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Abstract: Artificial neural networks are widely used to solve various applied problems. For the successful application of 

artificial neural networks, it is necessary to choose the correct network architecture, to select its parameters, threshold values of 

the elements, activation functions, etc. The problem of evaluating the neural network parameters, based on a study of the 

probabilistic behavior of the network is much promising. The study in the direction of developing probabilistic methods for 

perceptron-type pattern recognition systems is considered in different works. The concept of the characteristic function of the 

perceptron introduced by S. V Dayan was used by him to prove theorems on the existence of a perceptron solution. At the same 

time, issues of choosing a network architecture, theoretical assessment, and optimization of neural network parameters remain 

relevant. In this paper, we propose a mathematical apparatus for studying the relationship between the probability of correct 

classification of input data and the number of elements of hidden layers of a neural network. To evaluate the network 

performance and to estimate some parameters of the neural network such as the number of associative elements depending on the 

number of classification classes the mathematical expectation and variance of weights at the input of the output layer are 

considered. A theorem on the necessary and sufficient condition for the existence of a solution for a neural network is proved. By 

a solution of neural networks, the ability to recognize images with a probability other than zero is meant. The results of the 

proved theorem and its corollaries coincide with the results obtained by F. Rosenblat and S. Dayan for the perceptron in a 

different way. 
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1. Introduction 

Artificial neural networks have been developed for a long 

time. They are widely used for solving various applied 

problems. Currently, there is a significant increase in interest 

in artificial intelligence, caused by both the development of 

technical means and the demand of the software market for a 

qualitatively new product. 

Against this process, numerous attempts are being made to 

apply various models of neural networks. Artificial neural 

networks are becoming more common due to such factors as 

the ability to solve difficultly formalized tasks, perform 

parallel data processing, use large amounts of data, etc. [1-6]. 

For the successful application of artificial neural networks, 

it is necessary to choose the correct network architecture, 

select its parameters, threshold values of the elements, 

activation functions, etc. [2-5, 27]. 

Research on the successful construction and the use of 

artificial neural networks is conducted mainly in the 

following areas: the selection of optimal learning algorithms, 

selection and optimization of neural network parameters 

(such number of layers, number of neurons in each layer, 

activation functions, etc.), as well as research on problems 

related to the convergence of the neural network. Since these 

tasks are interrelated, research on their solution was mainly 

conducted in parallel. 

The issues of developing the optimal learning algorithms 
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for neural networks are considered in the works of F. 

Rosenblatt. V. M. Glushkov, R. D. Joseph, A. G. Ivakhnenko, 

N. Nielson and others [4-8, 26-29]. 

Perceptron convergence issues have an important role in 

research related to the modeling and creation of recognition 

systems. These tasks are considered in the works of F. 

Rosenblatt and his colleagues (Nilson, Blok, Joseph, Kesten, 

etc.) [1, 4, 10-13]. 

F. Rosenblatt proved a convergence theorem for the 

perceptron, which states that an elementary perceptron, 

regardless of the initial state of the weight coefficients and 

the sequence of occurrence of stimuli, will always lead to a 

solution in a finite time. F. Rosenblatt also presented the 

proves of some concomitant theorems and their 

consequences that showed what requirements the architecture 

of artificial neural networks and the methods of their training 

should meet [1]. 

The studies on neural networks were intensified in the 70s 

of the last century. 

In 1970 A. G. Ivakhnenko developed a group method of 

data handling, which allows not only to calculate the weights 

of connections between neurons but also to determine the 

number of layers in the network and the neurons in them 

depending on the needs of the applied task [5-9]. 

In 1989, some of authors obtained a result stating that a 

perceptron with one hidden layer is an universal 

approximator, that is, it can approximate any continuous 

function if a continuous, monotonously increasing and 

limited function as an activation function of neural elements 

of the hidden layer is used [10-12]. Moreover, the accuracy 

of the approximation of the function depends on the number 

of neurons in the hidden layer. Thus, a perceptron with one 

hidden layer and an activation function of the aforementioned 

type is a universal classifier. In [12], it was also stated that 

for a network with (� − � − �) architecture, to solve the 

problem of pattern classification (that is, perceptron 

convergence), there is to be inequality 

��	
� < � < (� − �)/(� + � − 1), 

where � is the number of elements in the input layer, � is 
the number of neurons in the hidden layer, � is the number 

of classes into which it is necessary to split the input space of 

images, � is the volume of the training sample. 

