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Abstract: On the basis of the method of orthogonal sweep and the Mueller method, the solution of the problem of intrinsic 

oscillation of a Toroidal shell with a flowing liquid is discussed. The problem of determining the frequencies and forms of 

intrinsic bending vibrations in the plane of curvature of curvilinear sections of thin-walled Toroidal shells of large diameter 

with a flowing liquid, with different conditions for fixing the end sections is solved. The behavior of complex Eigen 

frequencies as a function of the curvature of the shell axis is studied. 
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1. Introduction 

Elements of structures in the form of a Toroidal shell are 

widely used in various areas of modern technology. In 

particular: in the construction of pipelines, power engineering, 

in the rocket and space industry [1-5], etc. To study the 

strength and load-bearing capacity of shell structures, it is first 

of all necessary to determine their stress-strain state, which 

leads to the need to develop effective methods for solving 

boundary value problems in shell theory [6-8]. For the first 

time, the problem of bending vibrations of a straight pipe with 

a flowing liquid was posed and solved in [9]. Using the 

equations of small oscillations of the beam, the authors [9] 

made errors when taking into account the inertial forces of the 

fluid flow and obtained the wrong result. The error was already 

corrected in [10], and the solution obtained by him on the 

beam theory with the help of the Bubnov-Galerkin method of 

the circular frequency of a hinge fixed at the ends of a pipeline 

with a steady flow of liquid still has practical application: 

( )
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where 0,p p - the density of the pipe and liquid material, 

respectively, 0,A A - cross-sectional area of pipe and liquid 

walls, EI - bending stiffness of pipe, L - length of pipeline,

U - speed of a flowing liquid. As can be seen from the last 

formula, the increase in speed U  reduces frequency ω . 

When the speed reaches a certain critical value kpU  the 

oscillation frequency vanishes, and the pipeline loses 

stability. The value of the critical velocity can be obtained 

from the last equality: 

0 0
k p

E I
U

L p A

π=  

In [11], this problem was solved by an analytical method, 

the result obtained was confirmed in [12]. Further studies in 

this field [13, 14] have evolved in the direction of taking into 

account additional factors affecting the oscillations of the 

pipelines, and also in the direction of refinement of the 

solution. The solution of the geometrically nonlinear problem 

taking into account the influence of internal hydrostatic 

pressure is considered [15]. In this paper, we solve the 

problem of the actual vibration of viscoelastic Toroidal shells 
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with a flowing fluid, based on orthogonal sweep methods, the 

Mueller and Gauss method. 

2. Equations of Motion of the Toroidal 

Shell 

The equation of motion of bending oscillations of the 

toroidal shell (Figure1) is derived on the basis of the general 

relations of the geometrically nonlinear theory of shells of 

the average bending described in [16]. This theory considers 

such a bending of shells, in which the maximum deflection is 

of the same order of magnitude as the wall thickness, or even 

exceeds it, but small compared with other linear dimensions 

of the shell. 

In accordance with this theory, the equations of 

equilibrium of the moment’s forces for the element of the 

toroidal shell, which is in the deformed state, have the form: 
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  (1) 

where 1 2 3, ,X X X - components of external force vectors 

and indices 1 and 2 refer to toroidal coordinate’s β  and θ  

respectively. 

The first three equations (1) are the equations of 

equilibrium of forces, the last two are the equations of 

equilibrium of moments. 

Differential equilibrium equations for the shell element (1) 

are nonlinear, since they contain products of effort and 

deformation. In addition, they are obtained for a shell in a 

deformed state. Therefore, these equations include radii of 

curvature *
1R  and *

2R  deformed middle surface of the shell. 

Their connection with the curvature of the initial state is 

expressed in accordance with [17] by the following relations: 

2

* 2 *
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cos , 1 .

r w

R R rR R

ϑθ
θβ

 ∂ ∂ = − = −   ∂∂   
       (2) 

Change in curvature of the midline of the cross section of 

the shell 2χ  and torsion θ  are expressed in terms of the 

angle of rotation ϑ  the following relations: 

2

1

r

ϑχ
θ

∂= −
∂

, 
1

R

ϑθ
β

∂= −
∂

                         (3) 

In accordance with the assumptions (1) - (3) of the semi-

free shell theory in the first three equilibrium equations (1), 

we neglect the transverse force 1Q , and in the last two H  - 

the torque. Then (1) of parameters (2) and (3) we obtain a 

system of equations of motion of the shell in the effort: 
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θ
∂ − =
∂
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where 1 2 3, ,X X X  - components of inertia forces in 

coordinates ,β θ  and along the normal to the middle surface, 

respectively. Eliminating all the forces and moments from 

equations (4) except 1T  and 2M , we arrive at a single 

equation of motion in the effort: 

( )
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 (5) 

To solve the dynamic problems of the pipeline section in 

question, it is necessary to obtain the equation of motion of 

the toroidal shell in displacements. 

