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Abstract: Interest in Science, Technology, Engineering and Mathematics (STEM)-based courses at tertiary institution is on a 

steady decline. To curd this trend, among others, teaching and learning of STEM subjects must be made less mental tasking. 

This can be achieved by the aid of technical computing software. In this study, a novel approach to explaining and 

implementing Newton’s method as a numerical approach for solving Nonlinear System of Algebraic Equations (NLSAEs) was 

presented using MATLAB
®
 and MAPLE

®
 in a complementary manner. Firstly, the analytical based computational software 

MAPLE
®
 was used to substitute the initial condition values into the NLSAEs and then evaluate them to get a constant value 

column vector. Secondly, MAPLE
®
 was used to obtain partial derivative of the NLSAEs hence, a Jacobean matrix. 

Substituting initial condition into the Jacobean matrix and evaluating resulted in a constant value square matrix. Both vector 

and matrix represent a Linear System of Algebraic Equations (LSAEs) for the related initial condition. This LSAEs was then 

solved using Gaussian Elimination method in the numerical-based computational software of MATLAB/Simulink
®

. This 

process was repeated until the solution to the NLSAEs converged. To explain the concept of quadratic convergence of the 

Newton’s method, power function of degree 2 (quad) relates the errors and successive errors in each iteration. This was 

achieved with the aid of Curve Fitting Toolbox of MATLAB
®
. Finally, a script file and a function file in MATLAB

®
 were 

written that implements the complete solution process to the NLSAEs. 

Keywords: Newton’s Method, MAPLE
®
, MATLAB

®
, Non-Linear System of Algebraic Equations 

 

1. Introduction 

The current decline in post-16 uptake of science, 

technology, engineering and mathematics (STEM) subjects is 

of great concern. The global consensus is that enrolment for 

STEM studies and / or carriers has been in decline for more 

than a decade. 

One of the most frequently cited reasons for inspiring 

young people to enjoy STEM are good teaching. The need 

for quality teaching for students to become and remain 

engaged in STEM cannot be over emphasized. As such, 

innovative and inspirational teaching is needed now more 

than ever to salvage the situation. 

Perceived degree of difficulty-another commonly cited 

reason in the extensive body of literature associated with the 

switching young people off science is that STEM subjects are 

perceived to be more difficult to achieve good grades than in 

other subjects. 

Another factor aiding the decline in STEM subjects is 

unaccepted stereotypes about STEM. STEM, are associated 

with being ‘boring’ and the perceptions that those who enjoy or 

succeed in STEM subjects are, or might be, geeks or nerds. 

Also, STEM based subjects are not seen to be ‘funky’ [1]. 

With affordable personal computers comes intuitive 

STEM-based software like MATLAB
®
 and MAPLE

®
. Such 
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software goes a long way to address the factors cited above 

responsible for the decline in STEM-based studies. Both 

MATLAB
®
 and MAPLE

®
 come with toolboxes and packages 

respectively that ease a lot of the computation associated 

with STEM subjects. An added edge which they both have is 

powerful graphical visualization of results. This single 

ingredient has greatly increased the understanding of STEM-

base subjects. The fact that certain scientific constants need 

not to be memorized anymore but can be easily called for as 

a built-in variable from such software is also a good omen for 

STEM studies. These, with a lot more have reduced the 

computational burden on the scientists. 

Many STEM-based literatures have emerged that support 

this understanding. We are not advocating a complete 

substitution of the current methods of studying and teaching 

STEM-based subject. The crux here is to complement the 

existing methods. Taking a critical look into the future we 

can boldly say, ‘Software will not replace STEM-based 

teachers but teachers who do not use such software will soon 

be replaced by those who do.’ 

For example, MAPLE
®
 is used for purely analytical 

solution processes in [2, 3, 4]. While areas where numerical 

results are needed, MATLAB
®
 is employed [4, 5, 6, 7]. The 

combination of MATLAB
®

 and MAPLE
®
 was used to 

enforce understanding of both analytical and numerical 

computations respectively in [8]. Though, both MATLAB
®
 

and MAPLE
®
 are capable of analytical and numerical 

computation independently, their specific potential is greatly 

harnessed when MATLAB
®
 is used for numerical 

computations and MAPLE
®
 for analytical computation only. 

In this study we intend to explore the numerical strength of 

MATLAB
®
, and the analytical power of MAPLE

®
 to aid in 

the understanding of the solution process of a NLSAEs using 

Newton’s method. 

This paper is divided in to the following sections; section 

two defines terms associated with a system of nonlinear 

algebraic equations, discusses the solution nature so desired 

and the concept of convergence. In section 3, Newton’s 

method was introduced and all the steps involve in using this 

method to obtain solution to a NLSAEs were highlighted. 

Section four presents an example and shows how Newton’s 

method was applied using MATLAB
®
 and MAPLE

®
 to 

finally arrive at the required solution. Section five, presents 

error analysis using curve fitting toolbox of MATLAB to 

curve fit the errors from the numerical method used so far. 

Finally, in section 6, MATLAB
®
 script and function files 

were written that implemented the Newton’s method for the 

NLSAEs. Section seven concludes the study. A Laptop with 

RAM 6.00GB, Intel(R) Core(TM) i5-2430M CPU @ 

2.40GHz, with windows 7, running MATLAB R2016a and 

MAPLE 2015 versions was used throughout this study. 

2. Nonlinear Algebraic Equations 

Restricting our attention to algebraic equations in one 

unknown variable, with pen and paper, one can solve many 

types of equations. Examples of such equations are, ax+b = 

0, and ax
2
+bx+c=0. One may also know that there are 

formulas for the roots of cubic and quartic equations too. 

Maybe one can do the special trigonometric equation sinx + 

cosx = 1 as well, but there it (probably) stops. Equations that 

are not reducible to one of those mentioned cannot be solved 

by general analytical techniques. This means that most 

algebraic equations arising in applications cannot be treated 

with pen and paper! 

