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Abstract: Industrial pipes that are used for fluid transport generally have to undergo many changes of shape to 

accommodate interfacing equipment related to plant operation, which results in flow maldistribution zones and higher pressure 

drops, and in turn leads to higher power consumption. In an attempt to redress this problem, ANSYS, a commercial 

Computational Fluid Dynamics (CFD) software, is used to perform numerical simulations based on a deterministic 

computational model of the internal fluid flow using the Reynolds Averaged Navier Stokes equations (RANS), a multi 

objective optimization study employing Response surface methodology and artificial neural networks. This numerical analysis 

has been performed on a galvanized steel duct for water recirculation. The focus of the paper is the study of the effect of a 

chosen set of several geometrical dimensions on the pressure drop and flow distribution inside the duct. Subsequently, a new 

set of designs with different geometrical parameters has been obtained to minimize the pressure drop and achieve a more 

uniform flow distribution by using artificial neural networks to generate a response surface and further employing Screening 

(Shifted-Hammersley sampling) as the optimization method that was used to select the best designs from amongst those that 

have been generated from the response surface. 

Keywords: Artificial Neural Networks, Response Surface Methodology, Turbulence Modeling,  

Shifted Hammersley Sampling, Multi-objective Optimization 

 

1. Introduction 

The shape of a duct in fluid transport systems is not often 

designed from a fluid dynamic perspective. This is mostly 

due to the interacting equipment being given priority over the 

ducts, resulting in a constraint of restricted size. The 

constraints are often imposed when developing a system, as 

the ducts are fitted in between and around other components. 

As a result, the duct shape can often be very complex, 

leading to exit flow maldistribution and higher pressure drops, 

resulting in higher consumption of pumping power. However, 

in recent years, optimization based on flow analysis is 

becoming increasingly popular in the field of engineering 

design but at the same time, manufacturers are also 

increasingly looking for ways in which to reduce the time 

taken during product development. One such way is having 

the products developed in the form of virtual prototypes in 

which CAD software is used to model a prototype which can 

be used to predict the performance prior to constructing 

physical prototypes. 

Manufacturers can then explore the performance of a 

myriad of design alternatives without having to invest the 

money and time required to build physical prototypes [1, 2]. 

Response surfaces methodology, as such that are employed in 

ANSYS, offers an efficient way to get the variation of a 

given performance with respect to input parameters and 

provide a continuous variation of the performance over a 

given variation of the input as evidenced by Winne et al and 

Behin et al [3-5]. Firstly, an acceptable range of variation for 
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each input parameter (thus defining the design space) is 

given, either manually or automatically. A response surface is 

then generated from the Design of Experiments (DOE). A 

few points within the design space are solved in order to 

provide the approximated values of the output parameters 

everywhere else in the analyzed design space, without having 

to perform a complete solution. A response surface is thus an 

approximated best fit surface computed from the DOE results 

for each output parameter in terms of the input parameter and 

this approximation can be carried out using artificial neural 

networks as seen in the works of Wolfram et al and Sun et al 

[6, 7]. 

The idea of artificial neural networks is based on the 

known architecture of the human brain. The human brain is 

made up of neurons, which are information-processing units 

operating in parallel and connected by synapses, which relay 

the information between neurons. It is capable of processing 

input signals (e.g. taste) that are picked up by various sensors 

(e.g. tongue) from the environment and of providing 

appropriate output signals (e.g. determining whether it is 

sweet or sour). The advantages of the human information 

processing paradigm are complexity, nonlinearity, and 

parallelism and so an artificial neural network resembles the 

human brain in many respects. It is similar in that it is a 

multi-layered structure constituted by neurons which are 

connected by synapses, has the ability of mapping input 

signals onto output signals and to learn certain tasks during a 

training phase by adjusting the values of connections 

(weights) between the neurons. 

The output produced by a neural network in the current 

case is the response surface. The idea of such a response 

surface is then to replace the deterministic computational 

model for CFD analysis with a neural network [8]. 

Consequently, the network first needs to learn the features of 

the underlying deterministic computational model. That is, 

the input signals comprise the geometrical parameters and the 

network output provides the associated response surface in 

the form of pressure drop and flow distribution. The principal 

aim of this paper, to minimize the pressure drop and achieve 

a more uniform flow distribution within the duct, was thus 

achieved by drawing the best possible designs from the 

response surface given by the neural network by using the 

screening optimization method. 

 

Figure 1. Baseline duct geometry. 

2. Methodology 

2.1. CFD Approach 

ANSYS Fluent was used to perform the simulations. The 

materials used were, steel with a thick-ness of 2mm and 

water at 80 degrees Celsius with an inlet speed of 0.5m/s. 