Therefore, we transform equation (5), expressing efforts 

1T  and 2M  deformation 1ε  and θ  in displacements, using 

the relationships between the forces, deformations and 

displacements of the semi muscular theory of shells, as well 

as expressions for the principal curvatures of the shell in the 

deformed state and for changing the curvature 2χ  and 

torsion θ  relations (3): 
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where wvu ,,  - referred to the radius r  dimensionless 

displacement components; yW  - projection onto the axis y  

Moving point A of the middle surface of the shell to the 

position 
*A  as a result of deformation of its contour (see 

Figure 1); ϑ - angle of rotation of the tangent to the midline 

of the section of the shell as a result of deformation of the 

cross section; Еɶ – operator modulus of elasticity, which have 

the form [17, 18]: 

( ) ( ) ( ) ( )01

0

t

EE t E t R t t dφ φ τ φ τ
 
 = − −
  

∫ɶ  

( )tφ – arbitrary time function; ( )ER t τ− – relaxation core; 

01E – instantaneous modulus of elasticity; We assume the 
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integral terms in (6, a) to be small, then the functions 

( ) ( ) Ri tt t e ωφ ψ −= , where ( )tψ - a slowly varying function of 

time, Rω - real constant. Further, applying the freezing 

procedure [19], we note that the relations (6, a) are 

approximate of the form 

( ) ( )1 С S
R RE E iφ ω ω φ = − Γ − Γ  , 

where ( ) ( )
0

cosC
R RR dω τ ω τ τ

∞
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sinS
R RR dω τ ω τ τ

∞

Γ = ∫ , 

respectively, the cosine and sine Fourier images of the 

relaxation core of the material. As an example of a 

viscoelastic material, we take three parametric relaxation 

nuclei ( ) 1/tR t Ae tβ α− −= . On the influence function

( )R t τ−   the usual requirements of inerrability, continuity 

(except for � = �), sign-definiteness and monotony: 

� > 0, ��	�
�� ≤ 0, 0 < 
 �	�
�� < 1
�

�
. 

u
�

 - vector of displacements of the environment of the j-th 

layer. 

Substituting relations (2), (3) and (6) into equation (5), 

neglecting here small nonlinear terms, we obtain the 

resolving equation of motion of the toroidal shell, expressed 

in displacements 
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                                         (7) 

where *
iX  - components of inertia forces: 

- tangential components in coordinates β  and θ  

2
*
1 2

,
u

X rhp
t

∂= −
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2

*
2 2

v
X rhp

t

∂= −
∂

 

- normal component along the normal to the middle 

surface of the shell 

2
*
3 2

;
w

X rhp p
t

∂= − +
∂

 

p - internal pressure, including hydrodynamic, which 

occurs when the fluid moves, p - density of the shell 

material. 

The equation of motion of the toroidal shell (7) is a 

differential inhomogeneous partial differential equation with 

four unknown quantities ϑ,,, wvu . Adding to it the three 

relations of the semi-membrane theory of shells: 

0,
v

w
θ

∂ + =
∂

 0,
r v u

R β θ
∂ ∂+ =
∂ ∂

 
w

vϑ
θ

∂= −
∂

        (8) 

we obtain a complete system of equations with four 

unknowns. For a stationary fluid flow, the solution of 

equation (7), (8) allows us to determine the frequencies and 

shapes of the Eigen modes of the toroidal shell. 

