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Abstract: Welded tubular structure is the backbone of offshore jacket platform. As a thin-walled structure, local joint 

flexibility (LJF) in a tubular structure is prominent, and it may produce significant effect on the dynamic performance for the 

overall structure. This study presents a simplified model to analyze the dynamic behavior of a steel tubular structure with LJF. 

The presented model simplifies a tubular structure into a frame model consisted of beam elements with considering the LJFs at 

the connections between any two elements. The LJF is simulated with a fictitious beam element (FBE). Methods for defining the 

dimensions of the cross section and the material properties of the FBE are provided. The accuracy of the presented method is 

verified through comparing with three dimensional (3D) finite element results on the vibration of a tubular structure. The tested 

results indicate that LJF has remarkable effect on the vibration of welded tubular structures, and the simplified model presented 

in this study can provide more accurate estimation compared to conventional rigid frame model. 

Keywords: Welded Tubular Structure, Local joint Flexibility (LJF), Simplified Model, Fictitious Beam Element (FBE), 
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1. Introduction 

Welded tubular structure is the backbone of an offshore 

jacket platform. In this structure, circular steel tubes with 

hollow section are connected through welded joint in which 

one or several smaller tubes (called brace members) are 

welded directly onto the surface of a big one (called chord 

member). As a hollow section tube has much weaker stiffness 

in its radial direction due to the thin-walled characteristics, the 

chord deforms easily in its radial direction when a tubular joint 

is subjected to loading at the brace members. Such 

deformation is the so-called local joint flexibility (LJF). 

LJF is very common in welded tubular structures. However, 

the welded tubular structure in an offshore jacket platform is 

generally simplified as a frame structure with rigid connection 

at the tubular joint for computational effeciency and design 

brevity, as shown in Figure 1, which indicates that the LJF is 

not considered in the simplified model. The feasibility of the 

ignorance of the LJF in a welded tubular structure has to be 

evaluated to ensure that such simplification has no much 

influence on the performance of the structure. 

 

Figure 1. Simplified frame model for an offshore jacket platform. 
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In some design guidelines, such as API (2000) [1], it is 

specified that the LJF has an inevitable effect on the fatigue 

behavior of a tubular structure, and hence it is necessary to be 

considered in design. Through experimental investigation, 

Liu et al. found that the joint rigidity has remarkable effect 

on the static strength of steel dome structures with welded 

spherical joints [2]. For welded tubular joints, many studies 

of the LJF effect on the behavior tubular structures were 

reported in the literature, and representative ones were 

presented by many researchers [3-9]. 

To consider the LJF effect on a tubular structure, the 

method for calculating of the LJF for different types of 

tubular joints is necessary to be presented. Many researchers 

paid their effort in this topic [10-17]. 

However, previous studies in analyzing the performance of 

tubular structures considering the LJF have still some 

problems when they are used in design stage. The most 

critical problem is the lack of suitable method to apply the 

presented LJF to the structural analysis of the entire tubular 

structure. Although some researchers presented revised 

stiffness matrix of a beam element in the simplified model by 

introducing the LJF into such stiffness matrix, this method 

lacks flexibility because the stiffness matrix of each element 

in the simplified frame model has to be modified when 

different types of tubular joints are found in the tubular 

structure. 

To overcome such problem, a fictitious beam element is 

presented in this study to represent the LJF in a tubular 

structure. With this method, an offshore jacket platform can 

be simplified into a frame model without losing 

computational accuracy conveniently. Using the presented 

model, the vibration of a welded tubular is analyzed. The 

vibrating process is evaluated through comparison with such 

process by simulation with three-dimensional (3D) finite 

element analysis. 

2. Simplified Model of a Welded Tubular 

Structure 

2.1. Definition on Local Joint Flexibility (LJF) 

The local joint flexibility can be illustrated in Figure 2, in 

which a tubular T-joint is subjected to axial compression at 

the brace. It is clear that a concave deformation on the chord 

surface around the brace/chord intersection forms. Such local 

deformation may produce remarkable effect on some 

performances of a tubular structure, and it is referred to local 

joint flexibility (LJF) of a tubular joint. Obviously, the LJF 

becomes larger when the ratio of the chord diameter to the 

chord thickness, namely a thin-walled tube. 

 

Figure 2. Local deformation at a tubular joint. 

To represent the degree of the LJF, definition on the LJF of 

a tubular joint has to be defined. A tubular joint in a tubular 

structure is mainly subjected to axial load (tension or 

compression) and in-plane bending. When the LJFs of a 

tubular joint under axial load and in-plane bending are 

denoted with axLJF  and ipbLJF  respectively, they can are 

defined and calculated from the following equations: 

ax
ax

LJF
P

δ=                    (1) 

ipbLJF
M

φ=                    (2) 

where δ is the axial displacement of the brace at the 

intersection, Pax is the axial load at the brace, ϕ is the rotation 

angle of the brace in the joint plane, and M is the in-plane 

bending moment at the brace. 

As seen in Figure 3, four critical locations, namely a, b, c 

and d, are marked. Locations a and c are called crown and 

locations b and d are called saddle. Additionally, three 

locations, namely e, f and g, are also marked in Figure 3. 

