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behaviorally as a “non-linear” process. More will be said on 
this point in the next section that deals with QED. The 
immediate point of focus here, however, is to show what 
such “color change” means in terms of EM resonance based 
phenomena. 

A convenient microwave analog to characterize the EM 
resonance form of a half-spin particle is a closed loop torus 
shaped loss-less cylindrical cavity. 11 As the shape of the 
torus loop is tightly closed to make its circumference equal to 
the wavelength of a trapped photon, it can be perceived as an 
idealized model for a half-spin particle. From the EM 
resonance template give above, and a recent paper published 
by our group that shows equivalence of a half-spin particle to 
a micro-black hole, 18 it can be expected that the idealized 
torus then will tend to take a sphere-like shape. Since 
spherical mode solutions to Maxwell's Equations in flat 
space-time are severely restricted, and the following analysis 
is approached as a limiting solution. The EM field conditions 
in the torus shaped cylindrical cavity will therefore be 
approached, by forcing a straight-line section to take the 
shape of a closed loop torus. Consider a torus shaped 
cylindrical wave guide cavity with coordinates (r, ϕ, z) where 
the z axis is located on the circumference of the torus, r is the 
radial axis of the waveguide cross-section, ϕ is an angular 
offset from a defined r-axis reference, a is the radius of the 
waveguide cross-section, and the length of the torus shaped 
cavity along the z-axis is equal to the length of a trapped EM 
full wave (eg; a photon). The form of Maxwell's Equations 
that govern such a trapped EM wave in TEmnk mode 
propagation field is 21 

∂2Hz/∂r2+r-1∂Hz/∂r+ r-2∂2 Hz/∂ϕ2+kc
2 Hz=0           (32) 

where Hz has the form of a wave propagating in the z 
direction defined by the expression H(r,ϕ)exp(-γz+iωt) with γ 
as the propagation constant, i=(-1) as defined by eigenvalues 

kc
2=γ2+ω2ϵµ.                                   (33) 

It is also assumed that the waveguide walls are loss-less 

│∂Hz/∂r│r=a=0.                                  (34) 

One possible solution to Eq. (32) then is 

Hz=H1Jm(kcr) cos mϕ                            (35) 

where Jm(kcr) is a Bessel function of the first kind of order m 
with argument kc, and H1 is a constant for propagated energy 
magnitude. The solution in Eq. (35) then leads to a TE 01 field 
distribution form that can then be mapped to a neutron as an 
analog. In such a case, the TE 011 mode (see ref 21-Fig. 4-5) 

cross-section distribution of the electric field is circular and 
contained within the particle whereas the magnetic field 
distribution spreads radially and externally from the center. A 
quark form model is also available as TE 013 mode with three 
similar tiers. As a result of the circular contained electric 
field distribution, a static neutron analog has no observable 
charge, but only a rather large magnet moment (eg; -1.93) 22. 

Alternatively, the form of Maxwell's Equations that govern 

a trapped EM wave in TMmnk mode propagation field can 
also be 21 

∂2Ez/∂r2+r-1∂Ez/∂r+ r-2∂2 Ez/∂ϕ2+kc
2 Ez=0           (36) 

with eigenvalues 

kc
2=γ2+ω2ϵµ                                  (37) 

where one possible solution is 

Ez=E1Jm(kcr) cos mϕ                        (38) 

with Jm(kcr) as a Bessel function of the first kind of order m 
with argument kc, and E1 as a constant for propagated energy 
magnitude with [Ez]r=a=0 at the walls. The solution in Eq. 
(38) leads to a field distribution form, TM 01 that can then be 
mapped to a proton as an analog. In such a case, the TM 011 

mode (see ref 21-Fig. 4-7) cross-section distribution of the 
magnetic field is circular and contained within the particle 
whereas the electric field distribution spreads radially and 
externally from the center. A quark form model is also 
available as TM 013 mode with three similar tiers. Thus, a 
static proton analog has only observable charge. 

A conceivable scenario for Beta Decay in an isolated 
neutron population is a collision process caused by its 
magnetic moment property that converts a TE 01 mode 
neutron resonance to a lower energy TM 01 proton resonance 
mode. Such an EM resonance based state change corresponds 
to the QCD “color change” concept. 