If we exchange the traditional idea of finding exact 

solutions to equations with the idea of rather finding 

approximate solutions (numerical), a whole new world of 

possibilities opens up. With such an approach, we can in 

principle solve any algebraic equation [9]. 

An equation expressed by a function f as given in (1) is 

defined as being nonlinear when it does not satisfy the 

superposition principle as given in (2), 

: nf →ℝ ℝ                                             (1) 

( ) ( ) ( )1 2 1 2f x x f x f x+ + ≠ + +⋯ ⋯       (2) 

where ( )1 2, ,⋯ ℝ
n

nx x x ∈  and each fi is a nonlinear real 

function, i = 1,2,…, n. 

A system of nonlinear equations is a set of equations 

expressed as the following: 

( )
( )

( )

1 1 2

2 1 2

1 2

, , 0,

, , 0,

                            

, , 0,

⋯

⋯

⋮

⋯

n

n

n n

f x x x

f x x x

f x x x

=

=

=

                        (3) 

A solution of a system of equations f1, f2, …, fn  in n 

variables is a point (a1, …, an) ℝ
n∈ such that f1(a1,…an) = 

…
 

= fn (a1,…an) = 0. 

Systems of Nonlinear Algebraic Equations cannot be 

solved as nicely as linear systems. Procedures called iterative 

methods are frequently used. An iterative method is a 

procedure that is repeated over and over again, to find the 

root of an equation or find the solution of a system of 

equations. When such solution converges, the iterative 

procedure is stopped hence, the numerical solution to the 

system of equations. 

Let F be a real function from D Є ℝn  to ℝn . If F(p) = p, 

for some p Є D, then p is said to be a fixed point of F. 

Let pn be a sequence that converges to p, where pn ≠ p. If 

constants λ, α > 0 exist that 

1
lim

n

n
n

p p

p p
α λ+

→∞

−
=

−
                          (4) 

Then it is said that pn converges to p of order α with a 

constant λ. 

The value of α measures how fast a sequence converges. 

Thus, the higher the value of α is, the more rapid the 

convergence of the sequence is. In the case of numerical 

methods, the sequence of approximate solutions is 
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converging to the root. If the convergence of an iterative 

method is more rapid, then a solution may be reached in 

fewer interactions in comparison to another method with a 

slower convergence 

3. Newton’s Method 

The Newton-Raphson method, or Newton method, is a 

powerful technique for solving equations numerically. It is 

even referred to as the most powerful method that is used to 

solve a nonlinear equation or system of nonlinear equations 

of the form f(x) = 0. It is based on the simple idea of linear 

approximation. The Newton’s method, properly used, usually 

homes in on a root with devastating efficiency. 

If the initial estimate is not close enough to the root, 

Newton’s method may not converge, or may converge to the 

wrong root. With proper care, most of the time, Newton’s 

method works well. When it does work well, the number of 

correct decimal places roughly doubles with each iteration. 

In his Honors Seminar, Courtney Remani explained the 

notion of numerical approximation very clearly, pointing to 

the popular fact that Newton’s method has its origin in 

Tailor’s series expansion of f(x) about the point x1: 

2
1 1 1 1

1
( ) ( ) ( ) ( ) ( ) ( )

2!
⋯f x f x x x f x x x f x′ ′′= + − + − +        (5) 

where f, and its first and second order derivatives, f ′ and f ′′  

are calculated at x1. If we take the first two terms of the 

Taylor's series expansion, we have: 

1 1 1( ) ( ) ( ) ( )f x f x x x f x′≈ + −                     (6) 

Let (6) be set to zero (i.e. f(x) = 0) to find the root of the 

equation which gives us: 

1 1 1( ) ( ) ( ) 0.f x x x f x′+ − =                     (7) 

Rearranging (7) we obtain the next approximation to the 

root, as: 

( )
( )

1
1

1

,
f x

x x
f x

= −
′

                                    (8) 

Thus, generalizing (8) gives the Newton’s iterative 

method: 

1
1

1

( )
,    

( )
ℕ

i
i i

i

f x
x x i

f x

−
−

−
= − ∈

′
                    (9) 

where xi → �̅ ( as i → ∞), �̅ is the approximation to a root of 

the function f(x)
 

Note, as the iteration begins to have the same repeated 

values i.e., as 1i ix x x+= =
 
this is an indication that f(x) 

converges to �̅. This xi is the root of the function f(x). 

Another indicator that xi is the root of the function is if it 

satisfies |�(��)| < ԑ, where ԑ > 0 is a given tolerance. 

Newton’s method as given in (9) can only be used to solve 

nonlinear equations with only a single variable. For a multi-

variable nonlinear equation, (9) has to be modified. 

From Linear Algebra, we know that a system of equations 

can be expressed in matrices and vectors. Considering a 

multivariable system as expressed in (3), a modification of 

(9) is written as: 

( ) ( ) ( )( ) ( )( )1
1 1 1

x x x F x
k k k k

J
−− − −= −               (10) 

Where k = 1, 2, …, n represents the iteration, x Є ℝ , F is a 

vector function, and J(x)
-1

 is the inverse of the Jacobian 

matrix. However, to solve a system of nonlinear algebraic 

equations instead of solving the equation f(x) = 0, we are now 

solving the system F(x) = 0. Component of (10) are defined 

as; 

I. Let F be a function which maps n
ℝ to n

ℝ . 

( )

( )
( )

( )

1 1 2

2 1 2
1 2

1 2

, ,

, ,
F , ,...,

, ,

⋯

⋯

⋮

⋯

n

n
n

n n

f x x x

f x x x
x x x

f x x x

 
 
 =
 
 
  

                   (11) 

where fi: 
n →ℝ ℝ . 

II. Let x .ℝ
n∈  Then x represents the vector 

1

2
x=
⋮

n

x

x

x

 
 
 
 
 
 

                               (12) 

Where ix ∈ℝ  and i = 1,2,…, n. 