3. Determination of Hydrodynamic 

Pressure Caused by a Fluid Flow 

One of the main factors that determine the solution of 

dynamic problems for pipelines with a flowing liquid is the 

hydrodynamic pressure of the liquid on the pipe wall. The 

curved section of the pipeline is considered as a toroidal shell 

with a radius of the cross-sectional line within which flows 

U const=  ideal incompressible fluid with density 

0p const= . The region bounded by a toroidal completely 

filled with a liquid is considered in toroidal coordinates 

, ,α β θ , where 0 rα≤ ≤ - radial coordinate in the plane of 

the cross section of the torus (see Figure 1), 00 β β≤ ≤  and 

π θ π− ≤ ≤ . Lamé coefficients of coordinate surface 

constα =  have the form [18]: 

,
cos

c
H H

ch
α β α β

= =
−

 ,
cos

csh
H

ch
θ

α
α β

=
−

     (9) 

where c - scale factor. 

The velocity field of an ideal incompressible fluid in the 

process of shell oscillation is an irrational potential field with 

a potential ( ), , , tφ φ α β θ= . The system of basic equations 

of the potential flow of an ideal incompressible fluid includes 

[19]: 

a. -equality of continuity (Laplace)  

2 0φ∇ = ,                              (10) 

b. the equation of motion (Euler)  

( ) 0,Q p
t

φ∂ + =
∂

                         (11) 

c. equation of state  

0 ,p const=                             (12) 
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where ( )Q p  - the pressure function defined in 0p const=  

equality 

( ) ( )0
0

1
,Q p p p

p
= −                   (13) 

where p  and 0p  - hydrodynamic and hydrostatic pressure, 

respectively. 

From (10) - (13), a relationship is established between the 

hydrodynamic pressure p  and the potential of the disturbed 

velocities ϕ : 

0 0

U
p p p

t R

φ φ
β

 ∂ ∂= − + ∂ ∂ 
                   (14) 

 

Figure 1. Pipeline section with flowing liquid. 

Considering the velocity vector of the fluid flow U  in 

toroidal coordinates, we write the expressions for its 

components by , ,α β θ : 

1
,U

H
α

α

φ
α

∂=
∂

 
1

,U
H

β
β

φ
β

∂=
∂

 
1

U
H

θ
θ

φ
θ

∂=
∂

        (15) 

For the component of the velocity vector Uα , directed to 

the normals to the deformed shell surface, the smooth flow 

around this surface by the liquid flow must be satisfied [20]: 

1
,r a r

a r

w U w
U r

H t H
α α

βα

φ
α β= =

=

 ∂ ∂ ∂= = − +  ∂ ∂ ∂ 
      (16) 

where w  - categorized as radius r  the dimensionless 

component of displacement of the points of the middle 

surface of the shell (Figure 1). 

Thus, the problem of determining the hydrodynamic 

pressure of a liquid on the pipe wall reduces to finding the 

potential φ , satisfying the Laplace equation (10) and 

conditions (14), (16) for rα = . 

The Laplace equation (10) in a toroidal coordinate system 

,α β  and θ  has the form: 

( )
2

2

sin sin 1
0

cos cos cosch ch ch sh

α α φ φ
α α β α β α β β α β α θ
   ∂ ∂ ∂ ∂+ + =   ∂ − ∂ ∂ − ∂ − ∂   

                                 (17) 

As a result of the separation of variables after substitution 

( )1 2
2 2coschφ α β ψ= −                    (18) 

and representations of an unknown function ( ), , , tψ α β θ  in 

the form of: 

( ) ( ) ( ) ( )A B C Ф tψ α β θ=                  (19) 

we obtain from (17) the known equation of the torus: 

2 2

2

1
0

2

ch
A A n A

sh sh
α α

α µ
α α

  ′′ ′+ − − + =  
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          (20) 

where ,const n constµ = = . 

The general solution of the torus equation (20) is 

determined by a linearly independent combination of torus 

functions ( )1

2
n

P chα
−

 and ( )1

2
n

Q chα
−

, representing one of 

the kinds of Legendre functions of the 1st and 2nd kind: 

( ) ( ) ( )1 1 2 1

2 2
n n

A A P ch A Q chα α α
− −

= +             (21) 

Taking into account that in the problem posed, we consider 

the domain bounded by the surface of the torus by the 

coordinate α , varying within 0 rα≤ ≤ , and that when 

0α →  Legendre function of the second kind 

( )1

2
n

Q chr
−

→ ∞ , in the solution of (21) it is necessary to put 

2 0A = . Therefore, the solution of the equation of the torus 

(20) will be expressed only through the Legendre function of 

the first kind: 
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( ) ( )1 1

2
n

A A P chα α
−

=                             (22) 

and the solution of the Laplace equation (17) taking into 

account (18), (19), and (22) will have the form: 

