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Abstract: In this work, we investigate the hepatitis C virus infection under treatment. We first derive a nonlinear ordinary 

differential equation model for the studied biological phenomenon. The obtained initial value problem is completely analysed. To 

begin with the analysis of the model, we use the standard theory of ordinary differential equations to prove existence, uniqueness 

and boundedness of the solution. Morever, the basic reproduction number R0 determining the extinction or the persistence of the 

HCV infection is computed and used to express the equilibrium points. Also the global asymptotic stability of the 

HCV-uninfected equilibrium point and the HCV-infected equilibrium point of the model are derived by means of appropriate 

Lyapunov functions. Finally numerical simulations are carried out to confirm theoretical results obtained at HCV-unfected 

equilibrium. 
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1. Introduction 

According to [15] recent estimates, more than 185 million 

people around the world have been infected with the hepatitis 

C virus (HCV), of whom 350 000 die each year. One third of 

those who become chronically infected are predicted to 

develop liver cirrhosis or hepatocellular carcinoma. Despite 

the high prevalence of disease, most people infected with the 

virus are unaware of their infection. For many who have been 

diagnosed, treatment remains unavailable. Treatment is 

successful in the majority of persons treated, and treatment 

success rates among patients treated in low- and 

middle-income countries are similar to those in high-income 

countries Hepatitis C virus (HCV) infects liver cells 

(hepatocytes). Approximately 200 million people worldwide 

are persistently infected with the HCV and are at risk of 

developing chronic liver disease, cirrhosis and hepatocellular 

carcinoma. HCV infection therefore represents a significants 

global public health problem. HCV established chronic 

hepatitis in 60%-80% of infected adults [12]. 

In literature, several mathematical models have been 

introduced for understanding HCV temporal dynamics [4, 9, 10]. 

In this article, we consider the basic extracellular model 

with therapy presented by Neumann et al. in [9]. Given the 

recent surge in the development of new direct acting antivirals 

agents for HCV therapy, mathematical modelling of viral 

kinetics under treatment continues to play an instrumental role 

in improving our knowledge and understanding of virus 

pathogenesis and in guiding drug development [2, 7, 11]. 

 

Figure 1. Schematic representation of the original viral kinetic model of HCV 

infection under treatment. T represents the target uninfected cells, I is the 

infected cells and V represents the free virus. 

To proceed, we assume that the uninfected target cells are 

produced at a rate �, die at constant rate � per cell. On the other 

hand, the target cells are infected with de novo infection rate 

constant of � and the infected cells die at a constant rate of � 

per cell. The hepatitis C virions are produced inside the infected 

cells at an average rate 	 per infected cell and have a constant 
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clearance rate 
 per virion. Thereby, viral persistence will occur 

when rate of viral production (	), de novo infection (�), and 

production of target cells (�) exceeds the clearance rate (
), 

death rate of infected cells (�) and target cells death rate (�). In 

addition, the therapeutic effect of IFN treatment in this model 

involved blocking virions production and reducing new 

infections which, are described in fractions (1 − �)  and 

(1 − �), respectively. (0 ≤ � ≤ 1, 0 ≤ � ≤ 1). 

According to [3, 9], the above assumptions lead to the 

following differential equations: 

���� = � − �� − (1 − �)���;           (1) 

���� = (1 − �)��� − ��;             (2) 

���� = (1 − �)	� − 
�;              (3) 

where the equations relate the dynamics relationship between, 

T as the uninfected target cells (hepatocytes), I as the infected 

cells and V as the viral load (amount of viruses present in the 

blood). In this article, model system (1) is taken as the original 

model used to analyse the HCV dynamics. 

The initial conditions associated to system (1) are given by: �(��) = ��, �(��) = ��, �(��) = ��, �� ∈ [0, +∞].     (4) 

This paper is organized as follows: The global properties of 

the solutions to the mathematical model is carried out in Section 

2. The stability of the disease non-infected steady state, and the 

infected steady state is analysed in section 3 and finally in 

section 4, some numerical simulations are carried out. 

2. Properties of Solutions of the Initial 

Value Problem (1)-(4) 

2.1. Existence of Local Solutions 

The first step in examining model (1), (2), (3) is to prove 

that local solution of the initial-value problem does, in fact, 

exist, and that this solution is unique. 