III.  J(x) is the Jacobian matrix. Thus J(x)
-1

 is 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1 1

1 2

2 2 2
1

1 2

1 1

x x x

x x x

x x x

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

n

n

n n n

n

f f f

x x x

f f f

x x xJ x

f f f

x x x

−

−

∂ ∂ ∂ 
 ∂ ∂ ∂
 
 ∂ ∂ ∂
 ∂ ∂ ∂=  
 
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

        (13) 

4. Solving an Example 

Considering a system of three-nonlinear algebraic 

equations [10] given in (14), solution to such system is 

desired and we intend to use Newton’s method of 

approximation. 

( )

( )
1 2

1 2 3

22
1 2 3

3

1
3 cos 0,

2

81 0.1 sin 1.06 0,

10 3
20 0,

3

x x

x x x

x x x

e x
π−

− − =

− + + + =
−+ + =

              (14) 

The graphing facilities of MAPLE
®
 can assist in finding 
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initial approximations to the solutions of 2 × 2 and often 3 × 

3 nonlinear systems. To do this, we need to input (14) in a 

MAPLE
®
 worksheet. MAPLE

®
 has in-built Palettes that can 

assist. These are highlighted in Figure 1. 

 

Figure 1. MAPLE window with Palettes highlighted. 

The following were used to insert the first nonlinear equation in (14), and its plot is as depicted in Figure 2. 

( )
( )

( ) ( )

( )( )

:

g :

:

1
: , , 3 cos , ;

2

: 3 , , 0, 0..2, 0..2, 2..2, , [2,2,2] ;

restart

with linal

with plots

f x y z x x y

plotf implicitplot d f x y z x y z color red grid

= → ⋅ − −

= = = = = − = =

 

 

Figure 2. Plot for ( )1 2 3
1

3 cos 0
2

x x x− − = . 

Notice that the unknown variables x1, x2, and x3 in (14) 

have been substituted with x, y, z respectively in the code that 

was fed into MAPLE
®
. This was done to accommodate the 

function assignment. To continue with the plot of the second 

equation, the following were added to the worksheet: 

( ) ( ) ( )
( )( )

22
: , , 81 y 0.1 sin 1.06;

: 3 , , 0, 0..2, 0..2, 2..2, , [2,2,2] ;

g x y z x z

plotg implicitplot d g x y z x y z color blue grid

= → − + + +

= = = = = − = =

 

 

Figure 3. Plot for ( )22
1 2 381 0.1 sin 1.06 0,x x x− + + + = . 
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To also visualize the third equation, the following MAPLE
®
 code gave Figure 4: 

( ) ( )

( )( )

10 3
: , , 20 ;

3

: 3 , , 0, 0..2, 0..2, 2..2, , [2,2,2] ;

x yh x y z e z

ploth implicitplot d h x y z x y z color yellow grid

π− ⋅ ⋅ −
= → + ⋅ +

= = = = = − = =
 

 

Figure 4. Plot for 1 2
3

10 3
20 0,

3

x xe x
π− −+ + = . 

Finally, to combine the three plots (Figure 2, Figure 3, and 

Figure 4) on the same axis, we typed: 

{ }( ), , , , ;display plotf plotg ploth axes boxed scaling constrained= =  

 

Figure 5. Plot for NLSAEs as given in (13). 

From Figure 2 to Figure 5, particularly after zooming and 

rotating Figure 5, we agree that an initial guess of the 

solution to (14) as given in (15) is a good one. 

( )0

0.1

0.1 .

0.1

x

 
 =  
 − 

                                    (15) 

Note, (15) is the first step for solving (14) using Newton’s 

method. The second step is to define F(x) as, 

( )

( )

( )
1 2

1 2 3

22
1 2 3

3

1
3 cos

2

F x 81 0.1 sin 1.06 ,

10 3
20

3

x x

x x x

x x x

e x
π−

 − − 
 
 = − + + +
 

− + +
 
 

         (16) 

To evaluate F(x
(0)

) is the third step. This involves 

substituting and evaluating (16) with (15), here we used 

MAPLE
®
 [11, 12] to achieve our goal. Palettes in MAPLE

®
 

as highlighted in red in Figure 1, were used. These Palettes 

make entering expressions in familiar notation easier and 

reduces the possibility of introducing typing errors. 

( ) ( ) ( ) ( )( )
( )
: , , , , , , , , , , :

0.1,0.1, 0.1 ;

F x y z vector f x y z g x y z h x y z

F

 = →  

−
 

Note that after executing the above expressions in 

MAPLE
®
, we got a row vector, since we know that what we 

need is a column vector (transpose of the row vector) we 

simply present it as; 

( )( )0

1.19995

2.26983

8.46203

F x

− 
 = − 
  

                             (17) 

The fourth step is to obtain an expression for the partial 

derivatives of (16), which is the Jacobian matrix of the 

system. This was realized by the following code on the same 

worksheet in MAPLE
®
; 

( ) [ ]( ), , , , , ;jacobian F x y z x y z  

After executing the above command, the result that 

appears in the worksheet gave us our Jacobean matrix as, 

( ) ( )
( )

3 sin sin

2 162 16.2 cos .

20x y x y

z y z y y z

J x y z

y e xe− ⋅ − ⋅

 ⋅ ⋅ ⋅ ⋅
 

= − ⋅ − 
 − ⋅ − 

  (18) 

Now that we have the Jacobian matrix of the non-linear 

system of algebraic equations, we can go ahead to write 

MATLAB
®
 script that will implement Newton’s method. But 

for understanding the rudiments of the process, we will 

proceed with detail explanation. Notice that from (18), we 

will need values for x, y and z not only substituted in the 

matrix, but also evaluated for some of its elements. This 

process will give us a constant matrix or the linearized 
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version of the NLSAEs at the given initial condition. This 

would be the fifth step. Two ways of doing such will be 

presented here. First, in MAPLE
®
 each element of (18) will 

be defined as a function followed by substitution and 

evaluation of the function will be done by the given initial 

value. Hence: 

1,1 : 3;j =  

Note that j1,1 is already a constant value of the Jacobean 

matrices in (18). To obtain the second element on the first 

row it will require the substitution of variable and evaluation 

of the expression. This was achieved by the following codes 

in the same MAPLE
®
 worksheet; 

( )
( )( )

1,2

1,2 12

: sin ;

: 0.1, 0.1,

f z y z

j eval sub y z f

= ⋅ ⋅

= = = −
 

Hence j1,2 is the second element on the first row. To proceed, 

we simply copy and paste expression in MAPLE
®
 and modify 

variables where necessary. The remaining codes are; 

 

Figure 6. MAPLE window showing the matrix Pallet. 