( ) ( ) ( ) ( )1
2

1 1

2

, , , 2 2cos , ,
n

t ch P ch A tφ α β θ α β α ζ β θ
−
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Composition ( )1 , ,A tζ β θ  we find from (16), taking the 

partial derivative 
φ
α

∂ 
 ∂ 

. After substituting the value of this 

product in (23), we obtain an expression for the velocity 

potential: 
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where 

( )2 cosB chr β= −                             (25) 

We find the hydrodynamic pressure of the flowing liquid 

on the wall of the shell from (14), neglecting small second-

order ones arising in the calculation of the partial function φ  

by : 
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where is denoted 
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In formula (26) for hydrodynamic pressure, the expression 

in parentheses, by analogy with the cylindrical [21], should 

be regarded as reduced acceleration (with allowance for the 

velocity U ) element of the shell, and the value 0 np Ф , 

density-dependent 0p , be regarded as an adjoined mass of 

liquid. 

4. The Equation of Motion of Toroidal 

Shells with a Stationary Fluid Flow 

In toroidal coordinates ,β θ  the equation of motion of 

shells takes the form: 
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where , , , ,u V w Wα ϑ - moving the shell in a toroidal 

coordinate; 
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Here, in the expression for the normal component of 

inertia forces *
3F  The internal pressure on the pipe wall in 

accordance with clause 2 is presented as a sum: 

0 жp p p= +                                    (29) 

where 0p const=  - constant hydrostatic pressure; жp - the 

hydrodynamic pressure of the fluid flow in the curved section 

of the pipeline, determined through Legendre functions. The 

last term on the right-hand side of equation (28) contains the 

derivative of θ  from a work 
2

*
32

F
ϑ

θ
∂
∂

. After differentiation, 

taking into account (29) and discarding the small nonlinear 

terms in Eq. (28), the following terms remain (the last three 

terms on the right-hand side) 
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Adding to the equation of motion (28) the relationship of 

the semi muscular theory of shells and using formula (30) for 

the hydrodynamic pressure жp , we obtain a complete 

system of equations for the problem in the displacements 
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where 
2

0 nr p
r

Eh
ϕ

φ= . 

It should be noted that the displacement components 

, ,u wν  (30), (31) are also dimensionless. The boundary 

conditions can be as follows. 

1. Both ends are hinged. The boundary conditions 

corresponding to this fixation can be formulated as 

follows: 

at 1 10 0; 0; 0; 0.и w v T Mβ β α= = = = = =  

These conditions, expressed in functions ( )nf β , have the 

form: 

at 

( ) ( ) ( ) ( )0 0 0; 0 0.n n n nи f f f fβ β α α α′′ ′′= = = = = =  

This fastening corresponds to a fundamental beam function: 
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λ ββ λ π
α
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2. Hard pinch on the ends. With such a fixation of both 

ends, the boundary conditions have the form: 

at 0 0; 0; 0 ; 0.и u v wβ β α ϑ= = = = = =  

From this follows: 

at 

( ) ( ) ( )0 0 ( ) 0; 0 0.n n n nи f f f fβ β α α α′ ′= = = = = =  

The fundamental functions corresponding to a given 

fixation have the form: 

( ) sin cos ,n n n n
n nf sh g ch

λ β λ β λ β λ ββ
α α α α

 = − − − 
 

sin
,

cos

n n
n

n n

sh
g

ch

λ λ
λ λ

−=
−  

( )1 2

2 1
4,730, 7,8532, 2 .

4
n

n
nλ λ λ π+= = = >  

To solve the system of equations (30), (31), we represent 

the normal component of the displacement arising when the 

toroidal shell flexures ( ), ,w tβ θ  in a form that satisfies the 

boundary conditions at the edges of the shell: 

2

0 02
0, 0

w
w β β

β π β πβ= =
= =

∂= =
∂

                (32) 

And also satisfying the cyclicity conditions along the 

circumferential coordinate θ : 

( ) ( ), , cos sinmw t f t a m nβ θ θ β=               (33) 

where ( )f t - time function , , ,mt a const m n= - wave 

numbers that determine the shape of the shell oscillations in 

the circumferential and longitudinal directions, respectively. 

From the relations (33) between the components of 

displacement at a value w  by (31) we obtain expressions for 

the remaining components of the displacement and the angle 

of rotation: 

( ) ( )

( )

2

2

1 1

1
cos cos , sin sin ,

1 1 2 2
sin sin , cos sin .

