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Abstract: Hypergraph theory has been found many applications in chemistry. As an important descriptor of molecular
structures, the Wiener index of a graph also has many applications. The Wiener index of a connected hypergraph is defined as
the summation of distances between all pairs of vertices. If each edge contains exactly k vertices, then a hypergraph G is called
k-uniform. A hypertree is a connected hypergraph with no cycles. For k-uniform hypertree, H. Guo, B. Zhou et al. have
determined the first, second and third maximum and minimum Wiener indices of uniform hypertrees. And give the unique
structure of the k-uniform hypertree corresponding to the Wiener index, Moreover, in this paper, We first find out the
relationship between the first few Wiener indices, then according to the structure of the graph, determine the unique k-uniform
hypertree with the fifth maximum Wiener index. Through the determination of the fifth Wienr index k-uniform hypertree, the
structure of the NTH Wiener index k-uniform hypertree can be found.

Keywords: Wiener Index, K-uniform Hypertree, The Fifth Maximum

1. Introduction

Let V(G) and E(G) be the vertex a hypergraph Gis called
k -uniform. When k=2, an ordinary graph G is a 2 -
uniform hypergraph. A hypertree is a connected hypergraph
with no cycles. A k -uniform hypertree with medges always

has 1+ (k—1)m vertices. The degree of a vertex vV (G),
denoted by 4_(v), is the number of edges of G which
contains the vertex v [1].

For u,vV(G), a path from # to v inG is defined to be

a sequence of vertices and edges (Vo,€,Vis-Vpo15€,,V,)
with all v; s distinct and ¢; s distinct such that v,_;,v; Ue; for
i=1,2,..p, where vy =u and vV, =V . A cycle in G is a
sequence of vertices and edges (Vo>€1,V15-Vp-1,€,,V,) with
P22 all v;s distinct except Yo =V, and all ¢ s distinct
such that v,_;,v;0e for i=1,2,..p, where the value P is
the length of this path or cycle. For any u,vOV(G), if it
exits a path from u to v for any u,v 0V (G), then G is called
connected. Let G be a k -uniform hypergraph with

V(G)={",v;,...,V,} . For u,vOV(G), the distance between
u and v in G is denoted by d_ (u.,u) . In particular,

d_(u,u) =0 The diameter of G is the maximum distance

among all vertex pairs of G[1].

Hypergraph theory has been found many applications in
chemistry [2-4]. The reseach in the study [3] indicated that
the hypergraph model shows a higher accuracy of molecular
structure. That is the higher accuracy of the model and the
greater diversity of the behavior of its invariants. As an
important descriptor of molecular structures, the Wiener
index of a graph also has many applications [2-5].

The Wiener index W(G) of G is defined as the

summation of distances among all unordered pairs of
WG = Y dgy)
(v} OV (G) ’
Especially, the summation of distances from the vertex
u to any other vertex, is denoted by

Wo@)= " dg(u,v)

VIV (G)

distinct vertices %,V in G, i.e.,

Obviously, we see that

W(G) Z%WG (u). H. Guo et al. [4] have determined the
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first, second and third maximum and minimum Wiener
indices of uniform hypertrees.

Moreover, in this paper, We determine the unique -
uniform hypertree with the fifth maximum Wiener index.

2. Preliminary

Let G be a connected k -uniform hypergraph with
u,vOelE(G) . For nonnegative integers P and ¢ , let
G,.,(p,q) be the k -uniform hypergraph obtained from G by
attaching a pendant path of length 7 at ¥ and a pendant path of
length 4 at v [4].

Proposition 2.1 [4]. Let G be a connected k -uniform
hypergraph with |E(G)|22 , w.vOe and d_(u) =1 For
integers p2¢ 21, W(G, ,(p,q)) <W(G,,(p+Lg-1).

For positive integers 7 and¢ , and a k -uniform hypergraph G,
let G,(p,q) be the k -uniform hypergraph obtained from G by
attaching two pendant paths of length P and ¢ at ¥ , respectively,
and G, (p,0)be the k -uniform hypergraph obtained from Gby
attaching a pendant paths of length 7 at v .