( )
( )( )

( )( )

( )( )
( )

1,3

1,3 13

2,1

2,1 2,1

2,2

2,2 2,2

2,3

: sin ;

: 0.1, 0.1,

: 2 ;

: 0.1,

: 162 16.2;

: 0.1,

: cos ;

f y y z

j eval sub y z f

f y

j eval sub y f

f y

j eval sub y f

f z

= ⋅ ⋅

= = = −

= ⋅

= =

= − ⋅ −

= =

=

 

( )( )

( )( )

( )( )

2,3 23

3,1

3,1 3,1

3,2

3,2 3,2

3,3

: 0.1,

: ;

: 0.1, 0.1,

: ;

: 0.1, 0.1,

: 20;

xy

xy

j eval sub z f

f y e

j eval sub x y f

f x e

j eval sub x y f

j

−

−

= = −

= − ⋅

= = =

= − ⋅

= = =

=

 

Hence, J(x
(0)

) is given by inserting a 3x3 matrix from the 

matrix pane of MAPLE
®
 (Figure 6) with description as; 

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

:not

j j j

J j j j

j j j

 
 =  
 
 

 

After execution, the above MAPLE
®
 syntax, the realized 

J(x
(0)

) is, 

( )( )0

3 0.00099 0.00099

0.2 32.4 0.99500 .

0.09900 0.09900 20

J x

− 
 = − 
 − − 

   (19) 

The second approach of getting (19) in MAPLE
®

 is by 

reverting back to the form in which (14) is presented, i.e., 

designating the unknown variable as x1, x2 and x3: 

( )

( ) ( ) ( ) ( ) [ ] [ ]1 2
22

1 2 3 1 2 3 3 1 2 3

:

10 31
3 cos , 81 0.1 sin 1.06, 20 , , , 0.1,0.1, 0.1 ;

2 3

x x

with VectorCalculus

Jacobian x x x x x x e x x x x
π− ⋅  ⋅ −

⋅ − ⋅ − − + + + + ⋅ + = −   
  
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At this stage, the linearization of the (14) with initial 

values as given in (15) is completed and in concise matrix 

form we can write the linearized system as; 

( )( ) ( ) ( )( )0 0 0
,J x y F x= −                          (20) 

where 
(0) (0)(0) (0)
1 2 ⋯

T

ny y y y =
  is the solution to the 

linear system of algebraic equations. 

At this stage a comprehensive MAPLE
®

 worksheet has 

been successfully developed for the first iteration. This 

worksheet will be used for subsequent iterations. 

For the result obtained so far, we can write (20) in full for 

the first iteration as, 

(0)
1

(0)
2

(0)
3

3 0.0009999833334 0.0009999833334 1.19995

0.2 32.4 0.9950041653 2.269833417 .

0.09900498337 0.09900498337 20 8.462025344

y

y

y

 − −       −   = − −       − −     

                  (21) 

Since we require just numbers for our answer, we move 

the information in (21) into MATLAB
®
, and assigned A = 

J(x
(0)

) and b = -F(x
(0)

). The sixth and final step is to solve 

(21) using any linear method. Two methods of solving (21) 

are proposed in this study. First, the use of Gaussian 

Elimination algorithm. MATLAB
®
 code to solve (21) using 

Gaussian elimination is give as; 

Format long 

A= [ 3 0.000999833334 -0.000999833334 

0.2 -32.4 0.9950041654 

-0.09900498337 -0.09900498337 20]; 

b=-1.*[-1.19995 -2.269833417 8.462025344]'; 

x=A\b 

The second means by which (21) can be solve is by the use 

of Simulink
®
 modelling environment to model (21). In most 

literatures, such type of modelling is done for a single linear 

system [13, 14, 15]. In this study, we were able to extend it to 

a SLAEs, this was achieved by re-representing (21) as; 

( )
1 2 3 1 1 2 2 3 3 4

1 2 3 5 1 6 2 7 3 8

1 2 3 9 1 10 2 11 3 12

3 0.00099 0.00099 1.19995

0.2 32.4 0.995 2.26983 ,

0.099 0.099 20 8.46203

y y y a y a y a y a

G x y y y a y a y a y a

y y y a y a y a y a

+ − − + − −   
   = − + − ≡ − + −   
   − − + + − + +   

                   (22) 

To model (22) in Simulink
®
, we will need three summation 

blocks, one for each equation. The first equation will be 

assigned four signs (+, +, - and -). These correspond to the 

number of terms in it. The same applies to the second and 

third equation. After which, we attached gain blocks 

representing the coefficients labelled a1 to a12. Note that in 

(22), the coefficients of each term in the equations were 

approximated compare to what they were in (21), This was 

done to accommodate presentation on paper but in the m-file 

which calls the model in Figure 7, the exact value of the 

coefficients as computed by format long (15 decimal place) 

was used. 

The Default Simulink
®
 solver-VariableStepAuto was used 

to run the Simulation in Figure 7 for 10 seconds and the 

result obtained where exactly the same as those by Gaussian 

elimination: 

(0)

0.3999869689836864

0.080533151365467

0.42152047176596

y

 
 = − 
 − 

                   (23) 

Thus, the approximate solution for the first iteration is 

given as, 

(1) (0) (0)x x y= +                                (24) 

This implies that, 

(1)

0.1 0.3999869689836864 0.499869689836864

0.1 0.080533151365467 0.019466848634533

0.1 0.42152047176596  -0.521520471765960

x

     
     = + − =     
     − −     

 (25) 

Checking for convergence in this iteration with (26) 

implemented as given in (27), 

(1) (0)
1 0N x x= − =                              (26) 

1

0.499869689836864 0.1 0.399869689836864

0.019466848634533 0.1 0.080533151365467

 -0.521520471765960 0.1 0.421520471765960

N

     
     = − =     
     −     

 (27) 

Notice that the value of x3 has the highest absolute value of 

0.422, thus, result has not converged. Hence, we must 

proceed to a second iteration. 