2 1 1

m m

m m m

r n
u f t a m n f t a m n

R mm

m m m
f t a m n W a a m n

m m m
α

θ β ν θ β

ϑ θ β θ β+ −

= − = −

− + − = − = + + − 

               (34) 

Substituting expressions (33), (34) for the displacement 

components and the rotation angle into the equation of 

motion of the shell (34) and calculating the partial derivatives 

with respect to β  and θ , we obtain a resolving equation 

with respect to unknown amplitude values ma  and 

containing the function of time ( )f t  and its second time 

derivative ( )f t′′ : 

( )

( ) ( ) ( )( )

( )

4 2 2 2
*

02 3

4 4 3 2

4 3 3

3 2 2

1 1 1 13 2

1
sin sin sin

sin sin 1 sin 1
2

2 2 2 2
sin

1 1 1 12

2
sin 1

4

m m n m

m m

m m m m

r n r r
f t pb m pb m p Ф b m

E m EhER m

r n r n
f t a m a m m

mR m R

r n m m r m m
a b m a b

m m m m mR R

m m
m

θ θ θ

θ θ θ

θ

θ

+ − + −

 
′′ + + =  

 

− + − + + +


+ − + −   + + − + ×   + − + −   

− +× − + ( )

( ( ) ( ) ( ) ) }
3 2 3 2

2 2 2 * 2
0 03

2
sin 1

4

12 1
1 1 sin sinp m n

m

r r U
h m m m p m p b Ф n m m

Eh RrEh

θ

ν
θ θ

 + − 
 

 −
 − − × − + +
 
 

                                    (35) 

To simplify the form of equation (35), we introduce the 

dimensionless shell thickness parameter hν : 

( )2
, 12 1 ,

h
h c

rc
ν ν

ν
ν= = −  ν - Poisson's ratio. 

We divide each term of equation (35) by 2hν . As a result, 

we get: 

( ) ( )1 2 0m mf t f t′Ω − Ω =                     (36) 

where 
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( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

4 4 3 2

1 4 2 3 3 2

1 1

2
2

1 12 2

2
02

sin
2

2 2
sin 1 sin 1 sin

1 1

2 2
2 sin 1 2 sin 1 1

1 12

1 sin

m m

m m m

m m

m

r n r n
a m

mR h m R h

m m
a m m a a m

m m

r m m
a a m m m m m m

m mR h

r r r
m p b m

REhh E

ν ν

ν

ν

θ

θ θ θ

θ θ

θ

+ −

+ −

Ω = − ⋅ + ⋅


 + − ⋅ − + + + + −  + −  

+ − − + × − − + + + − − ⋅ + − 

 
⋅ − + × +  
 

* 2 2
02

2 2
2 *

2 02 2 3 2

sin ;

1
sin

n m

m n m

p Ф U mn b m
hh

r r n r
p m r p Ф m a m

mEhh R m Ehh

ν

ν ν

θ

θ
  

Ω = + + +   
   

 

To simplify (36), we introduce the following notation: 

* * *
0 0 0 02 2 2

, ,
r r r

p p p p
Ehh Ehh Ehhν ν ν

ρ ρ= = =      (37) 

In addition, we transform equation (36) using the curvature 

parameter of the toroidal shell µ , which characterizes not 

only the geometry of the shell, but also its material, since it 

includes the Poisson's ratio: 

( )
2

2 2, 12 1
r

c c
Rh

ν νµ ν= = −  

Introducing the indicated transformations into Eq. (35) and 

assuming that the intrinsic bending oscillations of the toroidal 

shell occur according to a harmonic law with a circular 

frequency ω , i.е. 