To select the network structure, aspects of the use of 

genetic algorithms have also been investigated. It should be 

noted that the conditions for the convergence of such 

algorithms are not well studied, even less is known about the 

rate of convergence [13]. 

In 1992 the architecture of cresceptron neural networks 

appeared [14, 15]. Cresceptron changes its topology during 

training, by analogy with networks using a group method of 

data handling [5]. An important idea proposed in the 

cresceptron is the use of max-pooling layers instead of layers 

with average. Layers of maximum choice are now widely 

used in convolutional neural networks. However, for training 

modern convolutional networks, the error backpropagation 

algorithm is used, which is more efficient [16, 17]. 

In 2006-2007, the development of deep learning 

convolutional networks based on training with a teacher took 

place. The work [16] describes the application of the error 

backpropagation algorithm for training a deep neural network 

with an architecture similar to a neocognitron and a 

cresceptron, consisting of alternating layers of convolution 

and maximum choice. This architecture of neural networks is 

actively used to date.  

Sergey Ioffe and Christian Szegedy in 2015 proposed to 

use in neural networks special layers of batch normalization 

[18-21]. In [22], it was shown that the backpropagation error 

algorithm converges faster if the input data are normalized. It 

was noticed that when a signal propagates through a neural 

network, its math. expectation and disperse change from 

layer to layer, which negatively affects the learning process. 

Joffe and Zhegedy proposed to perform normalization not 

only at the entrance to the neural network but also before 

each layer of the network. 

Some scientists considered probabilistic neural networks 

(PNN) widely used in classification problems. The essence of 

such networks is that the outputs of the network can be 

interpreted as estimates of the probability that an element 

belongs to a certain class, and the network actually learns to 

evaluate the probability density function [23, 24]. 

The task of estimating probability density according to 

data belongs to the field of Bayesian statistics. In contrast to 

Bayesian statistics, conventional statistics on a given model 

determines the probability of an outcome. In this case, the 

density has a certain definite form and the model parameters 

are estimated analytically. Bayesian statistics make it 

possible to evaluate the correctness of a model from available 

reliable data, that is, it makes it possible to estimate the 

probability density of distributions of model parameters from 

available data [25]. 

Another approach to estimating the probability density is 

based on nuclear estimates [26]. In this case, if there are a 

sufficient number of training examples, then the method 

gives a fairly good approximation to the true probability 

density.  

Work on the creation of perceptron-type pattern 

recognition systems was also carried out in a different 

direction, namely, in the direction of developing probabilistic 

methods for perceptron studying [27]. The basis of this 

approach is the concept of the characteristic function of the 

perceptron (CFP), introduced by S. V Dayan [28-30]. Using 

CFP, theorems on the existence of a perceptron solution, on 

the choice of the number of elements of the hidden layer, on 

the length of the training sequence, etc., are proved [27, 31]. 

This direction of research continues to be developed by 

colleagues and students of S. V. Dayan [27, 31-36]. At the 

same time, issues of choosing a network architecture, 

theoretical assessment, and optimization of neural network 

parameters remain relevant. 

In this paper we propose a mathematical apparatus for 

studying the relationship between the probability of correct 

classification of input data and the number of elements of 

hidden layers of a neural network. A necessary and sufficient 
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condition for the existence of a solution of a neural network 

is proved. By a solution of neural network the ability to 

recognize images with a probability other than zero is meant. 

As a consequence of the proved theorem, the results obtained 

by F. Rosenblat [1] and S. Dayan [27] for the perceptron 

were obtained. 

2. The Proposed Mathematical Model of 

Neural Network and Solution of the 

Problem 

In this work, a neural network of direct propagation is 

investigated. This kind of neural network consists of a layer of 

input nodes, hidden layers, and an output layer. Neurons have 

unidirectional connections, do not contain connections 

between the elements inside the layer and feedback 

connections between the layers. The neurons of the input layer 

are connected to the neurons of the hidden layer by excitatory 

and inhibitory connections in a random way. The outputs of all 

the neurons of the hidden layer are connected to the neurons of 

the output layer. Neurons in each layer are referred to as input, 

hidden and output elements, respectively [1, 27, 31, 32, 34]. 