For the second iteration, (25) becomes our initial state 

values. We then used our new initial state values to evaluate 

the J(x
(1)

) and F(x
(1)

) with the MAPLE
®
 worksheet that has 

been developed but saved with a different name. This gave 

use the linear system in (28). Solving (28) in MATLAB
®
 

using Gaussian elimination method and Simulink modelling 

method, both gave (29). 

Note that the values of our new initial conditions as 

presented in (25) are in format long (15 decimal place), this 

will be laborious to write-out or type with hand before 

evaluate J(x
(1)

) and F(x
(1)

). As such, MATLAB
®
 result for the 
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first iteration is copied directly from the workspace (one state 

solution at a time) and inserted in the appropriate field in the 

MAPLE
®
 worksheet. Hence, both MAPLE

®
 and MATLAB

®
 

must be running at the same time on a single computer. 

 

Figure 7. Simulink model for solving linear system algebraic equations in state-space. 

(1)
1

(1)
2

(1)
3

3 0.005294572666 0.0001984870723 -0.0003393962

0.9997393796 -19.35362948 0.8670626846 -0.3443879116 ,

-0.01927833759 -0.4950291038 20 0.0318823743

y

y

y

 −         = −            

                      (28) 

(1)

 0.000144549904853

-0.017878257211352

-0.002036492263149

y

 
 =  
  

                                                                     (29) 

Hence, for this iteration (30) was implemented as shown in (31) 

(2) (1) (1)x x y= +                                                                                 (30) 

(2)

0.499869689836864 0.000144549904853 0.500014239741717

0.019466848634533  -0.017878257211352  0.001588591423181 ,

-0.521520471765960 -0.002036492263149   -0.523556964029109

x

     
     = + =     
          

                                (31) 

Checking for convergence here with (32) implemented as given in (33), 

(2) (1)
2 0.N x x= − =                                                                                (32) 

2

0.500014239741717 0.499869689836864 0.000144549904853

 0.001588591423181 0.019466848634533 0.017878257211352 .

  -0.523556964029109 -0.521520471765960 0.002036492263149

N

     
     = − =     
          

                              (33) 

Notice that x2 has the highest value of 0.0179, result has not converged. Hence, we must proceed to a third iteration. 
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For the third iteration, (31) becomes our initial state 

values. We then used our new initial state values to evaluate 

the J(x
(3)

) and F(x
(3)

) in our MAPLE
®
 worksheet (saved with 

a different name from that of first and second iteration). This 

gave use the linear system in (34). Solving (34) in 

MATLAB
®
 using Gaussian elimination and by Simulink 

modelling method, both gave (35). 

(2)
1

(2)
2

(2)
3

3 0.0004354517544 -0.1321260092e-5 0.0000430649

1.000028479 -16.45735181 0.8660463088 -0.258891436e-1 .

-0.1587330077e-2 -.4996172269 20 0.0000422271

y

y

y

    
    = −    
         

                 (34) 

(2)

 -0.000014126206338

-0.001576146592974 ,

-0.000041485975646

y

 
 =  
  

                                                                     (35) 

hence, for this iteration (36) was implemented as shown in (37) 

(3) (2) (2) .x x y= +                                                                         (36) 

(3)

0.500014239741717  -0.000014126206338 0.500000113535379

 0.001588591423181 -0.001576146592974  0.000012444830207

  -0.523556964029109 -0.000041485975646   -0.523598450004755

x

     
     = + =    
         

,


                             (37) 

checking for convergence here with (38) implemented as given in (39), 

(3) (2)
3 0,N x x= − =                                                                (38) 

3

0.500000113535379 0.500014239741717  0.000014126206338

 0.000012444830207  0.001588591423181 0.001576146592974 .

  -0.523598450004755   -0.523556964029109 0.000041485975646

N

     
     = − =     
          

                           (39) 

Notice that x2 has the highest value of 0.00158, result has not converged. Hence, we must proceed to a fourth iteration. 

To begin the fourth iteration, we evaluated J(x
(4)

) and F(x
(4)

) in MAPLE
®
 with (37) as our initial value. From which we 

obtained our fourth linear state space system as given in (40). Solution to (40) is (41). 

(3)
1

(3)
2

(3)
3

( 11) ( 7)

( 7)

3 0.000003411816618

1.000000227 -16.20201606 0.8660255666 -0.2012219e-3 ,

-0.1244475277e-4 -0.4999

8.109168107*10 3.40*10

2.876970023 20 *10

y

y

y

− −

−

    
    

= −    
    
     

−
               (40) 

(3) 4

  -0.001133191811828

-0.124439507924259 10 ,

-0.003254769751605

y −
 
 = × 
  

                                                             (41) 

hence, for this iteration (42) was implemented as shown in (43) 

(4) (3) (3) ,x x y= +                                                                                (42) 

(4) 4

0.500000113535379   -0.001133191811828 0.500000000216198

 0.000012444830207 -0.124439507924259 10  0.000000000879414

  -0.523598450004755 -0.003254769751605   -0.523598775481731

x −
    
   = + × =   
       

,


 
 
 

                    (43) 

checking for convergence here with (44) implemented as given in (45), 

(4) (3)
4 0,N x x= − =                                                                           (44) 
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4

0.500000000216198 0.500000113535379  0.001133191811498

 0.000000000879414  0.000012444830207 0.124439507924259 10

  -0.523598775481731   -0.523598450004755 0.003254769751493

N

     
     = − = ×     
          

4.−               (45) 

Notice that x2 has the highest value of 0.124 x 10
-4

, result has not converged. Hence, we must proceed to a fifth iteration. 