Theorem 2.1 Let �� , �� , ��  ∈ %  be given. There exists �& > �� > 0 and continuously differentiable functions �, � , �: [0, ��) ⟶ % such that the ordered triple (�, �, �) satisfies 

(1), (2), (3) and (�(��), �(��), �(��)) = (��, ��, ��). 

To prove the result, we use the classical Cauchy-Lipschitz 

theorem. Since the first order system of ordinary differential 

equations (1), (2), (3) is autonomous, it suffices to show that 

the function *: %+ ⟶ %+ defined by: 

*(,) = -ℎ&(,&, ,/, ,+)ℎ/(,&, ,/, ,+)ℎ+(,&, ,/, ,+)0 = -� − �,& − (1 − �)�,+,&(1 − �)�,+,& − �,/(1 − �)	,/ − 
,+ 0 (5) 

is locally Lipschitz in its , argument. In fact, it is enough to 

notice that the jacobian matrix 

∇*(,) = 2−� − (1 − �)�,+ 0 −(1 − �)�,&(1 − �)�,+ −� (1 − �)�,&(1 − �)	 0 −
 3 

is locally bounded for every , ∈ %+ . Hence, H has a 

continuous, bounded derivative on any compact subset of %+ 

and so H is locally Lipschitz in ,; In addition H is continuous. 

By Cauchy-Lipschitz theorem, there exists a unique solution, ,(�), to the ordinary differential equation ,′(�) = *(,(�)) 

with initial value ,(��) = ,�  on [��, �&]  for some time �& > �� ≥ 0. 

Remark 1 The model (1), (2), (3) can be rewrite in the form 6′(�) = *(6(�)) 

where 6(�) = (�(�), �(�), �(�))� and H is defined by (5). 

Remark 2 Since H is a continuously differentiable function, 

we deduce a unique maximal solution of initial value problem 

(1)-(4). In addition, F, being indefinitely continuously 

differentiable, we can also deduce that this solution is also 

only if indefinitely continuously differentiable. 

Additionally, we may show that for positive initial data, 

solutions of ininitial value problem (1)- (4) remain positive as 

long as they exist. 

2.2. Positivity 

Theorem 2.2 Let (�, �, �)  be a solution of the Cauchy 

problem (1)-(4) on an interval [��, �&]. Assume the initial data 

of problem (1)- (4) satisfy �� > 0, �� > 0, and �� > 0 then �(�), �(�) and �(�) remain positive for all � ∈ [��, �&]. 
Proof. Call the variables ,7 . If there is an index 8 and a 

time � for which ,7(�) = 0, let �∗ be the infimum of all such � for any i. Then the restriction of the solution to the interval [��; �∗] is positive and ,7(�∗) = 0 for a certain value of 8. 
The equation for ,7 in the system (1), (2), (3) can be written in 

the form: �,7(�)�� = −,7:(,) + ;(,), 
where ;(,)  is non-negative. As a consequence 

�<=(�)�� ≥−,7:(,) and ,7(�) > 0, ∀� ∈ [��, �∗]. In fact: 

Recall that all constants in the system (1), (2), (3) are 

non-negative. Using this and the solutions on [��, t∗], we 

have: 

@���� = −�� + (1 − �)��� 	���� = −�
 + (1 − �)	� 	 ⇒ @���� ≥ −�� 	���� ≥ −�
 	 ⇒ @ ��� (ln�(�)) ≥ −� 	��� (ln�(�)) ≥ −
, 	 
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which yields: 

�(�) ≥ ��EFG(�F�H), 
�(�) ≥ ��EFI(�F�H)	:JK	LMM	� ∈ 	 [��, �∗]. 

Similarly, in one hand we have: 

��
�� = � − �� − KE�(1 − �)��� ≤ �. 

Solving for T yields 

�(�) ≤ �� + �(� − ��) ≤ N&(1 + (� − ��)) 

where N& ≥ max{��, �}. In other hand we have: 

�
�� (� + �) = −�� + (1 − �)��� − �
 + (1 − �)	� ≤ ��� + 	�. 

