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Abstract: In this article a combination of integral transform method (Ramadan group transform) and projected differential 

transform is considered to solve partial differential equations. The method can easily be applied to many nonlinear problems 

and is capable of reducing the size of computational work. The fact that the suggested hybrid method solves such nonlinear 

partial differential equations without using He’s polynomials or Adomian
’
s polynomials is a clear advantage over these 

decomposition methods. Numerical examples are performed by this hybrid method are presented. The results reveal that the 

suggested method is simple and effective. 
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1. Introduction 

An integral transform is a particular kind of mathematical 

operator. In mathematics, an integral transform is any 

transform T of the following form 
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t
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The input of this transform is a function f , and the output 

is another function Tf . There are numerous useful integral 

transforms; each is specified by a choice of the function K of 

two variables. 

2. Integral Transforms 

Some of these useful integral transforms are the following 

ones 

 

2.1. The Laplace Transform 

In mathematics the Laplace transform is an integral 

transform named after its discoverer Pierre-Simon Laplace. It 

takes a function of a positive real variable t (often time) to a 

function of a complex variable s (frequency). 
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where )(tf  is the original function, )(sF  is the 

transformed function and s  is a complex number and 0t ≥  

is a frequency parameter 

The Laplace transform converts integral and differential 

equations into algebraic equations and it is particularly useful 

in solving linear ordinary differential equations such as those 

arising in the analysis of electronic circuits. 

 

 



40 Mohamed A. Ramadan and Adel R. Hadhoud:  Ramadan Group (RG) Transform Coupled with Projected Differential  

Transform for Solving Nonlinear Partial Differential Equations 

2.2. Sumudu Integral Transform 

In the early 90's, Watugala in [1] introduced a new integral 

transform, named the Sumudu transform and applied it to the 

solution of ordinary differential equation in control 

engineering problems. The Sumudu transform, is defined 

over the set of functions. 
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by the following formula 
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The constant M  must be finite, while 1τ  and 2τ  need 

not simultaneously exist. The variable u  instead of being 

used as a power to the exponential as in the case of the 

Laplace transform, is used to factor the variable t  in the 

argument of the function f  

Some of the properties were established in [2, 3]. In [4], 

further fundamental properties of this transform were also 

established. Similarly, this transform was applied to the one-

dimensional neutron transport equation in [5]. In fact it was 

shown that there is a strong relationship between Sumudu 

and other integral transforms; see [6]. 

In particular the relation between Sumudu transform and 

Laplace transforms was proved in [7]. Further, in [8], the 

Sumudu transform was extended to the distributions and 

some of their properties were also studied in [9]. Recently, 

this transform is applied to solve the system of differential 

equations; see [10]. Note that a very interesting fact about 

Sumudu transform is that the original function and its 

Sumudu transform have the same Taylor coefficients except 

the factor n; see [11]. Thus if  
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2.3. Ramadan Group Integral Transform (RGIT) [12] 

A new integral RG transform defined for functions of 

exponential order, is proclaimed. The proposed new integral 

transform is a generalization of both Laplace and sumudu 

transforms. We consider functions in the set A , defined by: 
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The RG transform is defined by 
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This transform which is a generalization of Laplace and 

Sumudu transforms is introduced by M. A. Ramadan et al. 

[12] and, accidentally and unpredictably, it was also 

introduced by Z. H. Khan and W. A. Khan [13] under the 

name of N-Transform. 

Relations between Laplace, Sumudu and RG transforms 

Consider 

∫
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are the Laplace and Sumudu integral transforms respectively, 

then we can write the following theorem 

THEOREM 2.1 [12] 
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Let Atf ∈)(  with RG transform ),( suK . 
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THEOREM 2.3 [12] 

Let Atf ∈)(  with RG transform ),( suK . Then 
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THEOREM 2.4 [12] 

Let 1( ) xf t t A−= ∈  with RG transform ( , )K u s . Then 
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Table 1. Laplace, Sumudu and RG transforms of some functions. 
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The Laplace transforms of function derivatives: 
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The sumudu transforms of function derivatives: 
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The Ramadan Group of function derivatives: 
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3. Differential Transforms 

In this section we first illustrate why differential 

transforms are important in computing solutions for 

nonlinear partial differential equations. Laplace transform, 

Sumudu transform or RG transform is by itself, totally 

incapable of handling nonlinear equations because of the 

difficulties that are caused by the nonlinear terms. To 

illustrate these difficulties, we consider a general nonlinear 

non-homogeneous PDE with initial conditions of the form 
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with the initial conditions of the form 
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where D  is the second order linear differential operator 
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∂= , R  is the linear differential operator of less order 

than D , N  represents the general non-linear differential 

operator and ( , )g x t  is the source term. Taking, for example, 

the Laplace transform 
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Using the differentiation property of the Laplace 

transform, we have 
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Operating with the Laplace inverse on both sides 
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The nonlinear term ),( txNu  is computed by 

3.1. He’s Polynomials 
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for some He’s polynomials nH  that are given by 
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This method is the coupling of the Laplace transform and 

the homotopy perturbation method (HPM) using He’s 

polynomials and is called HPTM. 

