

American Journal of Mathematical and Computer Modelling
2016; 1(1): 25-31
http://www.sciencepublishinggroup.com/j/ajmcm
doi: 10.11648/j.ajmcm.20160101.14

Investigation of the HDF5 C++ Library in Development of
New Phase-Space I/O for Radiotherapy Simulation Using
Monte Carlo Geant4 Code

Jaafar EL Bakkali
1, 3, *

, Abderrahim Doudouh
1
, Khalid Bouyakhlef

2
, Laila Baddouh

3
,

Keltoum Dahmani
3
, Hamid Mansouri

3

1Nuclear Medicine Department, Military Hospital Mohammed V, Rabat, Morocco
2University Mohammed V, Souissi, Faculty of Medicine and Pharmacy, Rabat, Morocco
3Radiotherapy Department, Military Hospital Mohammed V, Rabat, Morocco

Email address:
bahmedj@gmail.com (J. E. Bakkali), abderrahim.doudouh@gmail.com (A. Doudouh), khalid.bouyakhlef@gmail.com (K. Bouyakhlef),

laila.baddouh@gmail.com (L. Baddouh), kdahmani@gmail.com (K. Dahmani), hamid.mansouri@gmail.com (H. Mansouri)
*Corresponding author

To cite this article:
Jaafar EL Bakkali, Abderrahim Doudouh, Khalid Bouyakhlef, Laila Baddouh, Keltoum Dahmani, Hamid Mansouri. Investigation of the

HDF5 C++ Library in Development of New Phase-Space I/O for Radiotherapy Simulation Using Monte Carlo Geant4 Code. American

Journal of Mathematical and Computer Modelling. Vol. 1, No. 1, 2016, pp. 25-31. doi: 10.11648/j.ajmcm.20160101.14

Received: October 23, 2016; Accepted: November 3, 2016; Published: November 23, 2016

Abstract: This study aimed to develop a new phase-space tool for Geant4 code using the HDF5 C++ scientific data library.

The tool can be easy incorporated into existing Geant4 applications and provides particle recycling and rotational splitting

capabilities which can be useful for faster modeling symmetric systems such as medical linear accelerator. The validation of

this phase-space I/O routines has been performed in a very basic geometry. Thus, taking into account a homogeneous water

phantom, the depth dose curve of a 20 MeV electron beam hitting a small target made of tungsten has been calculated and

compared to ones produced in the simulation without phase-space technique and simulation with IAEA phase-space I/O

routines. This study shown an excellent agreement found between different calculated depth dose curves, allowing us to

validate our new phase-space I/O routines. Moreover, the CPU time spent by simulation without variance reduction technique

can be reduced by 27% when this method was applied which is the same factor obtained with IAEA phase-space I/O routines.

The phase-space tool describing in this paper, have been implemented for Geant4 code by using HDF5 C++ data managing

library, the associated classes are few and easy to incorporate into an existing Geant4 user code, and it is freely available on

GitHub (https://github.com/EL-Bakkali-Jaafar/G4PhpH5/).

Keywords: Geant4, Phase-Space, Hdf5, C++, Variance Reduction Technique, Monte Carlo

1. Introduction

Monte Carlo Geant4 [1] [2] is a useful toolkit for

simulating the passage of particles through matter and written

in C++ language. This code has been developed primarily for

high-energy physics discipline, meeting the efforts many

workers from facilities such as CERN (Europe), KEK

(Japan) and SLAC (US). It covers a broad range of physics

fields including medical sciences, space sciences, high

energy and accelerator physics. From a physics point of view,

the Geant4 code calculates a physical evolution of each

particle step-by-step by Monte-Carlo method. It can define

materials and geometries, identify particulate matter and

physics interactions, decide for generation of the first event.