( ) ( )
( ) 2

sin , cos

sin

m m

m

f t d t f t d t

f t d t

ω ω ω

ω ω

′= =

′′ = −
                 (38) 

we get: 

( ) ( )( ) ( ) ( )

} ( )

( ) ( )( )

2 2 2 *
1 1 0

*
* * 2 2 2 2 * * 2
0 0

4 2
4 2 3

13

1 2 2
2 sin 1 1 1 sin

4 1 1

sin sin 1 sin sin

1 2
sin sin 1 sin 1

2 1

m m m

n m n m m

m m m

m m
a b m m m m m p a m

m m

rhp
h p Ф u mn a m t m r p Ф m d m d t

m

n n m
h a m h a m m a b

m mm

ν

ν ν

µ θ θ

µ θ ω ω θ ω

µ θ µ θ θ

+ −

+

+ − − + + + − − − + + + − 

 
+ + − + − − × 

 

 +× − + ⋅ − + + + + +
1

2
sin 0

1
m

m
m

m
θ−

 −  =  −  

       (39) 

Here it is taken into account that in the penultimate term of 

equation (31) the quantity 
2

2

r

R
, small in comparison with 

wave number 1, 2,3....m =  

Equating in (39) the factors for the same trigonometric 

functions sin tω , we finally get 

( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )
( )

34 2
4 2

3

1 1

2

1 1

2 2 *
0

*
* * 2 2 2 2 * *
0 0

sin
2

2 2
sin 1 sin 1 sin

1 1

2 2
2 sin 1 2 sin 1

4 1 1

1 1 sin

sin 1

m

m m m

m m

m

n m n

hn n
h a m

mm

m m
a m m a a m

m m

m m
a a m m m

m m

m m m p a m

rhp
h p Ф u mn a m m r p Ф

m

ν
ν

ν

µµ θ

θ θ θ

µ θ θ

θ

µ θ

+ −

+ −

− ×

 + − × − + + + + +  + −  

+ − × + − − + + + + + − 

+ − − + −

− × − + + 2 sin 0mm a mω θ
 

=  
 

                                (40) 

The dynamic equation of the motion of a toroidal shell 

with a stationary fluid flow (40), obtained on the basis of a 

geometrically nonlinear version of the semi-shell theory of 

shells and the theory of the potential flow of an ideal 

incompressible fluid, is a homogeneous equation. All terms 

of which are multipliers with trigonometric functions 

sin , 1,2,3...m mθ = , describing the deformation of the cross 

sections of the shell under bending vibrations. 
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5. Numerical Natural Oscillations of a 

Toroidal Shell with a Fluid Flow 

The study of the frequencies of the proper bending 

oscillations of the curved sections of pipelines (steel) with a 

steady flow of liquid is carried out numerically [22]. As the 

relaxation nucleus of a viscoelastic material, we take a three-

parameter core ( )
1

tAe
R t

t

β

α

−

−=  Rizhaniten-Koltunov [17], 

which has a weak singularity, where , ,A α β - parameters 

materials [17]. We take the following parameters: 

0,048; 0,05; 0,1A β α= = = . Using the complex 

representation for the elastic modulus, described earlier. The 

roots of the frequency equation are solved by the Mueller 

method, at each iteration of the Muller method is applied by 

the Gauss method with the separation of the main element. 

Thus, the solution of equation (31) does not require the 

disclosure of the determinant. As the initial approximation, we 

choose the phase velocities of the waves of the elastic system. 

In the pipeline, water flows at a velocity u from 0 to 50
м

c
. 

The acquisition of the results allowed us to estimate the 

influence of the flow velocity on the frequencies of the first 

four waveforms ( 1,2,3m = , 4 at 1,2,3n = ). Calculations 

were carried out for curvilinear pipes with relative thicknesses 

1 1 1
, ,

30 40 60

h

r
=  and different curvatures 

1 1
,

10 20

r

R
= , which 

corresponded to the parameters of curvature 5.8µ = ; 11.6 and 

23.1. These parameters, in turn, corresponded to the following 

values of the curvature of the bends and bends of the pipelines: 

0.57; 0.28λ =  and 0.14 the modulus of elasticity of the steel 

from which the pipes are made is assumed to be equal 
52 10E MPа= ⋅ , Poisson's ratio 0.3ν = . The results of the 

calculations are presented in Tables 1-4 and in the graphs of 

Figs 2-4, which shows the change in the frequencies of the 

intrinsic bending vibrations mnω  curvilinear sections of the 

steel pipeline, depending on the speed of the flowing liquid for 

different values of the shell thickness. The flow rate u, which 

varies in the range of actual velocities flowing in the fluid 

pipelines (up to 25
m

s
), little effect on the frequencies of 

natural oscillations of the curvilinear sections of the steel 

pipeline for all the investigated shell forms of oscillations 

( 1,2,3m = ,4 при 1,2,3n = ). Oscillation frequencies mnω  

decrease with an increase in the flow rate from 0 to 25
m

s
 not 

more than 10%. For each of the sections of the pipeline 

considered, the largest frequencies of natural oscillations are in 

the first form 1nω  at 1m = . 