Recall that we have a bound on T, so 

�
�� (� + �) ≤ N&(1 + (� − ��))�� + 	� ≤ N/(1 + (� − ��))(� + �) 

where N/ ≥ max{N&�, 	}. Solving the differential inequation 

yields: 

�(�) + �(�) ≤ N+*&(�), ∀� ∈ [��, �∗]        (6) 

where N+ > 0  depends upon N/ , ��  and ��  only, and *&(�) = ET 	UUH (&V(�F�H))�W > 0, � ∈ [��, t∗]. Using the fact that �(�) and �(�) are positive, (6) yields: N+*&(�) ≥ �(�) + �(�) ≥ �(�), N+*&(�) ≥ �(�) + �(�) ≥ �(�). 
With these bounds in place, we can now examine �(�) and 

bound it from below using: ���� = � − �� − (1 − �)��� 

≥ −�� − (1 − �)��� ≥ −�� − (1 − �)�N+*&(�)� ���� ≥ −NX(1 + *&(�))� 

for � ∈ [��, �∗] , where NX ≥ max{�, (1 − �)�N+} . Shifting 

that last term to the other side of the equation yields: ��(�)�� + NX(1 + *&(�))�(�) ≥ 0. 
Since we know ��� Y�(�) + EZ[ T 	UUH (&V\](W))�W^ ≥ 0, 

we find that for � ∈ [��, �∗], 
�(�) ≥ EFZ[ T 	UUH (&V\](W))�W > 0 

Therefore ,7(�) > 0 , for all � ∈ [��, �∗] . In particular ,7(�∗) > 0, which is a contradiction and the theorem is proven. 

Remark 3 

1. With this, we have a general idea that the model is 

sustainable, and can say with certainty that it remains 

biologically valid as long as it began with 

biologically-reasonable (i.e, positive) data. This also 

shows that once infected, it is entirely possible that the 

virus may continue to exist beneath a detectable 

threshold without doing any damage. 

2. One reason why we choose the strict inequalities for the 

initial data is that often in biological (or chemical) 

applications we are interested in the case of solutions 

where all unknowns are positive. This means intuitively 

that all elements of the model are ’active’. On the other 

hand it is sometimes relevant to consider solutions with 

non-strict inequalities. In fact the statement of the 

theorem with strict inequalities implies the 

corresponding statement with non-strict inequalities by 

using continuous dependence of solutions with respect to 

initial Data. 

2.3. Existence of Global Solutions 

It will now be shown, with the help of the continuation 

criterion the existence of global solutions. 

Theorem 2.3 The solutions of the Cauchy problem (1)-(4), 

with positive initial data, exist globally in time in the future 

that is: on [��, +∞]. 
Proof. To prove this it is enough to show that all variables 

are bounded on an arbitrary finite interval [��; �]. Using the 

positivity of the solutions is suffices to show that all variables 

are bounded above. 

Taking the sum of equations (1) and (2) shows that: ��� (� + �) ≤ � 

and hence that �(�) + �(�) ≤ �� + �� + �(� − ��) . Thus � 

and � are bounded on any finite interval. The third equation 

i.e. equation (3), then shows that �(�) cannot grow faster 

than linearly and is also bounded on any finite interval. 

2.4. Global Boundedness of Solutions 

Theorem 2.4 For any positive solution (�, �, �) of initial 

value problem (1)-(4) we have: �(�) + �(�) ≤ _&	L`�	�(�) ≤ _/ 

where 
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_& = max a�� + ��, �
min{�, �}c , _/ = max a��, (1 − �)	_&


 c. 
Proof. According to equations (1) and (2), we have: 

�
�� (� + �) = � − �� − �� ≤ � − min{�, �}(� + �). 

Gronwall inequality [13] yields: 

� + � ≤ (�(��) + �(��))EFdef{�,G}(�F�H) + g 	
�

�H
�EFT 	U

h Fdef{�,G}�i�j 

≤ (�� + ��)EFdef{�,G}(�F�H) + � g 	
�

�H
EFdef{�,G}(�Fk)�j 

≤ (�� + ��)EFdef{�,G}(�F�H) + � EFdef{�,G}(�F�) − EFdef{�,G}(�F�H)
min{�, �}  

≤ max a(�� + ��), �
min{�, �}c EFdef{�,G}(�F�H) + max a(�� + ��), �

min�, �c (1 − EFdef{�,G}(�F�H)) 

≤ max a(�� + ��), �
min{�, �}c lEFdef{�,G}(�F�H) + 1 − EFdef{�,G}(�F�H)m 

therefore � + � ≤ max n(�� + ��), o
def{�,G}p. 