From a software point of view, the development and

maintenance of Geant4 code are spread-head by the Geant4

collaboration. It is indeed very powerful, but also very

complex. Consequently, a basic knowledge of C++ is

strongly required to use the toolkit optimally. From our

experience with Geant4 code, it seems that the Monte-Carlo

simulation under this system code is relatively slow. Today

significant efforts are being made by the Geant4

collaboration to increase simulation speed, but currently, it

can spend too much time on a computer to accurately

26 Jaafar EL Bakkali et al.: Investigation of the HDF5 C++ Library in Development of New
Phase-Space I/O for Radiotherapy Simulation Using Monte Carlo Geant4 Code

simulate problems with complex geometry. Thus, way the

phase-space approach must be actively taken into account

when simulating complex geometry with Geant4 code to deal

with this issue.

In definition, the phase-space is a technique to reduce the

computing time without affecting the computing accuracy.

The phase-space approach is based on the idea of dividing

the computation into two steps. During the first step, the data

of all particles hitting the scoring plane are recorded in

phase-space files from which they are recalled after. Each

record in the phase-space file contains a collection of particle

data such as the charge, energy, position, direction, and

statistical weight. This approach reduces considerably the

computing time because the same data can be used in

different simulations. Regarding medical linear accelerator,

the accelerator head simulation is very slow compared to the

dose calculation, the use of phase-space technique can be

considered as a suitable approach to improve simulation

efficiently. Because the Monte-Carlo method involves

simulation of a very high number of histories for achieving a

smaller global statistical uncertainty, the file that contains the

recorded phase-space data will have consequently a very

large size and must be managed by one of the data storing

library such as HDF5 library [3].

HDF5 is the new generation of HDF (Hierarchical Data

Format) created by the HDF Group, and it is a free and open

source general-purpose library and file format for storing and

exchanging scientific data. As its name implies, all files with

HDF5 based-format have a hierarchical structure which is

very similar to the UNIX file system structure, and it is a

self-describing file format supporting flexible types defined

by the user. The HDF5 file is portable; it can be run on

various types of platforms includes Linux, Mac OS X, and

Windows. The HDF5 is a rich and large library contains more

than 300 functions, which it goal is to provide flexible API

supporting a wide range of operations on scientific data. It

supports high-performance I/O for both serial and parallel

environments. HDF5, it was designed for high volume or

complex data. It saves binary data and its corresponding

meta-data in the same file. The HDF5 C++ API used in the

development of our phase-space I/O has C++ wrappers for

the HDF5 C Library, and it is a part of the HDF5 source

code.

The reading and writing of phase-space files is not part of

the Geant4 kernel but is an application typically developed

by users, an example of which can be found in the

medical_linac example of Geant4. These files are useful for

dividing the simulation into many distinct parts to improve

simulation efficient. In this purpose, a modern phase-space

I/O routines based on HDF5 file format has been developed

specially for Geant4 applications, which can record particle

data from five kinds of particle namely photon, electron,

positron, neutron, and proton. The HDF5 has been chosen for

building our phase-space writing/reading C++ classes

because it has been widely used in scientific computing.

Wenjie Wei discusses in its dissertation [4] the I/O

performance, data structure, functionalities another aspect of

three kinds of files format for a particular cosmology code,

namely: HDF5, BinX and default binary. He concluded that

HDF5 library gives the best I/O performance and has more

meaningful features than two others.

The C++ API of HDF5 library is under development, but it

is indeed very rich, and it was found useful and sufficient for

developing our phase-space HDF5-based file format. We

present in this paper a full description of the C++ classes of

phase-space I/O routines and some tips needed to

successfully incorporate this new phase-space tool into an

existing Geant4 application. The validation of this new

phase-space I/O consists of running three kinds of simulation

namely: analog simulation or simulation without phase-space

technique, simulation with IAEA phase-space I/O routines

and simulation with our phase-space I/O routines. Each

simulation intends to simulate depth dose in a homogeneous

water phantom bombarded by a megavoltage photon beam

which is created as a result of a 20 MeV electron beam

hitting a tungsten target.