Proposition 2.2 [4]. Let G be a connected £ -uniform

hypergraph with |E(G)|21 and uOV(G) . For integers
pzq21, W(G,(p.q) <W(G,(p+lg-1).

For a k -uniform hypertree G with V(G) ={v;,v,,...,v,} , if
E(G) ={e,e;,.,€,} , where € = WViimiyk-ty+1s- Viimtyh-1)+k }
for i=1,2,...m, then we call G a k -uniform loose path, denoted
by Pu .

For a k -uniform hypertree G of order 7, if there is a disjoint
partition of the vertex set V(G)=1{u} 0V 0..0V,, such that
| =...=|V,| =k =1, and E(G)={{u}OV;:1<i<m}, then
we call G is a k -uniform hyperstar (with center ), denoted by
Sy« - In particular, Sy 4 is a hypergraph with a single vertex and
Sy« is a hypergraph with a single edge.

-1
For positive integers A7 with | S A < % , let B,% + be the

k -uniform hypertree obtained from vertex-disjoint hyperstar
S(a-nk-1+1,x with center # and loose path F-a-1yk-1x with
an end vertex vV by identifying ¥ and V .
B OP,, if A=12.

In particular,

3. Hypertree with the Fifth Maximum
Wiener Index

In this section, we determine the unique &k -uniform
hypertree with the fifth maximum Wiener index.
Theorem 3.1 [5]. Let T be a k -uniform hypertree on 7

. . . n-1
vertices with maximum degree A, where 1 <A <——_ Then

W(T)<W(By,) with equality if and only if 7 OB, .

For k=23, -1 =23 and a loose path
Brmrrrie = (o€t € Ut ) g F, x be the k -uniform
=1 k-1 ’

hypertree obtained from Eq—k+1,k by attaching a pendant edge
-1

at a vertex in e, \{u;,u,} . If % =3, then £, UF, ;. Let

F.,= B,3,’2 .

-1
Theorem 3.2 [5]. For %21 . Let T be a k -uniform

hypertree on 7 vertices. Then W(T) S W (F, ) with equality
ifand only if 7 UF, .

-1
Lemma 3.1 [5]. Suppose that k>3 and %23 . Then

W(By ) <W(F,).
-1
For k=3, Z " =6 and a loose path
Brterre = (o> €515 €umk U)ot B be the k -uniform
k-1 k-1 ’

hypertree obtained from £,_;+; by attaching a pendant edge at a
vertex in e; \{u,,us} . Let E,, be the k -uniform hypertree
obtained from Pn—k+1’ « by attaching a pendant edge at u, .

-1
Theorem 3.3 [4]. For Z ;4. let T be a k -uniform

hypertree with 7 vertices. Suppose that 7 # F,; . Then

W(T)<W(F,,) with equality if and only if 7 OF, ; .
-1
Lemma 3.2 [4]. Suppose that k>3 and %z 6. Then

n-1

=6.

W(Bik) 2W(E, ) with equality if and only if

-1 -1

Lemma 3.3 For k=3,3<i< " —3,n—2 6 and a loose
k-1 k-1

path Frk+e :(”0’61’”1"“’6%’”2"; , let H, ;. be the k -

uniform hypertree obtained from Eq—k+1,k by attaching a pendant
edge at a vertex in e \{u;_,u;} . Then W(B,,S,k)ZW(H,’;,k)
with equality if and only if i =3 and :—:1 =6.

Proof. 1If i=3, H,,S,k =E,; , by Lemma 3.2, we have
W(Bs,k)z W(E, ) with equality if and only if Z—:i =6.
Suppose 4<i SZ—:i—ZS ,let T :H,’;’k,vDei \u;_,u; ), with

dr(v) =2, and let € be the pendant edge at v inT . Let T’

be the hypergraph obtained from 7 by moving € from V to

u, obviously, 7' OB, , Let¥; =V (T)\(e\{v}), Note that
W (R =W (), W\ =W\ o))
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Wee\{vy,e, OeyO---Oe) =Wp(e\{v},e, Dey O---Oe;).