4.3. Quantum Electrodynamics 

The traditional method for analytically modeling the 
interaction between a photon and a charged particle is the 
behavioral propagator based procedure introduced by 
Feynman in the mid-twentieth century. As shown in the text 
by Greiner and Reinhardt, such a propagator procedure can 
be viewed as a linear approximation of an adiabatic particle 
collision process. 19 Thus, the Feynman propagator is 
applicable only to weak interactions. A less complex method 
that makes use of a microwave analog that yields similar 
results with less analytical effort, however, was introduced by 
our group in 2010. 23 As shown above, the orbital kinetic 
energy of the electron in the Hydrogen atom the Schrödinger 
equation in Eq. (12) is 15 

KEorbital=½mvorbital
2 =½Lvorbital=l(l+1)ħ2/2mr2        (39) 

Viewed as a microwave analog, the orbiting electron 
moves with velocity vorbital in a loss-less closed circular 
traveling wave tube, synchronously as a resonance trapped 
propagating EM field.  Therefore, the number of full wave 
spins in the traveling EM wave is defined by the spin/orbit 
coupling constant attribute. Electron orbital velocity 
therefore is 23 

vorbital=[l(l+1)]½ħ/mr=c/N=cά/n,                 (40) 

where the constant N restricts the resonance the EM traveling 
wave to a set of orbital states that are constrained by Planck 
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constant ħ. Note also that ά is the reduced mass corrected 
fine structure (spin/orbit coupling) constant for the orbiting 
electron is defined by 

ά=α[M/(M+m)]½=(137)-1,                       (41) 

Photon and charged particle interaction attributes of the 
orbiting electron can then be defined in terms of total energy 
23 

En=KEradial+KEorbital+V+Eself=E1/n2=mά2c2/2n2        (42) 

where KEradial=0 (eg; no radial kinetic motion ), 
KEorbital=l(l+1)mά2c2/2n2, the potential energy V=mά2c2/n, 
and mά2c2, Eself the self-energy due to the orbiting electron 
interacting with its own local EM field. When the electron is 
in a p state (eg; l=1), Eq. (42) reduces to: 

En=0+mά2c2/n2-mά2c2/n+Eself=mά2c2/2n2.            (43) 

While in a p state (eg; l=1) and the orbiting electron, 
moving at velocity άc/n2, self-energy component therefore is 
23 

Eself=mά2c2[(2n-3)/(2n2)].                       (44) 

Consequently, when the electron is in a 2p½ state at 
velocity άc/4 (eg; n=2 ); self-energy component is at a 
maximum, and thus, Eq. (44) reduces to: 

Eself= mά2c2/8.                                 (45) 

Such a self energy result is consistent with that from a 
Feynman Rules based QED analysis procedure. 23,24 

The Lamb Shift” split between the 2s1/2 and 2p1/2 energy 
states of an orbiting electron can also be resolved using an 
approximation of the Feynman propagator model for the 
Dirac equation in a Coulomb field. After much analytical 
effort, the result is predicted to be 24 

[δE(2s1/2)-δE(2p1/2)]/h≈+1052.2 Mhz.              (46) 

The result in Eq. (46) compares quite well with a relatively 
recent “Lamb Shift” energy shift observation of +1057.845 
Mhz that includes a number of higher order components 25,26 
where δE(2s1/2)≈ +4.29828x10-6eV or +1039.3 Mhz and 
δE(2p1/2)≈-5.328x10-8eV or -12.9 Mhz 

Now, using a new procedure introduced by our group to 
determine “Lamb Shaift”, 23 it should be noted that the 
obvious difference between the 2s1/2 and 2p12 energy states 
concerns Orbital quantum number. The Orbital quantum 
number is l=0 in the 2s12 state, and l=1 in the 2p12 state. 
Since both orbital and spin are relevant, analysis begins with 
the Dirac QM solution: 27 

Enj=En[1+(α/n)2(n(j+½)-1-¾)],                   (47) 

where En=-(m/2)(αc/n)2. It can be seen from Eq. (47) then 
that total energy of the orbiting electron in the n=2 state is 

E2=E1/4=-(m/2)(αc/2)2≈-13.60/4 eV≈-3.40 eV.        (48) 

In the 2p1/2 state, however, to be consistent with the 
“reduced mass” ά/α correction defined in Eq.(41), total 
energy of the electron requires a “reduced mass” α2 to ά2 
energy shift correction for the α2 term in Eq. (47) when l=1. 
Using the identity for small x: 23 