2. Related Works

The Geant4 toolkit provides many examples for beginners

as well as for advanced users, covering a wide range of

fields, and the radiotherapy is one of them. The example

called medical_linac is one of the best Geant4-based tool for

simulating teletherapy linear accelerator and dose calculation

either in homogeneous or heterogeneous phantoms. This tool

was fully described in this paper [5]. However, the

implementation of its phase-space routines does not take into

account the statical weight of each simulated track.

Consequently, the users will encounter a hard biasing

problem in their simulation when they try to introduce a

bremsstrahlung splitting method for enhancing the statistical

of photons since all simulated tracks with different statistical

weight will be assumed as tracks propagating with unit

weight. Another inconvenience of this tool is that it will

generate a phase-space file in text format rather than binary

format which makes the writing/reading process very slow

and expensive time task. Moreover, this tool also lacks the

ability to run multiple simulations on a distributed memory

architecture which can save a lot of the computing time.

Another solution of phase-space I/O routines for Geant4

code has been developed since 2009 by Cortés-Giraldo [6], it

is precisely a Geant4 interface to writing and reading IAEA

formatted phase-space file thereby using three major

components namely: IAEA routines [7][8] which are written

in C language and was designed to cover phase-space files

and event generator as well, Geant4 phase-space reader class

named G4IAEAphspReader (.hh and. cc), and Geant4 phase-

space writer class named G4IAEAphspWriter (.hh and. cc).

This solution has been used in our earlier works [9][10].

The IAEA phase-space can record five types of particle

namely: photon, electron, positron, neutron, and proton. This

solution seems useful and sufficient for the most of the

medical applications. However, it imposes the users to

implement additional Geant4 User Classes as follows: for

 American Journal of Mathematical and Computer Modelling 2016; 1(1): 25-31 27

writing task, classes inherits from G4UserRunAction,

G4UserEventAction, G4UserSteppingAction must be defined

by the users, whereas for reading task, not additional Geant4

User Classes are required. The mechanism of recording

particle data at Z-plane is as follows:

� The UserSteppingAction method of

G4IAEAphspWriter singleton class point to the current

step object.

� This method will record the Z-position of the two points

of step namely: PreZ for PreStepPoint and PostZ for

PostepPoint.

� After that, it will call the StoreIAEAParticle method

(for storing particle data) until the value of PostZ is

greater or equal to the defined Z-Plane and the PreZ

value is small than the value of Z-plane.

3. Implementation of a New Phase-Space

I/O Using HDF5 C++ Interface

3.1. The Phase-Space C++ Classes

Stand-alone classes inheriting from G4VSensitiveDetector

and G4VPrimaryGenerator were developed for writing and

reading phase-space in HDF5 format. Unlike Geant4 IAEA

phase-space interface which requires implementation of

G4User classes (stepping, tracking, event, and run), our

solution has the advantage of not using the G4User classes.

Therefore, our input phase-space routine seems to be easy to

use than one offered by the Geant4 IAEA phase-space

interface. The building of our I/O for phase-space in HDF5

format requires the implementation of the following C++

classes:

3.1.1. Phase-Space Writer C++ Classes

G4UserPhaseSpaceWriter

The writing task of phase-space file with HDF5 format is

managed by this singleton class which has the following

public methods:

� static G4UserH5PhaseSpaceWriter* GetInstance (): a

static method to get the singleton reference to this class.

� void SET_PARAMETERS (G4String _FILE_NAME,

G4double zstop, G4double X_PLANE_HALF_SIZE,

G4double Y_PLANE_HALF_SIZE,

G4LogicalVolume*& logicWorld): this method has six

parameters namely: name of phase-space file, z position

of recorded plane, half size of x dimension of a plane,

half size of y dimension of the plane and a pointer to the

logical volume of a world.