From T to T', the distance between a vertex of e\ {v} and

Vi\(e Ue, O---Oe;) increases by i —2 . Note also that

a vertex of e \{u;} decreases by i—1, and the distance |Vl\(e1 Ue, D---I]ei)|=(z:i—i—l)(k—l)
between a vertex of e\{v} and a vertex of :
Then
Wr(e\{vh,e \ 1) =Wy (e\ v, e \ g ) = (= D]e\ ol e \ 3] = G - Dk 1)
and
Wr(e\ )T\ (e Dey O 0e)) =Wy (e\ (v} \ (¢ Dy O+ Oy)
. n—1 . 2 (1)
=—(i-2 —i=1)(k-1)%.
(=2 =i=D(k =)
Since
W(T) =Wy (V) +Wr(e\{vp) +Wr(e\{v},e; ey U---Ue;) 5
e\ v \ )+ e\ 91,0, Ve, Dy O+ D). @
and
W(T')=Wp (V) +Wp(e\{v}h,e; Dey O Oe) + Wp(e\{vh e \uy ) + Wp (e\ v}, \ (e Oe, U Oey)). 3)
We have
W@ -W(T") =Wp(e\{v},e \{u, )+ Wr(e\{v}, (e Oe, O---Oe))—Wp(e\{v},e \{u}) = Wp(e\{v},V;\ (e, Oe, O---Oe¢;))
= =Dk 1) (=2 =ik 1) (4)

=[(i—1)—(i—2)(Z—:i—i—l)](k—l)2 <0.

Then we can see that W(Bn’i)ZW(H,’;’k) , for

-1
3<i S%—f& , with equality holds if and only if i =3 and

-6.
k-1
n—1
For k23,k 128 and a loose path
Bypvie = (g, e,uyy e,y sty )

e H} be the k-uniform

hypertree obtained from F,—;41 4 by attaching a pendent edge
at a vertex in ey \{us,uy} . By Lemma 3.3, we have
W(B, )2 W (H,,).

For k=2, let F,, be the tree obtained by attaching a
pendent edge at the vertex w; of the path v, --,v,_. For
k=3, let Fn',k be the k-uniform hypertree obtained from

By = (g€ uy, e,y ut,
-1 k-1

edges at vy and v,_4 of the path v, --,v,_4. Let E,'l,z be the

)by attaching two pendant

tree obtained by attaching a pendant edges at the vertex v, of
the pathvy,---, v, .

Lemma 3.4 For k=2,n26,A(T)=3. T be an any 2-
uniform hypertree obtained by attaching two pendent edges
at two internal vertices of a path on n—2 vertices,

respectively. Then W(T') < W(E;) with equality if and only
if TOF,, .

maximum Wiener index. AsA(T) =3, T can not be a path.

Proof. Let T be such a hypertree with the

Give a path P =vy,e,v,,"*",€,_3,V,_,, add the first pendent
edge e, to P and get a graph 7, . By Theorem 3.3,
W(L)<W(F,_), the edge e,, must be attached at the

vertex v, . Then add the second pendant edge e,_; to P .

Assume e,_, is attached at the vertex V,(3< j<n=3)of P.
Note that €,-1 = {v;v,}. Obviously, T is composed of T} and
e,y and W(I)=W(T)+W(v,,T}). In order to get the
Wiener index of T, we need to calculate the maximum value
of W(v,,T}) . Since

W, ) =142+ -+ j+j+2+3+.+n—j+1

_JG+D ij+ (n=HA+n=j)
2 2 (5)
_2/2+(2-2n)j+n’ +n
> .
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Let /(j)=2j%+(2-2n)j+n>+n. We can see that the from Boparp = (g€t s €pp sy ) by attaching a
function f(Jj) attains the maximum value as j=7—3 so ke ke

e, _ .
that #(T') have maximum value in this case. Thus, the edge =~ pendant edge Z—_i at a vertex in vUe; \{uy,u3} . Then by

*
¢n-1 must be attached at the vertex v, of Pand T'DF, , moving =l from v to a vertex u Oey \{uz,uy} in E, 4, we
—_— ) nk>
k-1