The input layer is represented by the receptor field S, the 

hidden layer consists of N associative elements forming the 

set A, the output layer consists of a finite number of reacting 

R-elements. The outputs of all associative elements are 

connected to reactive elements [34-36]. 

An image is formed in the receptor field, corresponding to 

external irritation. Under the image we mean a certain vector, 

the coordinates of which correspond to individual elements of 

the receptor field and can take the values 1 and 0, depending 

on whether the corresponding element is excited or not. 

We consider an N-valued function � defined on some set 

�of vectors �and taking for each vector � ∈ � the values 

�� (� = 1, 2, … �). The function � maps the receptor field to 

the associative layer with the value of �� being the weight of 

the associative element ��  for the input vector �. If there are 

two different mappings ��  and ��� then for vector � the 

following inequality holds 

��(�) > ���(�),  � ∑ "V$�– V$��& > 0(�)* , 

where  ���  and ���� are the weights of the element  ��  (� =
1, 2, … , �) for mappings �� and ��� respectively. 

Let there be some set � containing 

� vectors-pathogens �*, �
, … , �+  in the receptor field S. We 

divide this set into , disjoint classes �*, �
, … , �- 

� = . �/

-

/)*
 

A neural network has a solution for the set X, if and only if 

there are d mappings  �*, �
, … , �-  such that �/(�) >
�0(�), � ∈ �/ , 1 = 1, 2, … , ,,  = 1, 2, … , ,,  ≠ 1. 

For all pathogens � belonging to the same class �/ and for 

each element �� ∈ � the functions 4�/  are introduced, taking 

values 0 and 1 and characterizing the activity of the element 

�� under the influence of pathogens from class �/  [27]. If the 

external environment is divided into d classes 

�*,  �
, … , �- and numbers of allocated in the classes 

representatives are �*,  �
, … , �- , respectively, then in the k
th

 

A-element �� , using the mapping  � , the weight  ��  is 

accumulated and calculated by the formula [27, 34, 35]: 

�� = ∑ (δ/ ∑ η�07/0)*-/)* ) + �8�            (1) 

where  �8�  is the initial weight of the k
th

 A-element, δi is 

increment of the weight of the A-element, when one pathogen 

is shown from the  9: class of pathogens, 4�0  is activity of 

��,  �� ∈ � under the influence of pathogens from class �0. 

When an image appears on the receptor field the 

A-element can either be excited or remain unexcited. Let us 

denote by ;/  the probability that an A-element is excited 

when a single image from the class �/  appears,  = 1, 2, … , ,. 

As a measure of the quality of recognition Dayan S. V. has 

introduced the characteristic function of the perceptron-type 

neural network (CFP) [27-30]. For each class �/  the 

characteristic function ζ= has a form 

ζ= =  ;/ − ∑ ;/0>
=?> 

+ ⋯ + (−1)-;*
…-       (2) 

where ;*
…�  (� = 1, 2, … , ,) is the probability of A-element 

excitation from pathogens A*, A
, … , A-. Note that the CFP 

characterizes the probability that the A-element is excited 

when a pathogen belonging to a certain class is shown and is 

not excited by a pathogen not belonging to the same class. If 

the pathogens excite A-elements with the same probability, 

then the expectation of the weight at the outputs of the 

A-elements (or, equivalently, at the input of R-elements) has 

the form [27, p. 305, Theorem 3] 

µ=  =  Nδ= ∑ ζ=
>70)* ,  �* = �
 = ⋯ = �- = �      (3) 

where  �  is the number of consecutively shown pathogens, 

� is the number of A-elements, D/  is the increment of the 

weight of the A-element when showing one pathogen from the 

 9:class of pathogens. 

When the control pathogen AE is presented, summing 

formula (1) overall A- elements, we get the total weight of 

the associative layer FE at the output of the associative layer. 

Then the dispersion of the weights is represented by the 

formula 

G
FE =  µ"FE
& − (µ"FE&)
 

Using the above concepts of the characteristic function and 

the math. expectation and disperse of weights, the following 

theorem is proved. 

Theorem. 

If a set of neural networks and a classification of the 

external environment are given, then for the existence of a 

solution it is necessary and sufficient that there be an 

inequality 

�H ≥ ; + G
/J
              (4) 
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Sufficiency. 