Table 1. Natural frequencies as a function of the velocity of the flowing liquid. 

1

20
=r

R
, 

1

60
=h

r
 23=µµµµ  mnωωωω ( Hz) at the velocity of the flowing liquid in 

m

s
 

Form of oscillation Frequencies 0u ====  20u ====  40u ====  

1m =  

11ω  26.46 21.01 17.25 

12ω  21.01 20.45 17.74 

13ω  22.92 22.72 20.55 

2m =  

21ω  13.39 12.83 10.42 

22ω  16.67 15.82 12.51 

23ω  18.68 18.44 16.20 

3m =  

31ω  13.02 12.29 9.28 

32ω  16.43 15.61 12.32 

33ω  18.34 18.17 15.83 

4m =  

41ω  19.47 19.33 14.21 

42ω  20.12 20.06 12.97 

43ω  21.36 21.22 11.38 

 
If there is no deformation of the contour of the cross 

sections of the pipe - that is, the pipe oscillates like a beam of 

tubular section. For the dynamic calculation of the pipeline, 

the most important is the shell mode (with 2m =  and 3), 

corresponding to the deformed contour of the pipe cross-

section. With the increase in the curvature of the pipeline 

section, that is, the ratio 
r

R
, corresponding to the deformed 

contour of the pipe cross-section. With the increase in the 

curvature of the pipeline section, that is, the ratio 

(
h

const
r

= ) frequencies mnω  of their own flexural 

vibrations increase. Similarly, with an increase in the relative 

thickness (
h

r
, at a constant curvature of the tube), the natural 

frequencies of bending vibrations increase. Thus, the greater 

the curvature of the tube, the more rigid it becomes, and the 

thicker the pipe wall, the more rigid it is. This is also seen 

from the graphs in Figure 6, which shows monotonically 

increasing frequency dependence 21ω  in the form of 

oscillation. 



 American Journal of Mechanics and Applications 2018; 6(2): 37-49 45 

 

 

Table 2. Eigen frequencies depending on the velocity of the flowing liquid. 

1

20
=r

R
, 

1

60
=h

r
 11,5=µµµµ  mnωωωω ( Hz) at the velocity of the flowing liquid in 

m

s
 

Form of oscillation Frequencies 0u ====  20u ====  40u ====  

1m =  

11ω  55.34 53.47 51.13 

12ω  56.05 55.27 52.39 

13ω  60.56 59.99 57.18 

2m =  

21ω  36.26 34.09 28.57 

22ω  44.60 43.78 40.35 

23ω  51.67 50.52 47.06 

3m =  

31ω  35.02 33.01 26.51 

32ω  43.11 43.50 39.22 

33ω  50.03 49.63 46.58 

4m =  

41ω  53.01 50.31 47.44 

42ω  54.95 52.05 48.50 

43ω  55.82 53.92 49.99 

 
At 2m =  the curvature parameter of the pipeline section µ  

and 
h

r
 significantly affects the natural frequencies of oscillations. 

The smaller the curvature of the tube and the thinner its 

walls, the lower its frequencies of natural oscillations mnω  

practically in all forms. 

At the speed of the liquid 40 u≤ ≤  50 the minimum value 

of the frequencies mnω . At these values of the frequencies of 

the curvilinear shells, the amplitudes and deformations take 

on the maximum values 

Study of frequencies mnω  for the first three forms of 

natural oscillations 1,2,3m =  curvilinear sections of 

polyethylene pipelines with a much smaller modulus of 

elasticity than in steel pipes made it possible to reveal a 

significant dependence of the values of the oscillation 

frequencies on the flow velocity of the liquid. Low natural 

frequencies of pipelines are dangerous due to the possibility 

of occurrence of a resonant situation. 