The Navier-Stokes equations are solved using the SIMPLE 

scheme and the second order upwind discretization methods 

of the finite volume method. The realizable k- model was 

applied to model the flow turbulence and standard wall 

functions are used to manage the near wall turbulence layer. 

2.2. Flow Modelling 

2.2.1. Governing Equations 

To account for turbulence, each variable is decomposed into 

an average component and a fluctuating component (for 

example the speed, pressure, temperature) [9, 10]. If we replace 

the instantaneous values of the transport equation by their 

expression in the conservation equation, it yields the Reynolds 

stress and equations called the RANS (Reynolds Averaged 

Navier-Stokes). The governing equations for the CFD models 
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are presented below: Where (1) is the continuity equation 

��
�� + � · (�	
�) = 0                            (1) 

Where � is the mass density and u is the flow velocity. The 

equation of motion describing an incompressible Newtonian 

fluid is shown in the equation (2). 

� ���
�� + u · (�	)� = −�� +  � · �
� + ��           (2) 

Here, p represents the pressure, g is the gravity, and � is 

the viscous stress tensor. Equation (3) is the general 

differential energy equation. 

� ���
�� + u · (��)� = ��

�� + � · (���) + Φ        (3) 

Where, E is the total energy, k is the fluid thermal 

conductivity, T is the absolute temperature and Φ is a function 

representing the dissipation of energy due to viscous effects. 

2.2.2. Grid Independence 

The dimensions and boundary layer profiles vary widely 

depending on the properties of the fluid used and the type of 

flow. In order to have a broader approach, and one that is 

independent of these values, we introduce the concept of 

dimensionless distance. The distance y
+
 is a normal 

dimensionless distance from the wall and is obtained by the 

following formula: 

 ! = �∗#
$                                      (4) 

With 	∗ = %&'
�  ()* �+ = , -��

�#.
#/0

 

With 	∗ the shear rate, �+ shear stress at the wall, y is the 

distance to the wall and 1 the kinematic viscosity of the fluid. 

The value of y
+
 can be calculated anywhere in the area, 

though it has a different meaning when calculated in the CFD 

software. In this case, the value of y
+
 actually corresponds to 

the value of y
+
 at the first node of the mesh. The practical 

value of this value is to define the different areas of the 

boundary layer as well as verify that the fineness of the mesh 

is a good fit with the chosen turbulence model. 

3. Goal Driven Optimization 

There are various optimization tools available in Ansys 

such as the adjoint method or Goal driven optimization 

(GDO), which will be used in this paper, which is a set of 

multi–objective techniques in which the “best” possible 

designs are obtained from a sample, given the goals that have 

been chosen for the parameters [11]. There are two types of 

GDO systems, namely: Direct optimization, wherein the 

“best” possible designs are selected from actual analysis 

results which have been solved and response surface 

optimization wherein the “best” possible designs are drawn 

from the generated response surface which provides a 

continuous variation of a chosen output/(s) with respect a 

given range of the inputs without having to solve for the 

entire design space. There are different techniques for 

generating response surfaces such as the kriging meta-model 

but this paper will be focusing on using neural networks [12]. 

3.1. Artificial Neural Networks 

Artificial neural networks are a type of supervised learning 

system. The system is trained to perform a particular task by 

adjusting the connections (weights) between the neurons of 

the network. Below, in Figure 2 is a typical neural network 

with an input layer, an output layer, and 3 hidden layers. 

Each synapse has a value, w, which can be adjusted. 

As shown in Figure 2, the values of each neuron within a 

specific layer, are dependent on the values of neurons in the 

preceding layer and the value of the weights connecting them. 

Each neuron has a function, g, which collates the incoming 

signals into a summation function, with each input signal 

weighted by a synaptic weight, w. The result is then squashed 

into a range of 0 to 1 by multiplying it with an activation 

function, 2, and thus producing the value of the next neuron. 

�3(45) = 236∑ 89,3; �(3<=)(45)>               (5) 

23 = ?()ℎ -AB
C . = =<D(EFB)

=!D(EFB)                    (6) 

3.2. The Back Propagation Learning Rule 

A learning rule, or training algorithm, is an iterative 

technique for adjusting the weights of a network in order to 

train the network to perform some task [13, 14]. This is done 

by first introducing a cost function, GH689,3; >, based on the 

root mean square error, erms. It is a function of the known 

values (sample of solved design points, dm) and the output of 

the neural network (the response surface), ym. This is a 

function that is used to evaluate the performance of the 

neural network at each iteration. 