Another hand, from equation (3), we have: 

��
�� = (1 − �)	� − 
� ≤ (1 − �)	(� + �) − 
� 

≤ (1 − �)	max a(�� + ��), �
min{�, �}c − 
� 

≤ (1 − �)	_& − 
�. 
Once more Gronwall inequality yields: 

�(�) ≤ �(��)EFI(�F�H) + g 	
�

�H
(1 − �)	_&ET 	U

h I�i�j 

≤ ��EFI(�F�H) + (1 − �)	_& g 	
�

�H
EFI(�Fk)�j 

≤ ��EFI(�F�H) + (1 − �)	_&
EFI(�F�) − EFI(�F�H)


  

≤ ��EFI(�F�H) + (1 − �)	_&
1 − EFI(�F�H)


  

≤ max a��, (1 − �)	_&

 c lEFI(�F�H) + 1 − EFI(�F�H)m 

�(�) ≤ max a��, (1 − �)	_&

 c 

Therefore the theorem is proven. 

As consequences of Theorem 2.4 we have: 

Remark 4 Let S be a solution of system (1), (2), (3). If 

6� ∈ % × %V+  then, the limit of 6(�) exits when � ⟶ +∞. In 

other words the solution is globally bounded in the future. In 

particular, S is periodic if and only if S is stationary under the 

condition that 6(�)  admits a finite limit when �  tends to 

infinity. 

Theorem 2.5 Let (��, 6� = (��, ��, ��)) ∈ % × %V+  and 

([��, �&], 6 = (�, �, �)) be a maximal solution of the Cauchy 

problem (1)-(4) (�& ∈ [��, +∞]). If �(��) + �(��) ≤ _+  and 

�(��) ≤ _X then the set: 
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Ω = {(�(�), �(�), �(�)) ∈ %V+ : �(�) + �(�) ≤ _+, �(�) ≤ _X}, 
where _+ = o

def{�,G}  and _X = (&Fs)to
Idef{�,G} , is a positively 

invariant set by system (1), (2), (3). 

Proof. Let �& ∈ [��, �&]. We shall show that: 

1. If �(�&) + �(�&) ≤ _+  then for all �& ≤ � < �& , 

�(�) + �(�) ≤ _+. 

2. If �(�&) ≤ _X then for all �& ≤ � < �&, �(�) ≤ _X. 

1. Let us suppose that there exists �& > 0  such that: �& ≤ �& + �& < �&, (� + �)(�& + �&) > _+. 
Let �&∗ = inf{� ≥ �&	/	(� + �)(�) > _+}. 
Since (� + �)(�&∗) = _+, hence (� + �)(�) = _+ + ��� (�(�&∗) + �(�&∗))(� − �&∗) + J(� − �&∗) , � ⟶ �&∗. In addition, according to equations (1) and (2) of the 

system we have: ��� (�(�) + �(�)) = � − �� − �� 

which yields: ��� (� + �)(�&∗) ≤ � − min{�, �}(� + �)(�&∗) 

≤ � − min{�, �}_+ 

≤ � − min{�, �} �min{�, �} ≤ 0, 
hence, there exists �̃ > 0 such that for all �&∗ ≤ � < �&∗ + �̃, (� + �)(�) ≤ _+, a contradiction. therefore for all � ∈ [��, �&], (� + �)(�) ≤ _+. 

2. Let us suppose that there exists �& > 0  such that: �& ≤ �& + �& < �&, �(�& + �&) > _X. 
Let �&∗ = inf{� ≥ �&	/	�(�) > _+}. 
Since �(�&∗) = _+, hence �(�) = _X + ��(�]∗)�� (� − �&∗) + J(� − �&∗) , � ⟶ �&∗.  In 

addition, according to equation (3), we have: ��(�)�� = (1 − �)	� − 
� 

which yields: ��� �(�&∗) ≤ (1 − �)	(� + �)(�&∗) − 
�(�&∗) 

≤ (1 − �)	_+ − 
_X 

≤ (1 − �)	 �min{�, �} − 
 (1 − �)	�
min{�, �} ��� �(�&∗) ≤ 0, 

hence, there exists �̃ > 0 such that for all �&∗ ≤ � < �&∗ + �̃, �(�) ≤ _X , a contradiction. therefore for all � ∈ [��, �&] , �(�) ≤ _+. 