The users must be instanced this singleton class into their

G4VUserDetectorConstruction abstract base class provided

by Geant4 as user initialization class. The phase-space is

written in an HDF5 file which has an extension of ".h5". It

keeps all information about particles includes the number of

simulated histories, particle energy, particle statistical weight,

particle PDGE code, particle position, and particle

momentum direction. In Addition, an ASCII text file is also

generated at end of each Run which has an extension of

"summary" and stores meaningful statistical data about a

given simulation, it includes number of simulated histories,

percent of active events, max-mean-min of all recorded

particles, percent of each them, and CPU time spent by

simulation. This singleton class has been created to be easy

to use, and all sophisticated methods involved by phase-

space written task are included in other complex class which

is described in the next section.

H5PhaseSpaceWriter

The H5PhaseSpaceWriter class derived from

G4VSensitiveDetector class has the following public

methods:

1. Mandatory methods which are inherited from

G4VSensitiveDetector class

� void Initialize (G4HCofThisEvent*): a function

which is called by the Geant4 kernel at begin of an

event.

� G4bool ProcessHits (G4Step*,

G4TouchableHistory*): a function which is called by

the Geant4 kernel at each step.

� void EndOfEvent (G4HCofThisEvent*): a function

which is called by the Geant4 kernel at the end of an

event.

2. Methods needed for calculating statistical information

about scored particles and summarize them.

� void PHOTONS_ENERGY (G4double): get max-

mean-min energies of the photon at scorer plane.

� void ELECTRONS_ENERGY (G4double): get max-

mean-min energies of an electron at scorer plane.

� void POSITRONS_ENERGY (G4double): get max-

mean-min energies of positron at scorer plane.

� void PROTONS_ENERGY (G4double): get max-

mean-min energies of the proton at scorer plane.

� void NEUTRONS_ENERGY (G4double): get max-

mean-min energies of the neutron at scorer plane.

� void SUMMARY (): dump statistical information

about current simulation to an ASCII text file.

3. Methods need to manage phase-space file

� void SET_PHASE_SPACE_FILE_NAME (G4String

FILE_NAME): set the name of phase-space file.

� void FILL_DATA (G4Step* & aStep): score all

needs physical quantities from the current step.

� void WRITE_PHSP_FILE (G4int i): method to write

out the phase-space file to the disk.

3.1.2. Phase-Space Reader C++ Classes

G4UserH5PhaseSpaceReader

Similar to others Geant4 primary particle generator user

classes namely: G4ParticleGun and

G4GeneralParticleSource, the G4H5UserPhaseSpaceReader

is derived from G4VPrimaryGenerator virtual class. It has

the following public methods:

1. Mandatory method which is inherited from

G4VPrimaryGenerator class

� Virtual void GeneratePrimaries (G4Event*): Geant4

does not provide any default behavior for generating

a primary event which will be invoked at the

28 Jaafar EL Bakkali et al.: Investigation of the HDF5 C++ Library in Development of New
Phase-Space I/O for Radiotherapy Simulation Using Monte Carlo Geant4 Code

beginning of each event. This method is responsible

for creating particles from phase-space file which is

managed by two public methods that will be

described in the next section.

2. Methods needed for managing a phase-space file

� void SET_PARAMETERS (G4String

PHASE_SPACE_NAME, bool

CHANGE_VALUE_OF_Z_STOP, G4float

VALUE_OF_NEW_Z_STOP, int

PARTICLE_GENERATOR_FLAG, int

SPLITTING_FACTOR): this method let the user

define a set of phase-space parameters, including the

phase-space file name, the new z-plane position if is

determined, the particle generation mode (0: normal,

1: particle rotational splitting, 2: particle recycling)

and the splitting factor if the particle generation is

not set to its normal mode.

� void INITIALIZE (): after defining a set of phase-

space parameters by users, this method will dump all

phase-space data into RAM memory.

3.2. The Geant4 Application Compilation File

We have changed the GNUmakefile to match the

collection of the Geant4 user application that may use our

phase-space I/O routines, thereby including the EXTRALIBS

flag which will point to the HDF5 C++ library named

libhdf5_cpp.a. Here's how the content of modified

GNUmakefile might look:

name:= Geant4_application

G4TARGET:= $(name)

G4EXLIB:= true

EXTRALIBS += -L/opt/hdf5/lib -lhdf5_cpp

ifndef G4INSTALL

G4INSTALL =../../..

endif

.PHONY: all

all: lib bin

include $(G4INSTALL)/config/binmake.gmk

It should be noted that, instead of compiling the Geant4

application with h5c++ which is the native HDF5 C++

compiler, we keep the default C++ compiler, and we add the

external library to wrap the functionality of this HDF5 C++

compiler as described above.

