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Abstract: Using the Adomian decomposition method (ADM), we present in this paper a numerical approximation of the 

solution of the nonlinear KDV equation. The principal task concerns essentially the computation of the Adomian polynomials 

for this type of equation and thereafter determining a significant criterion to ensure the conditions for convergence of the 

method. 
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1. ADM Method for The KDV Equation 

Consider the following formulation of the KdV equation: 
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which can be rewritten as follows: 
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where 33 / xR ∂∂=  represents the linear operator of the 

equation; and ( ) xuuuN ∂∂= /  is the non-linear function. 

According to the Adomian decomposition, the solution is 

expressed as: 
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and the non-linear part by: 
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By integrating with respect to time and using the initial 

conditions we have: 
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So: 
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For the KdV equation, the Adomian polynomials can be 

expressed as follows: 
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This allows us to deduce ( ) ,, txun namely: 
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with the following initials conditions: 
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We proceed in the following to compute 

( )txun , for [ ]10,0∈n  and to be able to determine the 

approximate solution ( )txun ,~
 up the 10

following formula: 
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Thus, the approximate solution is : 
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2. Numerical Results 

We will develop in the following, a comparison of the 

graphical presentations between different iterations of the 

approximate solution to a given order and the exact solution, 

in a range of space [ ]10,10− and two different intervals of 

time [ ]5,0 and [ ]5.1,0 , as shown below :
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We proceed in the following to compute ( )txAn ,  and 

and to be able to determine the 

up the 10th order using the 
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develop in the following, a comparison of the 

graphical presentations between different iterations of the 

approximate solution to a given order and the exact solution, 

and two different intervals of 

, as shown below : 
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Based on graphical presentations presented above, 

should be noted the following observations:

The asymptotic results of the approximate solution, from 

about 5
th

 order diverging at the growing end of the time 
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Based on graphical presentations presented above, it 

should be noted the following observations: 

The asymptotic results of the approximate solution, from 

order diverging at the growing end of the time 
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parameter; 

Good agreement between the exact solution and the ap-

proximate solution in the reduced interval time [ ]5.1,0 . 

To emphasize the second remark, we proceed to the 

graphical presentation of two functions: 
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The last presentation clearly shows that in the 

neighbourhood of the reduced interval time, there are almost 

coincidence between the two graphs and that beyond it the 

approximate solution diverges in a sustained manner com-

pared with the exact solution, which can estimate the rate 

between the maximum values of the two cases to 400 times. 

We propose to calculate a convenient time value designated 

by τ , from which the approximate solution ( )txun ,~  be-

gins to diverge. 

3. Convergence Analysis of the ADM 

Method for the KDV Equation 

We consider that XXN →: is a real analytic function in a 

disc ( ) XfBR ⊂ whose radius is 0≻R and XXL →: veri-

fies ( )
XX

fCftE .. ≤ where 0≻C and endow X of 

the norm ( )( )xuu XuX ∈= sup . 

The formulation of Adomian method enables us to write: 
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According to the Cauchy estimation, there exists 0≻R  

et 0≻RM  such that: 
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The Taylor series expansion of ( )uN  for fu = : 
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which converges for all Rfu
X
≺−  and more, we 

have: 
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We define the function: 
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where: 
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Thus we have: 
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Using the formulation of Adomian method we find: 
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This allows us to deduce that the Adomian series at X , 

are bounded by the convergent series of powers based on 
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and using the Cauchy estimate made earlier: 
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We explicit for the case 0=k  : 
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and we take: 
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Let the solution ( )tE  be the operator associated with the 

linear Cauchy problem as follows: 
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such as ( ) ( ) ftEtv .=  and based on the above, we 

have: 
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In the case of the KdV equation, the linear operator is: 

,
3

3

x
L

∂
∂= and as previously mentioned, using the Fourier 

transform for the resolution of the linear problem, we find: 
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Thus, by identifying and following the expression of the 

Fourier transform of the solution ( )txv ,  can be deduced 
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On the other hand, using the Parseval equality, we have: 
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Thereby verifying the inequality: 
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with : ,1=C  in this case .  

We have also : 
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or by definition, we can write: 
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The determination of the threshold convergence in time, 

equal to 
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After calculation we find that: 
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15.1=τ  

Performing the graphical comparison between the exact 

solution and the approximated one at the 10TH order, we 

find that the detachment between the two curves practically 

starts from the threshold value calculated and illustrated in 

the following graphic: 

 

4. Conclusion 

Through this work, it was possible to apply the ADM 

method for the resolution of the KdV equation using a 

polynomial of time of 10TH order. Solution that has proven 

effective in a given time interval. Thus we have completed 

our study with an analysis, which allowed us to determine 

the threshold of convergence of the said solution. 
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