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Abstract: The fusiform face area, or FFA, is a small region found on the inferior (bottom) surface of the temporal lobe. It
is located in a gyrus called the fusiform gyrus.Studies in humans have shown that the FFA is sensitive to both face parts and
face configurations. Recoding activity in the FFA showed that most of the neurons in the FFA are active in response to facial
imagery, but not in response to images of other body parts or objects. Visual sensory neurons sensitive to a face feature and
possessing a related firing rate activate an associated cluster of neurons in the FFA. This results in a partition of the FFA into
clusters that respond to the various facial features. Once an entire face stimulus activates the FFA, interneurons redistribute the
initial activation via the neural network. In this article a novel approach to modelling the function of the network is presented.
We define by a transition matrix that describes probabilistically how one cluster, firing at a synchronous rate, affects the others in
the FFA. The initial face stimulation in the FFA together with the transition matrix defines a dynamical system which possesses a
stationary probability function. We claim that a stationary probability function uniquely represents a face. Among the properties
of this probability function are: 1) response magnitude invariance, 2) repurposing of clusters to define new stationary probability
function on the FFA partition; 3) stability of stationary probabilities under perturbations.

Keywords: Dynamical Systems, Model for Face Perception, Fusiform Face Area (FFA), Face Parts, Stationary Measure,
Stability

1. Introduction
The neural correlates of human face perception are in the

fusiform face area (FFA) [13]. The FFA is also implicated
in ”extracting the perceptual information used to distinguish
between faces” [13]. The visual sensory neurons that perceive
different facial features terminate in different clusters or
patches in the FFA [16], from where they activate other
neurons [22] via the neural network of the FFA. We assume
that to each feature there corresponds a specific firing rate as
has been proven in the primate brain [8]. The model in [8]
formats a face in a very high dimensional space. Using 50
axes, it takes as many as 2500 numbers to characterize a face.
In our model, we typically deal with clusters of the order of
10, and characterize a face by a probability function on these
clusters. Hence, much less information is needed to represent
a face than in [8].

We label n facial features as F1, . . . , Fn. and C = {Ci, i =
1, . . . , n} as the associated activated clusters in the FFA. This

forms a partition of the FFA as depicted in Figure 1. Once an
entire face stimulus - coming simultaneously and in parallel
from the n facial features - arrives at the FFA, the interneuron
cells in the FFA redistribute the sensory activation (Figure
2) via its neural network [1]. The network dynamics is
probabilistic and is modeled in this note by a transition matrix
that describes how one cluster of synchronously firing neurons
affects the synchronous firing rates in other clusters.

The initial face stimulation to the FFA together with a
matrix defining connections of the neural network specifies
a dynamical system whose stationary probability function is
supported on the FFA. The stationary probability function
specifies the equilibrium firing rates throughout the FFA. It
is important to note that the acquisition of this probability
function in the FFA happens very quickly. Among the
properties of the stationary probability function are: 1)
response magnitude invariance; 2) repurposing of clusters to
define new probability functions on the FFA;
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Figure 1. Partition of FFA.

Figure 2. Initial activation of FFA.

3) stability of the stationary probability function under
sensory perturbations.

A different model for computational facial encoding is
developed in [21].

2. Dynamical Systems Model
Let Vi denote the volume of Ci, the region in the FFA

corresponding to the ith facial feature as shown in Figure 1
and let Mi be the synchronous firing rate of the neurons in
Ci. Let Si = MiVi which we refer to as the strength of (or
total traffic coming from) the ith feature as represented in the
FFA. Let S =

∑n
i=1 Si and define pi = Si

S . The collection
pi, . . . , pn defines a probability function on the FFA since each
pi ≥ 0 and

∑n
i=1 pi = 1. An example of an activation pattern

in the FFA is depicted in Figure 3.
The interneural network of the FFA determines how clusters

interact with each other. This allows us to define transition
probabilities Pij , i, j = 1, . . . , n where for each i the positive
numbers Pij sum up to 1 (

∑n
j=1 Pij = 1), and are proportional

to the numbers of connections from Ci to Cj via the neuronal
network [1]. A sample transition matrix is shown in Figure
4. We now associate with each region Ci an interval Ii
on the unit interval [0, 1], then construct a piecewise linear

“semi-Markov” map [7] τ : [0, 1] → [0, 1] on the partition
I = {Ii}ni=1 into n subintervals which realizes this transition
probability function as shown in Figure 4. The precise
definition of τ is given in the Appendix. The map τ belongs to
a class of “piecewise expanding maps of the interval” [6] and
in particular admits a unique stationary probability function,
which can be identified with a vector p = [p1, p2, . . . , pn]. The
expanding property reflects the fact that each neuron activates
hundreds (even thousands) of other neurons [1]. The vector p
is the unique solution of n linear equation with n unknowns
[6, Chapter 9]:

Figure 3. Sketch of FFA activation.
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
p1P11 + p2P12 + · · ·+ pnP1n = p1;

p1P21 + p2P22 + · · ·+ pnP2n = p2;
...

...
...

...
pnPn1 + p2Pn2 + · · ·+ pnPnn = pn.

We propose that the facial stationary probability function
p contains the information to characterize a face, that is, p,
encodes the face identity information. This model is consistent
with the work of [17, 18] which provides evidence that the FFA
“responds with distinct patterns of activation to different face
identities.”

3. Example

Assuming the structure of the neuronal architecture in the
FFA defines the 8×8 transition probability matrix in Figure 4,
the stationary probability function is as follows:

p ≈ [0.167, 0.106, 0.093, 0.096, 0.134, 0.137, 0.140, 0.127].