-1
Lemma 3.5 For k>3 and %28, W(E,,)>W(H?,)

holds.
Proof. Note that E,,,k be a k-uniform hypertree obtained

get a hypertree 7. Thus, 7" DHik . Note that

W(T\(e,, \{v}) =W (T"\(e,_, \{u}))

k-1 k-1

Wr (e, \vi) =Wr (e, \{u})
k-1 k-1

WT(eLﬂ \{vhe30ey) = WT'(eL—l \u},e; Uey)
k-1 k-1

WT(eL_l\{v},el U (e \Muy}) O (es \{uy ) Ueg Ue; U---Ue,, )

k-1 k-1

n-—

SRHAHAES O+ o ]1‘—1)(k—1)2

WT'(eL—1 \ub,e U(ey \upb) O(es \{uy ) Ueg Ue; O---Ue, )

k-1 k-1

n—k

=(4+5+3+4+6+--+

-2)(k=1)2.
Thus,

W(T)-w(T") :WT(en;1 \{vh,e U(e; \uy b)) U (es \uy ) Ueg Ue; U---Ue, )

k-1 k-1

_WT’(eL—l \utb,e U(ep Mup ) U (es \Muy ) Ueg Ue; U---Ue, )

k-1 k-1
n-—1

=G

Nk=-1)*>0 (6)

-1
Then we can see that W (E, ) > W (H, ) for k =3 and —Z 28,
-1
Lemma 3.6 Suppose that k£ >3 and % 24 . Then W(Bik) <W(F, ;).
by attaching a pendent

Proof. Note that £, ; be the k-uniform hypertree obtained from Packri = (uo’el’ul’m’e%’u%)

edge ez;i at a vertex in u,. LetT = F,, ;. Then by moving e, from u to u, in T, we get a hypertree 7'. Thus, 7" DBik . Let

i =V(T)\ (e, \{u;}) . Note that
Wr (M) =Wr ()
Wr (e \Muy}) =Wri(eg My )

Wy (e \fuy}se, My }) =3(k =1)°
k-1
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Wy (e \ g}y, \up}) = 2(k =1)°

k-1
W e\t e Doy Do, ) = (23 bt k-1
ok _
Wy (e, \{u,},e, Dy O Oe,_ ):(2+2+3+4+-~-+”"1‘ —1)(k -1)2
ok _
Since
W(T) =Wr(N)+Wr (e \u}) + Wy (e \uy }e, \uy )
=
o (7
r(e\utepUesU---Ue, ).
=
and
W(T") =W (V) + Wy (e Ny }) + W (e Ny bue,, o i })
=
o (®)
(e \u},ey Ues O---Ue, ).
=
We have

W(T)-W(T")=Wr(e \{”1}76,47—1\{”2})+WT(31 \ute, Oes U e, )

k-1

k-1

“Wr(eg \uy}, e, \Mua b)) =Wri(e \Muy ey Oey O --- 0 eﬂ)

=

k-1

— (1 _1\2 ﬂ_ _1\2
= (k=1 +C— =20k 1)
:(’Z"_’l‘ -)(k-1)*>0 ©)

Then we can see that W(F, ) <W(Bik) for k=3 and
n—1
k-1

>4,

-1
Theorem 3.4. For n_l =8, letT be an any k — uniform

hypertree on 7 vertices. For k=2, T #F,,, Bs,z» P,,. For
k=3, T#E,;, Biz, F.x, Bx. Then

(i) If k=2, then W(T)<SW(B,,) or W(I)SW(E,,),
with equality if and only if 7 OB, or T UE,,;

y -1 .
(i) If k=3 and % =8, then W(T)<W(H?,) with
equality if and only if 7 OH,, , , and W(H, ) <SW(F,,);
_1 [ .
@) If k=3 and % 29, then W(T)<W(F,,) with

equality if and only if 7 OF, ;
Proof. Let T be a hypertree with the maximum Wiener

index among all 7 - vertex and
k —uniform hypertrees, which is not isomorphic to any

one of {En’k,Biz,Fn',z,E,,k,E,,k}, where k=>2.

Let A(T) be the maximum degree of T . Obviously,
AT)=2.

Suppose that A(T)=5. Then by Theorem 3.1, T DBnA,k.