4. Incorporation of Phase-Space I/O

Routines in an Existing Geant4

Application

The phase-space I/O classes have been designed and

implemented to be few and easy to incorporate into an

existing Geant4 application. The users must prepare their

Geant4 application to read or write phase-space HDF5-based

format. Unlike IAEA phase-space routines, our phase-space

methods don't impose users to create new user actions

classes. Therefore the required changes are made too easier.

For writing task, the G4UserH5PhaseSpaceWriter and

H5PhaseSpaceWriter C++ classes (source and headers files)

must be copied to the directory of the Geant4 user

application. Naturally, header files must be copied into the

include subdirectory, whereas source files must be copied

into src subdirectory. Here, before compilation processing by

the user, he must ensure that the two following things are

presented:

� The HDF5 C++ library.

� The modified GNUmakefile file as it was described in

early paragraphs.

Once, the above steps are successfully performed, the user

must call the phase-space writing routine into its application,

thereby including the G4UserH5PhaseSpaceWriter.hh header

file into it user volume construction class inheriting from

G4VUserVolumeConstruction user initialization class, and

adding a small code before return statement (which is

followed by the name of the physical volume of world

volume) as follows:

G4UserH5PhaseSpaceWriter::GetInstance ()-

>SET_PARAMETERS (FILE_NAME, Z_STOP,

PLANE_HALF_X, PLANE_HALF_Y,

LOGICAL_WORLD);

The generated phase-space file which has as an extension

of ".h5" can be directly viewed by a very useful command-

line tool provided by HDF5 Group and called h5dump

enabling the user to examine the contents of an HDF5 file

and optionally dump those contents to an ASCII text file. For

the phase-space reading task, the users must put the

G4UserH5PhaseSpaceReader.cc header file into src

subdirectory and G4UserH5PhaseSpaceReader.hh into

including subdirectory of their Geant4 user application. Like

writing task the user must ensure that the HDF5 C++ library

is presented and the compilation file is modified. Once these

steps are made, the user must include the

G4UserH5PhaseSpaceReader.hh header file into it primary

generator user class which is derived from

G4VUserPrimaryGenerator base class, and put the following

codes in the initializing block of this class:

theG4UserH5PhaseSpaceReader = new

G4UserH5PhaseSpaceReaderr ();

theG4UserH5PhaseSpaceReader->SET_PARAMETERS

("PHASE_SPACE.h5", // name of phase-space file. false,

// if true the user must indicate the new Z_STOP

parameter. 0, // new Z_STOP parameter. 0, // particle

generation mode. 0); // splitting parameter.

theG4UserH5PhaseSpaceReader->INITIALIZE ();

For generation of a new particle from phase-space file, the

user must add the following code into the GeneratePrimaries

mandatory method of it primary generator user class:

theG4UserH5PhaseSpaceReader->GeneratePrimaryVertex

(anEvent);

Regarding particle recycling and rotational splitting

techniques, in the aim to ensure statistical correlations

between particles produced by the same original history, all

copies of the same track (parent track) are produced at the

same event and each daughter track is monitored with a

statistical weight that is equal to the parent statistical weight

 American Journal of Mathematical and Computer Modelling 2016; 1(1): 25-31 29

divided by the splitting number. With this manner, we can

correctly track all original histories read from phase space

file that are shooted in a simulation, and the normalization to

dose per primary particle can be successfully performed

without altering the physics of the simulated setup.