3. Stability Analyses 

3.1. Equilibria, Basic Reproduction Number yz and Local 

Stability 

According to [3], apart from an infection-free equilibrium 

{� = (��, 0,0)	|ℎEKE	�� = o�             (7) 

the system (1), (2), (3) has an infected equilibrium during 

therapy {∗ = (�∗, �∗, �∗), where: 

�∗ = 
�(1 − �)�(1 − �)	 , �∗ = (1 − �)(1 − �)�	� − �
�(1 − �)(1 − �)	��  

�∗ = (&F})(&Fs)ot~F�IG(&F})GI~ = t(&Fs)I �∗.        (8) 

The basic reproduction number %� has been defined in the 

introduction as the average number of secondary infections that 

occur when one infective is introduced into a completely 

susceptible host population [5, 6, 14]. Note that %� is also called 

the basic reproduction ratio [5] or basic reproductive rate [1]. It is 

implicitly assumed that the infected outsider is in the host 

population for the entire infectious period and mixes with the 

host population in exactly the same way that a population native 

would mix. Following the method done by [14], we have: 

Proposition 3.1 The basic reproduction number %�  for 

model (1) is given by: 

%� = (1 − �)(1 − �) �	�
��. 
Now we can express the components of infected 

equilibrium in term of %�. Hence (8) becomes: 

�∗ = &�H o� , �∗ = I�(&F})(&Fs)t~ (%� − 1), �∗ = �(&F})(�HF&)~ (9) 

The following results summarize the main results regarding 

the local stability of the disease-free steady state {�, and the 

local stability of the infected steady state during therapy {∗. 

The proof of these results can be found in [3]. 

Theorem 3.2 The infection-free steady state {� of model 

(1), (2), (3) is locally asymptotically stable if %� ≤ 1 and 

unstable if %� > 1. 
Theorem 3.3 The infected steady state during the therapy {∗ of model (1), (2), (3) is locally asymptotically stable if %� > 1 and unstable if %� > 1. 

3.2. Global Stability 

In this section, firstly we prove the global stability of the 

infection-free equilibrium {� of model (1), (2), (3) when the 

basic reproduction number is less than or equal to unity. And 

secondly we prove the global stability of infected equilibrium {∗ whenever it exists. We have seen previously [3] that the 

unique positive endemic equilibrium exits when the basic 
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reproduction number is greater than or equal to unity. 

Theorem 3.4 

1. The infection-free steady state {� of model (1), (2), (3) 

is globally asymptotically stable if the basic reproduction 

number %� ≤ 1 and unstable if %� > 1. 

2. The infected steady state during therapy {∗ of model (1), 

(2), (3) is globally asymptotically stable if the basic 

reproduction number %� ≤ 1. 

Proof. 

1. Consider the Lyapunov function: 

�&(�, �, �) = � − �� − ��ln �
�� + � + �

(1 − �)	 �. 
�&  is defined, continuous and positive definite for all 

� > 0 , � > 0 , � > 0 . Also, the global minimum �& = 0 

occurs at the infection free equilibrium {�. Further, function �&, along the solutions of system (1), (2), (3) satisfies: ��&�� = � − �� − ��� � + ��� + (1 − �)���� − 
�(1 − �)	 �. 
Further collecting terms, we have ��&�� = � �2 − ��� − ��� � + (%� − 1) 
�(1 − �)	 �. 

Since the arithmetical mean is greater than or equal to the 

geometrical mean, 

�L&L/ − (L& + L/) ≤ 0, L7 ≥ 0, 8 = 1,2. 
the function 2 − ��H − �H�  are non-positive for all � > 0. In 

addition, since %� ≤ 1  ensures 
��]�� ≤ 0  for all � > 0 , � > 0. The equality 

��]�� = 0 holds only 

(a) at the free equilibrium {� or 

(b) when %� = 1 and � = ��. 

The latter case implies � = � = 0. 

Therefore, the largest compact invariant subset of the set 

� = {(�, �, �) ∈ Ω: 	��&�� = 0} 
is the singleton {{�}. By the Lasalle invariance principle [8], 

the infection-free equilibrium is globally asymptotically stable 

if %� ≤ 1. We have seen previously that if %� > 1, at least 

one of the eigenvalues of the Jacobian matrix evaluated at {� 

has a positive real part. Therefore, the infection-free 

equilibrium {� is unstable when %� > 1. 