Note that B,,Ajl is not isomorphic to any one of

{E,,,k,Biz,F;q',z,Fn,k,Ez’k} for k=2 . By Proposition 2.2,
w(T)= W(BHA, ) < W(BHAJ;I) for k=2 , a contradiction.
Thus, 2<A(T)<4.

Suppose that k=2 . Then 3<A(T)< 4.

If A(T) = 4, by Theorem 3.1, then 7 OB, , .

Suppose A(T)=3. Note that B,, =F,, and T DF,,,

Bs,z» P,,,z. If there are at least three vertices of degree 3 in

T, then let v be two vertices of degree 3 such thatdy (u,v)
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is large as possible. Let T;,7,,7; be the vertex disjoint
3
subhypergraphs of T —v with U,_l V(T;)=V(T)\{v} such

that 7TV (7;) O {v}] is a 2 — uniform hypertrees for 1<i<3.
Suppose without loss of generality that ¥V (7;) . Then
TV(T,)0{v}] and T[V(T3) O {v}] are two pendant paths at
v. Let [; be the lengths of the pendant path TTV (7;) U {v}]
at v, where 2<i<3 and /; 21 . Suppose [, =/; , then
T'=G,(,) , where G=T[V(T)\V(T,)OV(T3)] . Note
T'=G,(l, +1,l; =1) 2 - uniform hypertrees with maximum
degree 3 and T UF,, , B3,2, P,

n

By Proposition 2.2,
W(T") >W(T), which is a contradiction. So there are at most
two vertices of degree 3 in 7 . If there is a unique vertex of
degree 3 in T and T #F,,, B,,, by Proposition 2.2, T is
obtained by attaching a pendant edge at the fourth vertex of a
path on n—1 vertices and 7 OE, ;. If there are exactly two

vertices of degree 3 in 7, T is obtained by attaching two
pendant edges at two internal vertices of a path on n—2

vertices, respectively, by Lemma 3.4, T DF:’2 . By direct
calculation, we have W(E, ;) >W(F,i2). Therefore, when
k=2, W(I)<W(B;,) or W(I)SW(E,,), with equality if
anonly if 7 0B, , or T OE,,.

Suppose that k >3 . Note that 2<A(T) <4

If A(T)=4, by Theorem 3.1, then T DBik. By Lemma
3.6, we have W (B, ) <W(F,,).

If A(T)=3, let u be a vertex of degree 3. By similar

argument of Theorem 3.1 in [4], ©
must be the unique vertex of degree 3 in T . By
Proposition 2.1, we see that T is obtained

Pn-(k—l),k = (ug, ety s €y g s Uyy ) by

from a loose path
k=1 k-1

attaching an edge to a vertex of degree 2 of £,-(x-1),x . From

Proposition 2.2 and T DBS,,C ,we have T OF, ;.
Next we see the case of A(T) =2,

-1
Case 1. Z—:S. Since T WE, ;, F,x, Pox, and T has

the maximum Wiener index, we get T DH:’,( . By direct

calculation, we have W (H, :’ WSW(F, ;) for k=3.

-1
Case 2. %2 9. Note that T # F, ;. Suppose that there

are at least two edges such
that each edge has at least three vertices of degree 2 in T .
Let u be a vertex of degree 1 in

T . Choose an edge e = (wy, -+, w; ) in T with at lease three
vertices of degree 2 such that

dry(u,w)) is as large as  possible,
dr(u,w) =dr(u,w;)—1for 2<i<k.Then there

are two pendant paths at different vertices of €, say P at
w; and Pat W;, where 1<i<j<k . Let Pand 9 be the
lengths of P and O, respectively, where p,q 21. Then

r DHW,.,Wj (P.9) with H =TV(T)\V(POO)\{w;,w; ],
Note that d (W;) =dy(w;) =1, Without loss of generality,
assume P 2¢ . Note that I =H, ., (p*Lg-1) is a k-

where

uniform hypertree that is not isomorphic to £, 4. If 7" is also
not isomorphic F,; and E,, then by Proposition 2.1, we
have W(T)<W(T"), a contradiction. Thus, there is only one
edge with at least three vertices of degree 2 in T in this case.
Next we will discuss the subcases of 7' UF,; and
T'0E,,.