5. Comparison Between Calculated

Beam Data for Three Kinds of

Simulation

In order to validate the new phase-space I/O, a very basic

experimental setup has been realized. It consists of

simulating depth dose of a 20 MeV electron beam hitting a

tungsten target (box of 1x1x0.1 cm3 made of tungsten) in a

homogeneous water phantom. The 30x30x30 phantom was

subdivided into 1x1x30 slabs, which were further divided

into 1x1x1 cubes. Three kinds of simulation have been made,

the first one is an analogue simulation, the second one is

made using phase-space I/O routines based on HDF5 file

format, and was split into two stages. In the first stage, we

simulate 1/4 of the number of histories considered in the case

of analogue simulation. Thus, just 10 millions of histories

have been simulated to produce a phase-space file. This latter

is used in the second stage as particles generator source for

calculating depth dose in a homogeneous water phantom, and

the number of simulated histories was set to 40 million equal

to the value considered for analogue simulation.

Consequently, the phase-space file was reused four times for

calculating dose along z-axis. The third simulation with

IAEA phase-space I/O routines have been made in the same

conditions as those considered for the second simulation

where our phase-space I/O routines are examined. Table 1

demonstrates a comparison between simulation phase-space

data for the two last kinds of simulation.

Table 1. Comparison between IAEA phase-space and HDF5 phase-space data.

 IAEA phase-space HDF5 phase-space

Number of histories 108 108

Number of particles in Phsp 20383494 24590103

Percent of photons in Phsp 79% 77%

Percent of electrons in Phsp 22% 22%

Percent of positrons in Phsp 0,34% 0,38%

CPU time 1327 s 1192 s

From the above table, it seems that: A) for the same

number of histories, the CPU time spent by the generation of

an HDF5 phase-space file is about 13% less than one spent

by IAEA phase-space file. B) The number of particles

recorded in HDF5 phase-space file is 21% more than one

provided by IAEA phase-space file. C) the percent of each

particle in phase-space is closely the same for two kinds of

phase-space.

It is difficult to give an accurate interpretation of the

obtained results, but we can say from these results that the

efficiency of our phase-space I/O routines is comparable and

near closely to the one given by IAEA phase-space I/O

routines. The difference between the number of scored

particle at phase-space plane for two kinds of phase-space

I/O is caused by the fact that each phase-space I/O uses

different method to score particles at Z-plane, we remark that

the minimal energy recorded by IAEA phase-space I/O

routines is ten times much smaller than one obtained with our

phase-space I/O routines. More precisely, our phase-space

writer routine record all particles that reach an additional

volume that is not part of geometry of simulated system

which is a very thin vacuum box and placed at position equal

to the value of Z-Plane plus the value of half Z-dimension of

the box. Whereas in the case of IAEA writer routine, not

additional volume is required, instead the particle that

reaches the Z-plane are recorded as was described in "related

work" section. It should also be emphasized that the two

kinds of phase-space files share approximately the same disk

size for a fixed number of particles recorded at defined Z-

Plane.

In Table 2, we present a comparison between CPU time

spent by dose calculation program for three cases examined

in this study; we have run a full simulation with a reasonable

number of events for testing the new phase-space I/O. It

should be noted, that all calculation have been performed in

sequential mode, in a personal computer Intel (R) Core (TM)

i3 2.20GHz under Ubuntu 12 operating system.

Table 2. Comparison between CPU time spent by three kinds of simulation considered in this study.

 Simulation analogue Simulation with IAEA phase-space I/O Simulation with HDF5 phase-space I/O

Number of histories 4 107 4 107 4 107

CPU time 10738 s 6590 s 6585 s

To compare the effective improvement obtained when the phase-space method is applied, we add the CPU time spent by

phase-space generation program from one spent by the dose calculation program, and we compare it with CPU time spent by

analogue simulation program. The results showed an improvement in CPU time of 26% in the case of the IAEA phase-space

method and an improvement in CPU time of 27% in case of HDF5 phase-space method.

A comparison of depth dose data in three cases: analogue simulation and simulation with IAEA phase-space and HDF5

phase-space is presented in figure 1.