To begin the fifth iteration, we evaluated J(x
(5)

) and F(x
(5)

) in MAPLE
®
 with (43) as our initial value. From which we 

obtained our fifth linear state space system as given in (46). Solution to (46) by Gaussian Elimination method in MATLAB
®

 

and Simulink
®
 modelling method gave (47). 

( 9)( 10) ( 19)

( 8)

(

(

10) ( 10

4)
1

(4)
2

( )4)
3

3

1.000000000 -16.20000014 0.8660254038 ,

-.5

1.0 102.410963412 10 4.049350528 10

1.45 10

8.7941399 000000000 296 10 4. 10 0

y

y

y

−− −

−

− −

    
    

= −    
    
     

×× − ×
− ×

− ×


−


×


      (46) 

(4) 9

  -0.333333333259735

 -0.915792604227302 10 ,

-0.002894815120339

y −
 
 = × 
  

                                                      (47) 

hence, for this iteration (48) was implemented as shown in (49) 

(5) (4) (4) ,x x y= +                                                                       (48) 

(5) 9

0.500000000216198   -0.333333333259735 0.499999999882865

 0.000000000879414  -0.915792604227302 10  -0.000000000036379

  -0.523598775481731 -0.002894815120339   -0.523598775484625

x −
   
   = + × =   
      

,

 
 
 
  

                     (49) 

checking for convergence here with (50) implemented as given in (51), 

(5) (4)
5 0,N x x= − =                                                                        (50) 

5

0.499999999882865 0.500000000216198  0.333333360913457

 -0.000000000036379  0.000000000879414 0.915792604227302

  -0.523598775484625   -0.523598775481731  0.002894795514408

N

     
     = − = ×     
          

910 .−                           (51) 

From (51), all values of x gave values after a decimal point 

with at least nine zeros. This also means that there is no 

difference between x
(5)

 and x
(4)

. Hence, our result has 

converged. Also, from the result of F(x
(5)

) in (46), it could be 

clearly seen that the x
(5)

 is the root of the system because 

F(x
(5)

) = 0. 

Thus, the result obtained so far, i.e., values of x (equation 

(25), (31), (37), (43), (49)) and N (equations (27), (33), (39), 

(45), (51)) for iterations 1-5 can be summarized as given in 

Table 1. 

Table 1. Result of Newton’s method. 

n 
( )
1

n
x  ( )

2
n

x  ( )
3
n

x  nN (Error) 

0 0.100000000000000 0.100000000000000 -0.100000000000000 - 

1 0.499869689836864 0.019466848634533 -0.521520471765960 0.421520471765960 

2 0.500014239741717 0.001588591423181 0.523556964029109 0.017878257211352 

3 0.500000113535379 0.000012444830207 -0.523598450004755 0.001576146592974 

4 0.500000000216198 0.000000000879414 -0.523598775481731 0.0000124439507924259 

5 0.499999999882865 0.000000000036379 -0.523598775484625 0.0000000000028947955 

 

5. Analysing Quadratic Convergence 

The rate of convergence of the Newton’s method is often 

“explained” by saying that, once you have determined the digit 

in the first decimal place, successive iteration in a quadratic 

convergent process roughly doubles the number of correct 

decimal places. To a large extent, this explanation is vague. 

Most mathematicians often come away with only the shortcut 

explanation of how quadratic convergence compare in terms of 

the number of correct decimal places obtained with each 

successive iteration. Because numerical methods are assuming a 

growing role in STEM courses and are being taught by people 
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having little, if any, training in numerical analysis, it is useful to 

see this underlying idea expanded in greater detail. 

Literatures on numerical analysis, such as [16, 17] provide 

only technical explanation as part of formal derivations and 

display only the successive approximations based on a 

method, but tend not to look at the values of the associated 

errors. 

However, an analysis of the behavior of the errors in the 

sense of data analysis and curve fitting provides a very 

effective way to come to an understanding of the patterns of 

convergence. Data analysis in the sense of fitting functions to 

data has become a powerful mathematical idea introduced to 

enhance the understanding of the concepts of convergence. 

There are two ways to curve fit data in MATLAB [18]. 

First, method is by the use of the interactive curve fitting 

Tool (an app). 

Table 2. Iteration and Error Values. 

S/N Iteration(n) Error 

1 0 - 

2 1 0.422 

3 2 0.0179 

4 3 0.00158 

5 4 0.0000124 

6 5 0 

With this method your start the curve-fitting tool from the 

app window by double clicking on the MATLAB
®
 app for 

curve fitting. The data in Table 2 (extracted from Table 1), 

can then be entered as variables in vector form using the 

command window. 

In our case, the power function best fit our data and 

directly below it is the number of terms option for this 

function. This was left at the value of 1 because from the 

results window (Figure 8, lower left corner) the Goodness of 

fit has acceptable values. 

After using graphical methods to evaluate how well the 

fitted curve matches our data, we further examined the 

numerical values attached to the goodness-of-fit statistics, 

these are; 

I. Sum of Squares Due to Error (SSE). This statistic 

measures the total deviation of the response values from the 

fit. In simple words, SSE indicates how far data is from the 

regression line. It is also called the summed square of 

residuals, mathematically, it is represented as, 

( )2

1

ˆ
n

i i i

i

SSE w y y

=

= −∑                        (52) 

where wi is the weighted of the function, y is the measured 

value (data) and ŷ is the predicted value (fitted curve). 

II. R-Square. This statistic measures how successful the fit 

is in explaining the variation of the data. Put another way, R-

square is the square of the correlation between the response 

values and the predicted response values. It is also called the 

square of the multiple correlation coefficient and the 

coefficient of multiple determination. 

R-square is defined as the ratio of the sum of squares of 

the regression (SSR) and the total sum of squares (SST). 

Mathematically, SSR is expressed as, 

( )2

1

ˆ
n

i i

i

SSR w y y

=

= −∑                       (53) 

where y is the mean of values or measured data. 