Subcase 2.1. 7' OE, ;. Then T is isomorphic to the k —
uniform hypertree obtained

Byoak-nk :(“07317“17"'737_ Uy ) by

From Ny,
k- k-1

—_

attaching a pendant ¢ at a vertex w'
in e, \{uy,u,} and attaching a pendant edge " at a vertex

1
w' in ¢ \{u;_,u;}, where 3<i s%—& Suppose without
loss of generality that 7 is such a hypertree.

-1
If4<i s%—{ for the hypertree T, by moving edge

u,_ .oe,
¢ from w' to 7', in 271,
k-1 k-1

we get ak —uniform hypertree 7" and 7" # F, ;,E, ; . Let
L be the unique pathin 7 from

u, _
w' to 271_2 . Then
-1

Wy (V(T)\ (e \{w'3) =W (V(T) N (e N {w'}),

Wy (e \{w'}) = W (e \{w'}),

WT (6' \ {W'}7 V(L)) = WT" (e, \ {W,}7 V(L))a

Wy (e \{w'}, " \{w'}) =W (€N W'} e" \{w'}) = (2 —Z—:i)(k 1%,
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n-—1

Wr(e"\{w'} e \Mug}) =W (e \{w'} e \uy }) = (4= k—l)(k_l)z'
Since
W(T)=Wr(V(T)\('\{\W'})) +Wr (e \{w'}) + W (e"\{w'},V (L))
(e \ AWy, e" \ W) + W (e \ (W', e Mg }), (10)
W(T") =Wp(V(T)\ (e \AW'})) + Wpa (' \AW'}) + W (e \ W'}, V(L))
W (e \{w'},e" \{W'}) + W (e \{w'}, e \ g }), 11
We have
_ " — . _i’l__l 12 _ n _1 12
Wr(T)-W(T") = (2 i _1)(k D" +(4 k—l)(k 1)
=(4+2i-2 :1)(k—1)2<0. (12)

Thus, W(T)<W(T"), a contradiction.

-1
If i =%—3 as k=3, for the hypertree 7, by moving

u,_ .
edge ¢ from u; to %_2 and moving € from w' to

uge , then we get a k -uniform hypertree 7" and
T"IDF,;,E, ;. By the same calculation as above,
W(T)<W(T"), a contradiction.

If i =3, in the hypertree T by moving edge € from w' to
uy at e, then we get a k -uniform hypertree 7" and we see
that T" DH:J{ . Through similar calculation, we get
W(T)<W(T"), a contradiction.

Subcase 2.2. T'OE, ;. Then T is isomorphic to the k -
uniform hypertree obtained from

9uﬂ_ )

P e =Wy, e i, e _ .
n=2(k-1).k (g, €1, 1 nk _, »’ by attaching a

= k-1
pendant ¢ at a vertex w' in e3\{u,,u;} and attaching a
pendant edge " at a vertex W' in e;\{y;_;,u;} , where

i%3. loss of

-1
2<i< Z— -3 and Suppose  without

generality that 7 is such a hypertree. By the same prove as
above, we can get a contradiction. Thus e is the unique edge
with at least three vertices of degree 2.

Suppose that there are four vertices wy,w,,ws; and w, of
degree 2 in e for 7. Let O; be the pendant path of length /;
at w;, where /; 21 for i =1,2 . Suppose without loss of
generality that /; =/, .

Let G=TW(I)\V(Q U Oy) \{w,wy}].
raG, ,.,(h+1L5L-1).  Note that

Wi, W,

Then
ds(w)=1 and
7" UG, w, ( 1,5, —1) is a k -uniform hypertree that is not

isomorphic to F, ;. If 7* is also not isomorphic to £, ; and

E, x> by Proposition 2.1, W(T)<W(T*) | a contradiction.
Hence, there is only three vertices of degree 2 in the edge
e.

If 7° UF, . then T is isomorphic to the k -uniform

hypertree obtained from
P agk-nx = (“0aela“17"‘aeﬂ_

k-1
pendant edges ¢ and ¢" at Y and z in e, \{u;,u,},
TOH,. (L)  with

2’ u%_z) by  attaching

respectively, and V#z

H=TV(T)\(¢'Oe")\{y,z}]. By moving e:%l_z from

—_

u,_ . . u,_
27l 3 to uyat e . Continue moving ¢ from V to “=L_, at
k- k-

el_

AL T

Z‘l Then we get a k -uniform hypertree 7 ** .