2. Consider the Lyapunov function: 

�/(�, �, �) = � − �∗ − �∗ln ��∗ + � − �∗ − �∗ln ��∗ + �(1 − �)	 Y� − �∗ − �∗ln ��∗^. 
The time derivative of �/ along the trajectories of system (1), (2), (3) is: ��/�� = ���� − �∗� ���� + ���� − �∗� ���� + �(1 − �)	 ���� − �(1 − �)	 �∗� ���� . 
Collecting terms, and canceling identical terms with opposite signs, yields ��/�� = � − �� − � �∗� + ��∗ + (1 − �)���∗ − (1 − �)��� �∗� + ��∗ − 
��(1 − �)	 − � �∗� � + 
�(1 − �)	 �∗ 

					= �%��∗ − ��∗ ��∗ − �%��∗ �∗� + ��∗ + (1 − �)��∗�∗ ��∗ + ��∗ − (1 − �)��∗�∗ ��∗ ��∗ �∗� − 
�(1 − �)	 ��∗ �∗ − � �∗� ��∗ �∗ + 
�(1 − �)	 �∗, 
L

JK�8`;	�J	(9), 

= ��∗ Y%� − ��∗ − %� �∗� + 1^ + (1 − �)��∗�∗ Y ��∗ − ���∗�∗�∗�^ + ��∗ Y2 + ��∗ − �∗���∗^ 

= ��∗ Y%� − ��∗ − %� �∗� + 1^ + ��∗ Y ��∗ − ���∗�∗�∗�^ + ��∗ Y2 + ��∗ − �∗���∗^,	 �8`
E	(1 − �)�	�∗�∗ = 	�	�∗ ��/�� = ��∗ Y%� − ��∗ − %� �∗� + 1^ + ��∗ Y2 − �∗���∗ − ���∗�∗�∗�^ + ��∗ Y1 − �∗� ^ − ��∗ Y1 − �∗� ^ 

= ��∗ Y%� − ��∗ − %� �∗� + 1^ + ��∗ Y3 − �∗� − �∗���∗ − ���∗�∗�∗�^ − ��∗(%� − 1) Y1 − �∗� ^,	 
�8`
E	�	�∗ = ��∗(%� − 1), ��/�� = ��∗ Y2 − ��∗ − �∗� ^ + ��∗ Y3 − �∗� − �∗���∗ − ���∗�∗�∗�^ . ≤ 0. 
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Since the terms between the brackets are less than or equal 

to zero by the inequality (the geometric mean is less than or 

equal to the arithmetic mean) 

�L&L/L+� − (L& + L/ + L+) ≤ 0, L7 5 0, 8 � 1,2,3. 

It should be noted that 
���

��
� 0 holds if and only if ��, �, �� 

take the steady states values ��∗, �∗, �∗�  Therefore, 

according to Lasalle invariance principle, the infected 

equilibrium {∗ is globally asymptotically stable. 

4. Numerical Simulation 

Some numerical simulations have been done in the case 

%� u 1 to confirm theoretical result obtain on global stability 

for the uninfected equilibrium. 

 

Figure 2. Numerical simulation of the HCV model in 1000 days. 

We run simulations using the initial conditions: � � 10+, 

� � 2  and � � 1  and the following parameter values: 

� � 10 ; � �
&

&�������
; � � 2.4 q 10F� ; � � 0.01 ; � �

0.001; � � 0.00000001; 
 � 0.9, 	 � 0.000000001. 

5. Conclusion 

In this paper, we have extended the first part of the work 

done by Chong et al. in [3] where they only studied the local 

stability of the fundamental mathematical model of hepatitis C 

virus infection with treatment. We constructed suitable 

Lyapunov functions to prove that if the reproduction number 

%� � 1 the HCV- uninfected equilibrium point is globally 

asymptocally stable; and if %� ' 1  the HCV-infected 

equilibrium point is globally asymptotically stable. Finally we 

performed numerical simulations to illustrate theoretical 

results obtained at HCV-uninfected equilibrium point. It 

would be interesting to incorporate time delay, diffusion 

phenomenon or random phenomenon into the cyrrent model. 

Also, using the standard incidence function instead of mass 

action principle could be a serious issue. These two challenges 

will be the concerns of future investigation. 
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