(1-x)¼≈1-x/4,                                    (49) 

the correction to Eq.(47) for the ά2=α2(1836/1837) ¼=α2[1-
(1/1837)]¼ shift is approximately 

∆E2≈E2/[4(1837)].                             (50) 

Then, assuming orbital and spin angular momentum are 
anti-parallel, in the 2p1/2 state with n=2, l=1, and j=½, the 
total electron energy from Eq.(47) becomes 23 

E(2p1/2)=-(m/2)(άc/2)2[1+(ά/2)2(1.25)] eV.        (51) 

Alternatively, in the 2s1/2 state with n=2, l=0, and j=½, 
total energy of the orbiting electron is 

E(2s1/2)=-(m/2)(αc/2)2[1+(α/2)21.25)] eV.       (52) 

The 2s1/2 and 2p1/2 energy split is therefore 

E(2s1/2)-E(2p1/2)=∆E2[(1+1.25(α/2)2)-                   
(1+1.25(ά/2)2)]≈+4.31x10-6eV,              (53) 

or equivalently, a “Lamb Shift” frequency change of 

[E(2s1/2)-E(2p1/2)]/h≈+1042 Mhz.                   (54) 

The frequency shift in Eq.(54) differs from the above cited 
observed value of +1057.845 Mhz by -15 Mhz, which is also 
almost the same as the δE(2p1/2) self-energy -12.9 Mhz shift 
in Eq. (46). It should be noted, however, the result in Eq.(54) 
from the Dirac solution in Eq.(47) does not include the self-
energy impact of a slight shift in orbit locus. Therefore, the 
δE(2p1/2) energy shift must be added to the result in Eq.(54). 
The updated total “Lamb Shift” result then is 23 

[E(2s1/2)-E(2p21/)+δE(2p1/2)]/h≈+1054.9 Mhz        (55) 

which compares well with the observed value cited above. 

5. Discussion and Conclusions 

The presentation given here describes a causally based 
electromagnetic resonance method for analyzing quantum 
theory attributes. An electromagnetic resonance template, 
derived from Maxwell's Equations that maps theoretical 
resonance forms to specific particle and photon attributes, is 
used with constraint conditions to obtain analytical solutions 
to problems usually solved via traditional QM, QCD, and 
QED behavioral procedures. The constraints include integer 
spin-orbit ratio, integer multiples of Planck's constant, 
angular momentum balance, charge balance, as well as EM 
analog form. Results obtained with the new approach are 
found to be substantially the same as those using traditional 
solution methods. 

Solutions from the Schrödinger equation compare well 
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with those from an EM resonance template. The analytical 
results from the template agree with QM Principal, Orbital 
and Magnetic quantum numbers, but question the stability of 
the L=[l(1-1)]

1/2
h angular momentum result from the 

Schrödinger model, because of a fractional value in h. Note 
here, that the template based EM resonance analysis method 
described is limited to evaluating only stable resonance forms. 

Solutions from the EM resonance template, using 
Compound Resonance forms, are successfully derived for 
QCD theory conjectured quark mass and charge attributes. 
Results from a prior publication involving half-spin particles 
as micro-black-holes also support the QCD “color-
confinement” concept, but point to a relativistic causal basis. 
Whereas the QCD model depends upon a new W- boson with 
significant mass to mediate “color-change”, EM resonance 
results involve a particle collision event due to the natural 
magnetic properties of an isolated neutron population, that 
change a neutron-like EM TE 011 resonant cavity mode to a 
proton-like TM 011 mode form. Note that, since QCD is color-
confined”, observed results obtained from current collision 
experiments are necessarily limited. 

EM resonance based QED results are the same as those 
from Feynman based rules based analysis, but obtained with 
the aid of a microwave analog that significantly reduces 
analytical effort. EM resonance results are given for orbiting 
electron Self Energy, and the “Lamb Shift” split between the 
2s1/2 and 2p1/2 energy states of an orbiting electron in a 
Hydrogen atom. 

A unanswered question remains: Does the new EM based 
template based analytical method describe a causal basis for 
quantum theory, or is it simply another behavioral model? 
Analytically, cosmological considerations favor a causal 
basis. However, current laboratory facilities are not yet 
sufficient to produce conclusive observed data results that 
would resolve the issue. 
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