If the condition (4) is satisfied, then �H ≥ 0. Let us show 

that �H > 0. 

Using the law of large numbers, one can find the 

dependence of the probability of correct identification on the 

expectation and variance of the input quantity, i.e. 

;(� > 0) ≥ 1 − G
/J
, if J > 0 

;(� < 0) ≥ 1 − G
/J
, if J < 0         (5) 

Consequently, for large µ and small σ, the correct separation 

of pathogens occurs with a probability close to one, so 

 � G
/J
 → 0, LℎN� ; → 1 

 � ; → 0, LℎN� G
/J
 → 1 

So ;  and G
/J
  can't be zero at the same time, then 

�H > 0. Hence H ≠ 0. In this case, by the Dayan theorem 

([27], p. 310, Theorem 8), it follows that there exists a solution 

of neural network. 

Necessity. 

If a set of neural networks and the classification of the 

external environment are given, then if H ≥ 1/� then there 

are solutions for any classification of the external environment 

[27]. 

In that case, we have 

�H ≥ 1, �H − G
/J
 ≥ 1 − G
/J
 ≤ ; 

Considering formula (5), for minimal P we get 

�H − G
/J
 ≥ ;, �H ≥ ; + G
/J
 

Q. E. D. 

Corollary 1. For pattern recognition with a probability other 

than zero, it is necessary to have at least �  associative 

elements, where 

� ≥ ( µ
; + G
 )/(J
 H)             (6) 

Corollary 2. If � = 2 then to classify images the number of 

associative elements � ≥ 4. 
Proof. 

Since G
/J
 ≥ 0 we get 

�H ≥ ; + G
/J
 ≥ ;, �H ≥ ;, � ≥  ;/H 

If � = 2, then max ζ=0.25=1/4 [27, p. 307, Theorem 5, 

Corollary 3]. 

Consequently, � ≥ 4; and since �Q� ; = 1, then � ≥ 4. 

Corollary 3. For correct classification, the number of 

identifiable classes must be less than the number of 

associative elements. 

Proof. 

For a fixed  9:class formula (4) looks as follows 

�H/  ≥ ;/ + G/
/J/
. 

So 

H/ ≥ (;/ + G/
/J/
)/� and H/ ≥ ;//� + G/
/(J/
�) 

Summing up by classes, we find 

∑ ζ=-/)*  ≥  1/� ∗ ∑ P=  +-/)* 1/� ∗ ∑ (G/
/J/
-/)* )    (7) 

where , is the number of classes. 

Since in [27, p. 331] there is the following relationship 

∑ ζ=-/)* < 1,                   (8) 

then substituting the estimate (8) in (7), and strengthening it, 

we obtain 

1/� ∗ T P= + 1
N ∗

-

/)*
T(G/
/J/
)

-

/)*
< 1.  

So 

1/� ∗ (∑ (P= +-/)* σ=
/μ=
)) <  1          (9) 

Considering inequality (5), we obtain 

; ≥ 1 − G
/J
, ; + G
/J
 ≥ 1 

Substituting the last in (9), for all classes we get the 

inequalities 

1/� ∗ ∑ 1-/)* < 1, ,/� < 1, , < �      (10) 

The result obtained coincides with the result of the F. 

Rosenblatt theorem [1, Theorem 3, Corollary 2, p. 101] and 

the theorem on the choice of the number of A-elements [27, 

Theorem 11, Corollary 9, p. 331]. 

The dependence (4) is a convenient mathematical apparatus 

for the study of the statistical characteristics of neural 

networks. The obtained estimates can be used in defining the 

network architecture for application in practice tasks. 

3. Conclusion 

In this work, a mathematical apparatus for studying the 

probabilistic behavior of a perceptron-type neural network is 

developed. This apparatus is based on the characteristic 

function of a perceptron. 

A theorem on the necessary and sufficient condition for the 

existence of a solution of a neural network is proved. 

As a consequence of this theorem, results are obtained that 

are consistent with the results of F. Rosenblatt and S. Dayan [1, 

2]. 

The results obtained are of both theoretical and practical 

interest. Until now, in most cases, network parameters are 

selected empirically and refined as a result of experiments. 

The results obtained in the work connect the network 

architecture with the probability of correct pattern recognition. 

These results give constructive recommendations for the 

construction of recognition systems based on neural networks. 
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