Table 3. Eigen frequencies depending on the velocity of the flowing liquid 

1

20
=r

R
, 

1

60
=h

r
11.5=µµµµ   mnωωωω ( Hz) at the velocity of the flowing liquid in 

m

s
 

Form of oscillation Frequencies 0u ====  20u ====  40u ====  

1m =  

11ω  8.61 8.01 7.42 

12ω  10.52 10.23 9.22 

13ω  12.25 12.03 11.93 

2m =  

21ω  8.30 7.83 7.12 

22ω  10.23 9.84 9.01 

23ω  11.84 11.75 11.52 

3m =  

31ω  7.13 6.70 6.32 

32ω  8.82 8.42 7.82 

33ω  10.12 9.91 9.72 

4m =  

41ω  11.13 11.05 10.11 

42ω  12.42 12.72 12.92 

43ω  14.03 13.79 13.25 

Table 4. Natural frequencies as a function of the velocity of the flowing liquid. 

1

20
=r

R
, 

1

60
=h

r
 5,5=µµµµ  mnωωωω ( Hz) at the velocity of the flowing liquid in 

m

s
 

Form of oscillation Frequencies 0u ====  20u ====  50u ====  

1m =  
11ω  31.21 30.52 29.09 

12ω  40.02 39.31 38.05 
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1

20
=r

R
, 

1

60
=h

r
 5,5=µµµµ  mnωωωω ( Hz) at the velocity of the flowing liquid in 

m

s
 

Form of oscillation Frequencies 0u ====  20u ====  50u ====  

13ω  47.02 46.64 46.18 

2m =  

21ω  24.24 53.02 20.39 

22ω  30.56 29.26 26.55 

23ω  36.44 35.91 35.27 

3m =  

31ω  20.83 19.51 16.17 

32ω  24.91 24.01 23.34 

33ω  28.61 28.39 28.35 

4m =  

41ω  29.02 28.92 28.98 

42ω  30.17 29.15 29.01 

43ω  31.36 30.97 30.05 

 

Figure 2. The change in the frequencies of the intrinsic bending vibrations from the velocity of the flowing liquid (h=0.001). 
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Figure 3. Change in the frequencies of natural flexural vibrations from the velocity of the flowing fluid (h = 0.005). 

 

Figure 4. Changing the frequencies of own flexural vibrations from the velocity of the flowing fluid (h = 0.01). 
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Figure 5. Dependence of the frequency of free oscillations on L/d. 

 

Figure 6. Changing the frequencies of own bending vibrations from the flowing fluid velocity. 

Thus, when calculating the curvilinear section of a 

polyethylene pipeline with relative curvature 
1

50

r

R
=  already 

according to the first form of oscillation ( , 1m n = ) at a liquid 

flow rate 20
m

U
s

=  frequency 11 0ω =  (see the diagram of 

the dashed line in Figure 6). It means that for such a pipeline 

speed 20
m

U
s

=  is critical and it has lost stability. 

 

Figure 7. Dependence 21ω  from the corner α  at a relative thickness 

/ 1 / 72h r =  with different types of fixing the end cross sections for 

18µ = .(1-jamming- jamming; 2-articulated- jamming;3—articulated--

articulated) 

Figure 7 shows the change in the real parts of the natural 

frequency from α  various fastenings [23, 24]. 

6. Conclusions 

1. The problem posed for the natural oscillations of thin-

walled toroidal shells with a flowing liquid is solved on the 

basis of a geometrically nonlinear semimuscular theory of 

shells in toroidal coordinates. The hydrodynamic pressure of 

the liquid flow is obtained using the theory of the potential 

flow of a fluid. The obtained solution makes it possible to 

determine the values of the natural oscillation frequencies of 

the pipeline according to shell wave numbers , 1, 2,3,..m n = . 

2. Based on the general solution of the problem, a method 

for determining the natural oscillation frequencies of toroidal 

shells of large diameter under the influence of internal 

hydrostatic pressure and hydrostatic pressure caused by fluid 

motion has been developed. The application of this technique 

in dynamic calculations of pipelines will avoid the 

occurrence of a dangerous phenomenon of resonance. 

3. The natural oscillations of toroidal steel shells of 

pipelines with a liquid flow for various values of the relative 

curvature 
r

R
, thinness 

h

r
 pipes and different speeds U  

flowing fluid. Analysis of the results of the studies allowed 

us to draw the following conclusions: 

- Flow rate U , varying in the range of real velocities of the 
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liquid flowing in the pipeline (up to 20
m

s
), little effect on the 

frequencies of natural oscillations of the curvilinear sections of 

the steel pipeline over all the shell shapes studied ( , 1, 2,3m n =  

at 1,2,3n = ). Oscillation frequencies mnω  decrease with an 

increase in the flow rate from 0 to 20
m

s
 not more than 7 %. 
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