GH689,3; > = �IJK;LM                         (7) 

JK;L = %=
N ∑ (*; −  ;)CN5/=                   (8) 

The goal is to minimize this function by using the method 

of gradient descent and the algorithm for computing this 

function is called back propagation. The negative gradient of 

the cost function is used to adjust the weights of the neural 

network thus minimizing the error whilst checking the 

response surface at each iteration against the solved design 

points. The gradient descent algorithm for the root mean 

square error is written as follows, for the i
th

 iteration, Where 

O is the learning rate, denoting the magnitude of the step in 

the direction of steepest descent: 

89,3; (P) = 89,3; (P − 1) − O �RH
�+S,BT                 (9) 
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Figure 2. Neural network architecture. 

3.3. Optimization Method 

There are various optimization algorithms that can be used, 

such as the Genetic algorithms [15, 16]. For this paper 

however, Screening (Shifted-Hammersley sampling) was 

used. It is a goal-driven optimization method that draws a 

number of design points (samples) from the response surface 

(population), with the goal of finding the “best” designs 

within the response surface, without having to sample the 

entire design space. It is a non-iterative direct sampling 

method by a quasi-random number generator which has a 

low discrepancy. Quasi-random numbers act like random 

numbers but unlike true random numbers, are uniformly 

distributed in some domain, generally the unit hypercube 

[17]. Whereas true random numbers have no correlation 

whatsoever, quasi-random numbers are quite correlated and 

chosen in such a way that new numbers do also uniformly fill 

the gaps between the old ones. A quantitative measure for 

this property is the discrepancy of the point set, which should 

be as small as possible. The discrepancy is therefore 

computed by comparing the actual number of sample points 

in a given volume of multidimensional space with the 

number of sample points that should be there assuming a 

uniform distribution. Hammersley Sequence Sampling (HSS) 

uses Hammersley points to uniformly sample a unit 

hypercube and inverts these points over the joint cumulative 

probability distribution (0, 1) to provide a sample set for the 

variables of interest. The design of Hammersley points is 

given below. Any integer n can be represented as a sequence 

of digits )0, )=, )C, )U, V , ); by the following equation: 

) 
 )0)=)C)U V );                             (10) 

The integer n can then be written in radix-R notation (R is 

an integer) as follows: 

) 
 )0 � )= " W � )C " WC � V �); " W;        (11) 

A unique fraction between 0 and 1 called the inverse radix 

number can be constructed by reversing the order of the 

digits of n around the decimal point as follows: 

XY�)� 
 )0W<= � )= " W<C � V �); "  W<�;<=�  (12) 

Thus, for a k-dimensional search space, the Hammersley 

points are given by the following expression: 

Z3




��P� 
 [ 5
N , XY\�P�, XY]�P�, V , XYBE\�P�^             (13) 

Where W=, WC, V , W3<= are the first k-1 prime numbers and 

i=0,…, N indicates the sample points. This algorithm 

generates a set of N points in the n dimensional design space 

I0, 1MN. Now, from the plot of these points, it is seen that the 

first row (corresponding to the first sample point) of the 

Hammersley matrix is zero and the last row is not 1. This 

implies that, for the k-dimensional hypercube, the 

Hammersley sampler generates a block of points that are 

skewed more toward the origin of the cube and away from 

the far edges and faces. To compensate for this bias, a point-

shifting process is proposed that shifts all Hammersley points 

by the following amount: ∆
 =
C `. 

4. Results and Discussion 

4.1. Near-Wall Mesh Quality 

Standard wall functions, which are the most widely used in 

the industrial flows, were applied for capturing the near-wall 
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flow features. It is recommended in ANSYS-Inc. (2009) that 

for using the standard wall function, the value of y+ in the 

first cell should be within the logarithmic law layer 

(30<y+<300). During the meshing of the duct, an inflation 

method was employed with a first layer thickness of 0,0025 

m and thus maintaining a constant first cell height. 

Figure 3 shows the value of y+ near the wall of the duct 

for different meshes with an increasing number of elements. 

The study of y+ shows that successful computation of 

turbulent flow close to the walls of the duct can be achieved 

by using any one of the different mesh qualities. 

4.2. Mesh Independence Test 

A grid convergence study was performed, referencing the 

work of Karimi et al by running simulations on the eight 

different meshes from the y
+
 study to predict the drag 

coefficient and determine how the mesh quality affects the 

results [18]. 

 

Figure 3. Drag coefficient for the different mesh qualities. 

 

Figure 4. Variation of Yplus for different mesh qualities. 