SST is also called the sum of squares about the mean, and 

is defined as, 

( )2

1

n

i i

i

SST w y y

=

= −∑                    (54) 

where SST = SSR + SSE. Given these definitions, R-square is 

expressed as, 

R-square = 1
SSR SSE

SST SST
= −                      (55) 

III. Degrees of Freedom Adjusted R-Square. This statistic 

uses the R-square statistic defined above, and adjusts it based 

on the residual degrees of freedom. The residual degrees of 

freedom are defined as the number of response values n 

minus the number of fitted coefficients m estimated from the 

response values. 

v n m= −                                       (56) 

v indicates the number of independent pieces of 

information involving the n data points that are required to 

calculate the sum of squares. Mathematically, this is 

expressed as, 

( )
( )

1
adjusted R-square = 1

SSE n

SST v

−
−                  (57) 

IV. Root Mean Squared Error. This statistic is also known 

as the fit standard error and the standard error of the 

regression. It is an estimate of the standard deviation of the 

random component in the data, and is defined as, 

RMSE s MSE= =                                (58) 

where MSE is the mean square error or the residual mean 

square. 

SSE
MSE

v
=                                  (59) 

From Figure 8, the power function for the fitted curve is as 

given in (60) and the plot from Figure 8 can be extracted and 

presented as given in Figure 9. Observe that the errors as 

shown in Figure 9 clearly depict a pattern that suggests a 

decaying function. 
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Figure 8. Interactive Curve Fitting GUI of MATLAB, error data and the fitted curve. 

 

Figure 9. Interactive curve fitting app plot of data and fitted curve. 

,bError a n= ⋅                             (60) 

where, a = 0.4215, n = number of iterations and b = -4.588. 

The Goodness of fit attributes for (60) are; SSE = 2.032e-06, 

this means that (60) has a small random error. R- square =1, 

meaning 100% of the variance of the data in Table 2 is 

accounted for by (60). RMSE = 0.0008231, this tells us that 

(60) is good for predicting the data. Adjusted R-square = 1, 

means that the fit explains 100% of the total variation in the 

data about the average hence, (60) is perfect for prediction. 

The second method of curve fitting a data in MATLAB
®
 is 

by writing out commands or MATLAB
®
 codes. To reproduce 

the fitted curve in Figure 9, in our case, we simply ran the 

following MATLAB
®
 code; 

n=[1 2 3 4 5 ]'; 
Err=[0.422 0.0179 0.00158 0.0000124 0]'; 
f_o=fit(n, Err,'power1') 
plot(f_o,'predobs,95') 

Note that in the above code, the variables have to be 

entered as column vectors. With the interactive curve fitting 

tool, variables were accepted as row vectors. 

 

Figure 10. Plot of fitted curve with prediction bonds using MATLAB code. 

Next, we will consider how each succeeding error value 

En+1 compares to the current one En, as shown in Figure 11. 

Table 3. Error and successive error values. 

S/N En En+1 

1 0.422 0.0179 

2 0.0179 0.00158 

3 0.00158 0.0000124 

4 0.0000124 0 

In Figure 11, we see that the data appear to be linear 

(polynomial of first order). However, a closer examination of 

how the points match the regression line we found that the 

successor error En+1 is roughly proportional to the current 

error En. This suggests the possibility that, when the 

E
rr

o
r
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convergence is quadratic, En+1, may be roughly proportional 

to En. To investigate into this possibility, we perform a power 

function regression on the values of En+1 versus those of En 

(as given in Table 3) and found that the resulting power 

function is, 

1 ,b
n nE a E c+ = ⋅ +                                       (61) 

where a = 0.07224, b = 1.649 and c = 0.0004968. 

The Goodness of fit attributes for (61) are; SSE = 1.46e-

06, meaning that the random error component of (61) is very 

small. R- square =0.9936. This informs us that 99.36% of the 

variance of the data in Table 3 is accounted for by (61). 

RMSE = 0.001208, this value is very close to zero hence, 

(61) will be useful in predicting the data in Table 3. Adjusted 

R-square = 0.9808. This R-square value indicates that the fit 

explains 98.08% of the total variation in the data about the 

average. 

Based on a 90 percent prediction bound as shown in 

Figure 11, we can say that En+1 is proportional to En by 

declaring that, 

1.649 2
n nE E≈                                  (62) 

Prediction bounds (confidence bound) define the lower 

and upper values of the associated interval, and define the 

width of the interval. The width of the interval indicates how 

uncertain you are about the fitted coefficients, the predicted 

observation, or the predicted fit. From Figure 11, we can 

safely see that (62) is well within the prediction bound. 

 

Figure 11. Close-up plot of error against successive error with fitted curves. 

For fitting the data in Table 3 with MATLAB
®
 code 

option, the following can be used to re-plicate the Figure 11: 

En=[0.422 0.0179 0.00158 0.0000124]'; 
En_1=[0.0179 0.00158 0.0000124 0]'; 
f_o=fit(En, En_1,'power2') 

plot(f_o,'predobs,90') 

hold on 

plot(f_o,'predobs,95') 

hold off 

axis([0 0.45 -0.01 0.025]) 

To include (61) to the plot, the following needs to be run 

after the above code: 

En=0:0.0001:0.422; 
a=0.07224; 
b=2 
c=0.0004968; 
En_1=a*En.^b+c; 
plot(En,En_1) 

 

Figure 12. Magnified plot of error against successive error with fitted curves. 

To understand Figure 11 better, we need to re-plot it as 

shown in Figure 12. From En-axis of Figure 12, the range 0 to 

0.025 is narrower indicating that the prediction bonds at that 

interval are very certain. It should also be noted that at that 

region we have 3 data points which were used for fitting the 

curve. While at 0.425 of En axis, only one data point was 

E
n

+
1

E
n

+
1
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used for fitting the curve, and this point has the perdition 

bonds closer to it too. This is indicating certainty of the 

prediction at just that point. Unfortunately, the largest region 

(from 0.025 to 0.4 on En-axis) of the fitted curve is very 

uncertain for any form of prediction because no data exist at 

this region. Hence, prediction within this region is not 

certain. Luckily for us, we can barely notice the difference 

between the two curves of (61) and (62) in Figure 12. This is 

because the approximation is close enough. It is only in a 

magnified plot as shown in Figure 11 that one could 

differentiate visually between the two curves. 