Obviously, 7**OH, :’k , and by direct computation, we have
W(T)<W(T**) , a contradiction.

If 1 UE,;,, then T is isomorphic to the k -uniform

hypertree obtained from
Boak-nk = (140,31,141,"'76%_2’“%_2) by  attaching
pendant edges ¢ and e" at Y and z in e3\{u,,us3},
respectively, V7#z Note that T UH,_(L1) with

H =TV (T)\(¢'De")\{y,z}]. By m T**0H,, oving ¢

from V to uy at ¢ . Then we get a k -uniform hypertree
7" . Obviously,, and by Proposition 2.1,
W(T)<W(T**) , a contradiction.

As above, T is a k -uniform hypertree obtained from

we have

P_ . =y, e,u, e _, ,u .
n=k-n = (o€t %_1 nek_) by attaching a

LB}
k-1

pendant edge to a vertex of e \{u,_,u;}, with
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d<i< n—1 _4 edge ¢ from w of e \{y;_,u;} to a vertex V in
k-1 ey \{v3,v4}, then we get a k -uniform hypergraph 7 * . Note
If i=4 or i=2 -1 -4 | then T DH:,k o T DHik .Let P’ be the unique path from v to w.

T k-1

-1
5<i< %—5, in the hypertree 7, by moving the pendant

V, =V(I)\(V(P)Oe Oe, Oey;Oe").

Then
Wr(V(T)\(e \{wh) =W, (V(T)\(e" \{w})),
Wr(e \wh) =Wy (e \iw})),
Wr (e \{wh, V(P) =Wy (e \ W'}V (PY),
Wr(e \{w'h,e Oy Oes \{us})) =Wy (e \{wh,e Oe, O(e3 \uz})) = 3G - 4)(k - 1)%,
Wp(e \ (W'}, Vo) =W, (€ \ (W'}, Vy) = —(i—4)(’;€__ll€ —i—1)(k 1)
Since
W =W (D) (e \wp) + (e o)+ (€ \{w},V(P") 13)
+Wp(e \{w'},e,0ey O (e \{us D))+ W p(e \{w'}, V),
and
w(T") = W (V(T)\ (e \ W) + W, (e \ {w*}) W (€ \{w}, V(P")) (14)
W, (¢ \{w'}.e,0e, O(ey \fus )+ (e \{w'}, 1),
we have
w(T)- W(T*) =3 —-4)(k —1)2 - (i-4)(111;_1;-i-1)(k-1)2 =(i-4)(4 +i-£—:i)(k-1)2 <0. (15)

n—1

Thus, W(T)<W(T*) , a contradiction. So T DH:’,{. By

equality if and only if T DF:J. For 28, let T be an

direct calculation, we get W HY YSW(F!,). as k>3. . .
g (Hyi) (Fri) any k— uniform hypertree on # vertices. For k=2 ,

T#F,, , B, , B, , then W()<W(B,,) or
W(T)SW(E,,), with equality if and only if 7 OB, , or
T OE,,.

4. Conclusion

From above discussionthe, fifth Wiener index of

hyperthree is obtained. H;',,k be the k -uniform hypertree :
3 e Tl
obtained from F,_;41; by attaching a pendant edge at a For k23, T#E,;, B,,, For, By, if ﬁ_g » then
. 3 i .
vertex in ¢\ h . Then W(B, () 2W(H, ;) with 7y <w(H?,) with equality if and only if T OH?, , and
n—1
. . e = - = , n-—1 U
equality if and only if i =3 and P 6. For k=2,n26, W(Hf,k)ﬁ W(F.,) . If o >9 . then W(I)SW(F,,)

A(T)=3. T be an any 2-uniform hypertree obtained by
attaching two pendent edges at two internal vertices of a path

on n—2 vertices, respectively. Then W(T) < W(Ezz) with

with equality if and only if 7 OF, ; .
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