Figure 4 shows the variations of the drag coefficient for 

the different numbers of cells. It is clearly demonstrated here 

that variations of the drag coefficient are negligible beyond a 

grid size of 101 468 elements. The results of these two 

examinations show that the adopted grid system of 101 468 

elements can compute the flow close to the boundary layers, 

while at the same time the general phenomenon duct flow 

can be predicted sufficiently. 

4.3. Design of Experiments 

Table 1 displays the range of the inputs used to generate 

the response surface. The flow uniformity is accounted for by 
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the standard deviation of the outlet velocity. Standard 

deviation is a statistic that measures the dispersion of a 

dataset (outlet velocity flow field) to its mean. This means 

that uniform flow corresponds to a minimized standard 

deviation of velocity. 

Table 1. Response parameters and Input parameter ranges. 

Parameter Name Baseline design Lower bound Upper bound 

Factor (Input) 

P1 Outlet Length [mm] 52,5 45 60 

P3 Inc Angle [°] 90 90 120 

P4 Mid Length [mm] 170 160 180 

P5 Inlet Length [mm] 130 120 140 

Response 

(Outputs) 

P6 p-drop [Pa] 559,138   

P7 Stdev Outlet Velocity [m/s] 0,08661   

 

24 design points were generated using the Custom design 

of experiment type in conjunction with the central composite 

design. The 24 design points then served as the source of the 

training data used by the neural network to generate a 

response surface. 

4.4. Goodness of Fit 

Figure 5 shows a Predicted versus Observed chart, which 

displays the goodness of fit data for both the output 

parameters. It is used to check how accurately the response 

surface generated by the neural network, can predict the 

design points from the DOE. Initially, only 18 design points 

had been generated by central composite design type but the 

goodness of fit metric had not been satisfactory. The custom 

design type was then employed to add 6 more design points 

to the training data to improve the goodness of fit of the 

response surface. Additional design points, which have been 

solved, were also added to further verify the accuracy of the 

response surface and these are known as verification points. 

Some of these verification points were then further used as 

refinement points and added to the training data for 

improving the accuracy of the response surface. 

 

Figure 5. Goodness of fit data showing the predicted vs observed values. 

As observed from Figure 5, most of the points fall either 

on or near the line which means that the response surface 

generated by the neural network was able to sufficiently 

predict most of the values of the design points within the 

given range, including the verification points. 

4.5. Output Sensitivities 

Local sensitivity data is also available to outline how the 

output parameters change with respect to the individual input 

parameters, at a specific response point, by varying a single 
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input parameter whilst keeping the other input parameters 

constant. The local sensitivity bar plot in Figure 6 highlights 

how the Incident angle (P3) is inversely correlated to both the 

pressure drop (P6) and the standard deviation (P7) of the 

output velocity whilst also having the highest sensitivity. 

Conversely, the outlet length (P1), middle length (P4) and 

Inlet length (P5) have a positive correlation with the pressure 

drop but have a much smaller impact as compared to the 

incident angle. 

 

Figure 6. Local sensitivity bar graph for both outputs. 

Relative to the standard deviation, the outlet length (P1) 

has a positive correlation and stronger impact compared to 

the middle length (P2) and Inlet length which both have a 

negative correlation and weaker impact on the standard 

deviation of the outlet velocity. 

4.6. Response Surfaces 

With a three-dimensional response surface, the combined 

effect of two different input parameters on an output 

parameter can be visualized. Figure 7, highlights how the 

outlet length (P1) and the Incident angle (P3) affect the 

pressure drop (P6). As observed from the local sensitivities, 

the Incident angle (P3) has an overwhelmingly stronger 

influence on the pressure drop (P6) than the outlet length 

(P1). The variation of the outlet length (P1) along its axis, 

has very little effect on the pressure drop (P6), on the vertical 

axis. Unlike the outlet length (P1) though, and as also 

observed in the previous section on local sensitivities, 

variations in the Incident angle (P3), greatly affect the 

pressure drop (P6). 

 

Figure 7. Response surface for P1 and P3 in relation to P6. 
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Figure 8 shows the combined effect of the middle length 

(P4) and the Inlet length (P5) on the standard deviation (P7). 

Variations of the two input parameters have an almost similar 

effect on the standard deviation (P7), albeit a considerably 

small effect [0.0728: 0.0755] over their given ranges, with a 

difference in their effect which is negligible. 

 

Figure 8. Response surface for P4 and P5 in relation to P7. 

5. Optimization 

The screening optimization method, also known as 

Shifted-Hammersley sampling, is then used to sample the 

response surface in search of the optimum design dependent 

on the set objectives. An optimized design, in this case, 

would have a minimized pressure drop (P6) and also a 

minimized standard deviation of the output velocity (P7). 