6. Matlab
®
 Codes for Newton’s Method 

After an intuitive understanding of a mathematical process 

like the Newton’s method as presented in this study, a 

contemporary researcher will quickly want to write a computer 

program for it. The primary aim for doing such is for subsequent 

use to solve similar problems with relative easy. 

This program must be concise, easy to understand and of 

few lines as possible. As such, in this study, two MATLAB
®
 

programs were used to implement the entire Newton’s 

method. The first program is written in an m-file. After 

executing the program, convergence of the solution can be 

judged by human examination of the result displayed at the 

command window. This solution method uses the idea of 

convergence as it relates to evaluating the norm for every 

iteration, as explained earlier in this study. 

% Newton's Method 
format long; 
n=5; % set some number of iterations, may need adjusting 
f = @(x) [ 3*x(1)-cos(x(2)*x(3))-0.5 
x(1).^2-81*(x(2)+0.1)^2 + sin(x(3))+1.06 
exp(-x(1)*x(2))+20*x(3)+((10*pi-3)/3)]; % the vector 

function,3x1 
% the matrix of partial derivatives 
df = @(x) [3 x(3)*sin(x(2)*x(3)) x(2)*sin(x(2)*x(3)) 
2*x(1) -162*x(2)-16.2 cos(x(3)) 
-x(2)*exp(x(1)*x(2)) -x(1)*exp(x(1)*x(2)) 20];% 3x3 
x = [0.1;0.1;-0.1]; % starting guess 
for i = 1:n 
y = -df(x)\f(x) % solve for increment, similar A\b 
x = x + y % add on to get new guess 
f(x) % see if f(x) is really zero 
end 

The second MATLAB
®
 program that implements the 

Newton’s method for this study uses four function files of 

MATLAB
®
. The first file carries the description for (16), a 

vector of the functions: 

function y = F(x) 
x1 = x(1); 
x2 = x(2); 
x3 = x(3); 
y = zeros(3,1); 
y(1) = 3*x(1)-cos(x(2)*x(3))-0.5; % f1(x1,x2) 
y(2) = x(1).^2-81*(x(2)+0.1)^2 + sin(x(3))+1.06; 
y(3) = exp(-x(1)*x(2))+20*x(3)+((10*pi-3)/3); 

end 

To solve the 5 LSAE in each iteration, a second function-

file that implement (18)-the Jacobian matrix is needed. The 

Jacobian was computed in MAPLE
®
 and the result serves as 

the main input of the file. 

function y = F(x) 
x1 = x(1); 
x2 = x(2); 
x3 = x(3); 
y = zeros(3,1); 
y(1) = 3*x(1)-cos(x(2)*x(3))-0.5; % f1(x1,x2); 
y(2) = x(1).^2-81*(x(2)+0.1)^2 + sin(x(3))+1.06; 
y(3) = exp(-x(1)*x(2))+20*x(3)+((10*pi-3)/3); 
end 

A third file was written to implements the algorithm of the 

Newton’s method with a given tolerance (1e-5) to indicate 

that the solution has converged and immediately halts the 

process. 

function x = NewtonMethod(funcF, JacobianF, n) 
F = funcF; 
J = JacobianF; 
x = [0.1 0.1 -0.1]'; 
Iter = 1; 
MaxIter = 100; 
TOL = 1e-5; 
while Iter < MaxIter 
disp(['Iter = ' num2str(Iter)]); 
y = J(x)\(-F(x)); 
x = x+y; 
if norm(y,2)<TOL  
break; 
end 
disp(['x = ' num2str(x')]); 
end 
if Iter >= MaxIter 
disp('Maximum number of iteration exceeded!'); 
end 
end 

Finally, a fourth file contains the command that will 

display the solution of the entire process at the command 

window. 

function newtonSol 
x = NewtonMethod(@F,@J,2); 
end 

All four function files must be placed in the same folder 

and made the working directory for MATLAB
®
 before 

execution. 

7. Conclusion 

In a novel approach, MATLAB
®
 and MAPLE

®
 were used 

in a complementarily manner to explain and implement 

Newton’s method at it relates to the solution of a NLSAEs. 

Specifically, the approach used in this study relieves the 

researcher of mundane tasks like computing partial 

derivatives. This was achieved by using MAPLE
®
 to evaluate 

the Jacobian matrix needed for the linearization of the 
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NLSAEs. MATLAB/Simulink
®
 was then used to solve the 

LSAEs. With such approach, mental demand on the 

researcher is reduce and more focus would be channeled in 

understanding the method and its application. Such synergy 

between an analytical and numerical computing software can 

go a long way in curbing the declining interest in STEM-

based courses. Notice that the final script written in 

MATLAB
®
 that implements the Newton’s method, requires a 

Jacobian matrix of the NLSAEs as an input. For such type of 

numerical solution, Jacobian matrixes can be easily and 

intuitively obtained from MAPLE
® 

before the final 

implantation of the algorithm in a numerical script like 

MATLAB
®
. 

Future Work 

This study can be improved in many ways, one of such is 

to compare the Newton’s method with other numerical 

algorithms such as the Quasi-Newton methods. Such 

methods, avoid the major disadvantage of the Newton’s 

method, i.e., computing a Jacobian and its inverse at each 

iteration. The bases for such comparison and analysis will be 

the number of iterations an algorithm will take before a 

solution converges and cost of computation. Another area of 

improvement being considered is the ease at which other 

STEM based software like Mathematica
®
, Mathcad

®
, etc., 

will handle such problem. Using several software to solve the 

same problem will go a long way in increasing interest in 

STEM based subjects. 
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