The computational process of achieving the stationary
measure from the initial input distribution is very fast. It
takes only 10-20 steps for the process to arrive to almost the
stationary measure. For matrix P below and a typical input it
takes 7 iterations to be less than 10−4 close to the stationary
probability function.

P =



0 0.1 0 0.1 0.1 0.2 0.1 0.4
0.3 0.1 0 0.1 0.2 0.1 0.1 0.1
0.1 0.2 0.2 0 0.2 0.2 0 0.1
0.2 0 0.3 0.1 0.1 0 0.2 0.1
0.2 0.04 0.2 0.03 0 0.2 0.3 0.03
0.1 0.3 0 0.2 0.2 0 0.2 0
0.2 0.1 0.1 0.2 0.2 0.07 0 0.13
0.3 0 0.03 0 0.1 0.3 0.2 0.07


The Probability Transition Matrix P reflects neuronal

architecture in the FFA, for n = 8 facial features.

4. Properties of the Dynamics Systems
Model

4.1. Response Magnitude Invariance

Let Mi, i = 1, . . . , n denote the synchronous firing rates in
the clusters {Ci, i = 1, . . . , n} of the FFA for a given face.
Suppose the same face is now reduced in size, resulting in
altered firing rates. We assume that all the synchronous firing
rates are reduced uniformly by a factor α < 1. Then, the new
firing rates are: M ′i = αMi. Let S′i = αMiVi. Then,

S′ =

n∑
i=1

S′i = α

n∑
i=1

MiVi = αS.

Figure 4. Map τ constructed using the matrix P.

The new probability function

P ′i =
S′i
S′

=
αSi
αS

= Pi.

Hence the probability function P is invariant under a
uniform size reduction (or expansion). Face-inversion [23]
may result in a weakening of intensities in the clusters in the
FFA. The resulting reduction in cluster activity nonetheless
preserves the probability function, resulting in recognition
of the original upright face. In [19], it was shown that
mental images of faces activate the same FFA areas as the
actual visual image. The mental image, initiated entirely by
interneurons, no doubt has lower response activation than the
actual visual image. Yet, both activations yield the same
probability function and hence represent the same face.

The mental image in [19] can be considered as an
intermediate step between sensory input and activation of the
FFA. This process suggests that translation and rotation of
a facial image produce the same mental image and hence
activate the FFA in the same way as the original facial sensory
input, implying translational and rotational invariance.

4.2. Repurposing

Repurposing can be viewed as the same clusters being
activated with a set of different strength activations. It is noted
in [20] that the late neuroscientist Jerry Lettvin suggested that
as few as 18,000 neurons could be the bases of a conscious
experience, such as seeing a face. Even so, the brain may
not have enough neurons to represent all possible concepts and
faces [20]. In our model, the same partition of a cortical region
such as the FFA is reused to define a potentially infinite number
of different patterns of activation, each one representing a
different face.
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4.3. Stability Under Perturbations of Facial Features

Once we associate a dynamical system to a face activation
on a partition of the FFA, we can study the stability of such
a system. Consider a small perturbation of a face (say a
laughing face or even a caricature). We want the resulting
stationary probability function to be close to the original one.
Such properties are proved using stability of the stationary
probability function under small perturbations of the transition
matrix [6]. They hold as long as most entries in the matrix
are strictly positive, which corresponds to all parts of the FFA
communicating between themselves [6, 14].

To illustrate the stability of p under small perturbations of
P we give an example of a transition matrix P1 ≈ P, with
perturbation ±0.01, and its stationary probability vector p1.
Let

P1 =



0.01 0.09 0.01 0.1 0.11 0.21 0.11 0.36
0.29 0.11 0 0.1 0.2 0.09 0.11 0.10
0.1 0.2 0.19 0 0.21 0.2 0 0.10
0.21 0 0.3 0.09 0.1 0 0.2 0.10
0.19 0.03 0.21 0.02 0.01 0.19 0.3 0.05
0.09 0.29 0.01 0.19 0.21 0 0.2 0.01
0.19 0.11 0.09 0.2 0.19 0.07 0.01 0.14
0.29 0.01 0.02 0 0.1 0.3 0.21 0.07


The stationary probability function for P1 is given by

p1 ≈ [0.164, 0.106, 0.0931, 0.0929, 0.138, 0.136, 0.145, 0.125] .

We see that the largest difference between the components
of p1 and p is 0.004 (components number 5 and 7).

5. Conclusions
This note proposes a method for encoding facial identity

using stationary probability function. To define such a function
requires knowledge of which clusters in the FFA are activated
by features of a face and the relative strengths of these
activations in the FFA which depends on the respective firing
rates. The FFA architecture [15] determines the transition
probabilities and with the synaptic weights of the different
clusters determines a flow of information, which defines the
neural network dynamics. To define a transition matrix P
we need to know which clusters interact with other clusters.
Once P is known, the the map τ can be constructed and its
stationary probability function and the corresponding p can be
calculated. We claim p characterizes a face.

Appendix
In the Appendix we show how given transition probabilities

Pij , i, j = 1, ...., n we construct a piecewise linear ”semi-
Markov” map τ : [0, 1] → [0, 1] on the partition I = {Ii}ni=1

into n subintervals of equal lengths.
We will construct τ on each of the subintervals Ii =

[ i−1n , in ], i = 1, 2, . . . , n. The graph of τ on Ii consists of
segments of straight lines consecutively connecting the points:
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The vertical segments of the lines are not drawn, if two
consecutive points have the same x-coordinates, then the line
between them is not part of the graph.
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