This is, therefore, a case of multi-objective optimization 

where the aim is to simultaneously treat a number of 

conflicting objectives. A trade-off surface can thus be used to 

view how the different output parameters conflict. 

5.1. Tradeoff Chart 

A Tradeoff chart is a scatter chart representing the 

generated samples with the output parameters set on different 

axes. This allows for the visualizing of how an output goal 

can be achieved in relation to other output goals. In essence, 

it highlights whether achieving one goal might be detrimental 

to achieving the other objectives. The groups of samples 

generated by the optimization algorithm are then colored 

according to the Pareto front they belong to with blue 

representing the best set of samples (first Pareto front) and 

red representing the worst (worst Pareto front) as displayed 

in Figure 9. 

 

Figure 9. Tradeoff chart. 
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5.2. Screening 

After running the optimization algorithm, it produces the 3 

best candidates as per the set objectives. Table 2 shows the 

input parameters of the 3 candidates drawn from the response 

surface along with the predicted outputs. The “real solve” of 

the candidate points is also shown along-side the predicted 

outputs. 

Candidate point 1 had the lowest pressure drop and the 

lowest standard deviation of the outlet velocity and hence 

was the best candidate point produced by the algorithm. It is 

also apparent how the input parameters of the produced 

candidate points are as expected based on the local sensitivity 

data and the upper and lower bounds of the response surface. 

A maximized Incident Angle (P3), for example, was 

commensurate with the set objectives and the optimization 

algorithm produced the highest possible value of 120 degrees 

which was observed on the generated response surface in 

Figure 8. The available global sensitivity data also backs up 

the fidelity of the results. Global sensitivities are based on a 

correlation analysis using the generated sample points, which 

are drawn from all the possible values for the input 

parameters on the design space. 

 

Figure 10. Global sensitivity. 

Figure 10 shows how the input parameters interact with 

the output parameters and it can be seen from the sensitivities 

that maximizing the Incident Angle (P3) would minimize 

both the pressure drop (P6) and standard deviation (P7) 

whilst needing to minimize the other inputs in order to 

minimize the pressure drop (P6).The middle length (P4) and 

the inlet length (P5) are shown to have an insignificant effect 

on the standard deviation (P7) a represented by the flat bars. 

Table 2. Input and output parameters of the candidate points. 

 

Candidate point 1 

(from response 

surface) 

Candidate 

point 1 

(Verified) 

Candidate point 

2 (from response 

surface) 

Candidate 

point 2 

(Verified) 

Candidate point 

3 (from response 

surface) 

Candidate 

point 3 

(Verified) 

P1-Outlet length [mm] 48,9312 54,899 47,633 

P3-Inc Angle [degree] 120 120 118,73 

P4-Mid length [mm] 165,95 160 169,8 

P5-Inlet length [mm] 120 120 120,36 

P6-Pressure drop [Pa] 517,54 515,02 517,02 515,88 518,64 516,25 

P7-Stdev Outlet Velocity [ms^-1] 0,06646 0,06559 0,06682 0,06704 0,0669 0,06572 

5.3. Comparison Between the Original Design and the Optimized Design 

Table 3. Comparison of the original vs optimized design. 

 Name Original design Optimized design Difference 

Factors (Inputs) 

Outlet Length [mm] 52,5 48,931 -6,79% 

Inc Angle [°] 90 120 +33,33% 

Mid Length [mm] 170 165,95 -2,382% 

Inlet Length [mm] 130 120 -7,692% 

Response 

(Outputs) 

p-drop [Pa] 559,138 515,02 -7,890% 

Stdev Outlet Velocity [m/s] 0,08661 0,06559 -24,27% 
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Table 3 shows a side by side comparison of input and 

output parameters of the original design against the 

optimized design. The optimized design managed to achieve 

a 7,89% decrease in the pressure drop and a 24,27% 

improvement in the flow uniformity. 

The attained improvements are visualized in Figure 11, 

with the top images showing the flow uniformity on the 

outlet velocity profile and the second images showing the 

physical differences of the designs. 

 

Figure 11. Comparison of the original vs optimized design. 

6. Conclusions 

This study has demonstrated how competent ANSYS is at 

solving shape optimization for a fluid domain using 

parametric models to successfully decrease the pressure drop 

and simultaneously make the flow more uniform. However in 

future works, experimental data, collected using apparatus 

such as a hydraulic bench and Particle Image Velocimetry, 

should be used in order to validate the results along with a 

comparative analysis against other optimization methods 

such as Bayesian optimization. 
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