Remark: 

The rate of convergence of HPTM is faster than HPM. 

The nonlinear term ),( txNu  may also computed by 

3.2. Adomian Decomposition Method (ADM) 

The nonlinear operator )(uN
 
is decomposed as 
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where nA  is an appropriate Adomian's polynomial which 

can be calculated for all forms of nonlinearity according to 

specific algorithms formula: 
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We using the form 

,...,,,
!

n 210nuN
d

d

n

1
A

0

i
0

i

n

n

=















=

=

∞
∑

λ
λ

λ
 

� �� ��� ����������
3210 A

2130

A

2
120

A

10

A

2
0 uu2uu2uuu2uu2uuN +++++=)(  

...+++++++
���� ����� ����� ���� ��

54 A

324150

A

2
23140 uu2uu2uu2uuu2uu2  

This gives Adomian's polynomials for 2
uuN =)(  by 
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⋮  

This method is known by integral transform 

decomposition method (Laplace decomposition method 

LDM, Sumudu decomposition method SDM, ect.). As we 

can see computing the nonlinear term is somewhat costly. 

Recently, Sumudu decomposition method and homotopy 

perturbation methods are presented to solve nonlinear partial 

differential equations, see for example, M. A. Ramadan and 

M. S. Al-luhaibi in [14, 15, 16]. 

4. Projected Differential Transform 

Method 

The basic definitions and operations of projected 

differential transform method which can be found in many 

recent works see for example [17, 18] are introduced as 

follows: 

Definition 4.1 

If function ),( txu  is analytic and differentiated 

continuously with respect to time t and space x in the domain 

of interest, then 
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is the transformed function of u(x,t) 

Definition 4.2 

The projected differential inverse transform of ),( kxU  is 

defined as follows: 
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Then combining equation (1) and (2) we write 
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Table 2. Basic operations of PDTM. 

Functional Form Transformed Form 
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5. Applications to the RGTM Coupled 

with PDTM 

In order to show the effectiveness of the RGTM coupled 

with PDTM for solving the nonlinear partial differential 

equations, several examples are demonstrated. For all 

illustrative examples, we consider the projected differential 

transform with respect to the variable t . We choose 

examples that have exact solutions. 

Example 5.1 

Consider the simple first order partial differential equation 
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Taking Ramadan Group transformation of equation (4) and 

making use of the initial condition, 
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From the initial condition we get, 
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Taking the inverse Ramadan Group transform, to obtain 
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Now, we apply the projected differential transform method 

Then the recurrence relation is: 
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From equation (5) we find that: 
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And so on. Then the solution in the series form is given by 
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Example 5. 2 

Consider the following second order nonlinear partial 

differential equation 
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The exact solution 
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Taking Ramadan Group transform of equation (6) and 

making use of the initial condition. 
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Applying the inverse Ramadan Group transform implies 

that 
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Using the projected differential transform method, this 

leads to the recursive relation 
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And so on, then the solution of equation (6) is 
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We can see that the GRTM coupled with PRDTM gives 

also the exact solution for example 5.2. 
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Example 5.3 

Consider the nonlinear Boussinesq equation 
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Apply RGT on equations (7) and (8) respectively, we get 
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Using the projected differential transform method, this leads to the recursive relations 
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From (9) and (10), we can see that the GRTM coupled 

with PRDTM gives also the exact solution for example 5.3. 

6. Conclusion 

In this paper, an integral transform method (Ramadan 

group transform) coupled with projected differential 

transform method (PDTM) have been successfully employed 

to obtain analytic solution for various types of partial 

differential equations. The method is simple, effective, 

efficient and easy to use where the main benefit of it is to 

offer the analytical approximation. In many cases the method 

the exact solution can be obtained in a rapid convergent 

series. Further study and full investigation for this new 

integral transform is under preparation and ready to be 

submitted. Also, to make this study more trustworthy and 

meaningful the definition of double Ramadan group is 

investigated and applied to many partial differential and 

integro-differential equations are solved. This contribution is 

submitted. 
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