30 Jaafar EL Bakkali et al.: Investigation of the HDF5 C++ Library in Development of New
Phase-Space I/O for Radiotherapy Simulation Using Monte Carlo Geant4 Code

Figure 1. Calculated depth dose of a 20 MeV electron beam hitting a tungsten target.

The visual inspection of figure 1, demonstrates in the first time that our phase-space I/O not alter the physics in any way, and

that a good agreement is obtained between the two calculated depth dose data, since the two curves are closely the same and

there are perfectly coincidence between them. Now we will to see statistical uncertainties related to the calculated depth dose

data. Figure 2 gives such response.

Figure 2. Statistical uncertainties of calculated depth dose data.

From figure 2, it seems that the associated uncertainties are

quasi-confused for most of the points. We remark that the

statistical uncertainty increases nonlinearly with depth

because the beam data is not homogeneous, it has multiple

energies and multiple particle types as well.

 American Journal of Mathematical and Computer Modelling 2016; 1(1): 25-31 31

6. Conclusion

The phase-space I/O capabilities are describing in this

paper, have been implemented for Geant4 code by using

HDF5 C++ data managing library. The code source of this

tool has been hosted on GitHub, and it can be downloaded

freely from:

https://github.com/EL-Bakkali-Jaafar/G4PhpH5

The important feature of our phase-space I/O which paves

the way for its easy application is the fact that the associated

classes are few and easy to incorporate into existing Geant4

user code. It has been validated for a very basic experimental

setup. Our result shows that this technique can save about

27,56% of CPU time spent by simulation. However, this

method is problem dependent, and we believe that the

usefulness of these I/O routines becomes critical in a

complex system simulation which takes too much CPU time

such as Linac, where the modeling of it head is relatively

long than dose calculation. With phase-space method, the

Linac simulation can be made fast enough, and it will be the

subject of our next study.

References

[1] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H.
Araujo, P. Arce et al., “Geant4 - A Simulation Toolkit,”
Nuclear Instruments and Methods A 506, 2003, pp. 250-303.

[2] Allison J et al., “Geant4 Developments and Applications,”
IEEE Transactions on Nuclear Science 53, 2006, pp. 270–278.

[3] The HDF5 Group, HDF5 Dara Format. [Online] Available:
http://www.hdfgroup.org/HDF5/release/obtainsrc.html.

[4] W. Wenjie, “Comparison of Portable Binary Data Formats
within a Cosmological Simulation,” M. Sc. in High
Performance Computing, The University of Edinburgh, 2005.

[5] B. Caccia, C. Andenna, and G. A. P Cirrone, “MedLinac2: a
GEANT4 based software package for radiotherapy,” Annali
dell’Istituto superiore di sanita 46, 2010, pp. 173–177.

[6] M. A Cortés-Giraldo, J. M Quesada Molina, M. I Gallardo, R.
Capote, “Geant4 Interface to Work with IAEA Phase-Space
Files”, 2009.

[7] M. A Cortés-Giraldo, J. M Quesada Molina, M. I Gallardo, R.
Capote, “An implementation to read and write IAEA phase-
space files in GEANT4-based simulations,” Int. J. Radiat.
Biol. 88, 2012, pp.200-208.

[8] R. Capote R and I. Kawrakow, “Read/write routines
implementing the IAEA phsp format, version of December
2009”. [Online] Available: http://www-
nds.iaea.org/phsp/software/iaea phsp Dec2009.zip#phsp rw

[9] J. EL Bakkali, T. EL Bardouni, S. Safavi, M. Mohammed, S.
Mroan, “Behaviors of the percentage depth dose curves along
the beam axis of a phantom filled with different clinical PTO
Objects, a Monte Carlo Geant4 study,” Radiation Physics and
Chemistry 125, 2016, pp.199-204.

[10] J. EL Bakkali, T. EL Bardouni, “Validation of Monte Carlo
Geant4 code for a 6 MV Varian linac,” Journal of King Saud
University–Science, 2016, in press.