They are located at the two sides of the chord, and e, f and g 

are located on the same cross sections passing through a, b/d 

and c respectively. Displacements of locations a, b, c, d, e, f 

and g in transverse direction of the chord are denoted with 

a∆ , b∆ , c∆ , d∆ , e∆ , f∆  and g∆  respectively, and 

the intersecting angle between the brace and the chord is 

denoted with θ. The diameter of the chord is denoted with D. 

δ and ϕ in Equations (1) and (2) can then be calculated from 

the follow equations 

a b c d
f / sin

4
δ θ∆ + ∆ + ∆ + ∆ = − ∆ 

 
       (3) 

a e c g
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θ
∆ − ∆ + ∆ − ∆

=              (4) 
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Figure 3. Saddles and crowns in a tubular joint. 

2.2. Simulation of LJF with Fictitious Beam Element 

(FBE) 

When an offshore jacket platform is simplified into a 

conventional frame as shown in Figure 1, the tubes are 

connected together through rigid connection, such as a 

typical tubular T-joint and a typical tubular Y-joint shown in 

Figures 4(a) and 4(b) respectively. Such rigid connection 

ignore the local deformation of the chord under axial load 

and in-plane bending, and hence the stiffness of the tubular 

joints are overestimated. 

 

Figure 4. Rigid connection in a tubular joint. 

To overcome such problem, a fictitious beam element 

(FBE) is presented in this study to represent such LJF. After 

introducing the FBE in a tubular joint, the typical tubular T- 

and Y-joints are simplified as shown in Figure 5. Compared 

with conventional rigid connection, a fictitious beam element 

is added between the brace and the chord. The length in the 

transverse direction of the chord is equal to the radius of the 

chord, i.e., D/2. The FBE is used to represent the LJF of the 

tubular joint, and its material properties and geometrical 

configuration are necessary to be determined when the 

simplified model is analyzed. 

 

Figure 5. FBE in a tubular joint. 

When a tubular joint is subjected to axial load, the stress 

and the strain of the FBE are calculated from the following 

equations 

sin
2

D

δε
θ

=                 (5) 

axP
E

A
σ ε= =                 (6) 

where E and A are the elastic modulus of the material and the 

cross section area respectively for the FBE. 

From Equations (5)-(6), the cross section area A can be 

obtained as follow 

ax

2 sin

D
A

E
P

δθ
=

⋅ ⋅
               (7) 

Substitute Equation (1) into Equation (7), the following 

equation can be obtained 

ax2 sin

D
A

E LJFθ
=

⋅ ⋅
             (8) 

Similarly, the following equation is obtained when a 

tubular joint is subjected to in-plane bending moment 

sin
2

EI
M

D

φ

θ
=                   (9) 

where I is the moment of inertia for the FBE. 

Equation (9) is converted in the following equivalent 

equation 

2 sin

D
I

E
M

φθ
=

⋅ ⋅
               (10) 

Substitute Equation (2) into Equation (10), the moment of 

inertia of the FBE is calculated from the following equation 

ipb2 sin

D
I

E LJFθ
=

⋅ ⋅
            (11) 

From Equations (8) and (11), the cross section of the FBE 

can be determined when the elastic modulus of the material 

(E) and the LJFs of a tubular joint under axial load and 

in-plane bending moment are provided. The elastic modulus 
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of the material can be given with any value. For brevity, such 

value can be same as that of the chord member. The LJFs of a 

tubular joint can be calculated from the reported parametric 

equations in the literature or analyzed directly from a 3D 

finite element analysis. 

After A and I are determined from Equations (8) and (11), 

the cross section of the FBE can be designed with any shape, 

i.e., a rectangle or a circle. 

3. Verification on FBE Model 

3.1. Case Study: A Welded Tubular Structure 

Based on the simulation on the LJF of a tubular joint with 

FBE method, an offshore jacket platform is easily simplified 

into a frame structure considering local deformation at the 

connections. To verify the accuracy of the FBE model in a 

tubular structure, a typical welded tubular frame as shown in 

Figure 6(a) is analyzed. This tubular structure is a similar one 

with that used in practical offshore platforms as shown in 

Figure 7. The tubular frame as shown in Figure 6(a) is 

consisted of a series of tubular T-joints. In this study, the left 

end of the tubular frame is assumed to be fixed and the right 

end is assumed to be free. A rigid steel plate is connected to 

the top and to the bottom chords at the right end of the 

tubular frame. A vertical periodical concentrated force is 

applied to the top end of the steel rigid plate, and it is 

expressed as follow 

( )60sin 4F tπ=              (12) 

The units of F and t are kN and s respectively, and the time 

lasts for 5 seconds. 

The chord and the brace members in Figure 6 (a) are 

φ219×6 and φ119×6 (unit: mm) respectively. The density and 

the elastic modulus of the steels are 7830 kg/m
3
 and 

210000N/mm
2
 respectively. Other dimensions can be found 

from Figure 6 (c). 

 

(a) Geometry of a tubular frame 

 

(b) 3D model 

 

(c) Rigid frame model 

 

(d) FBE model 

Figure 6. Different models of a tubular frame. 

 

Figure 7. Tubular frame in offshore platforms. 

Three types of models are presented to analyze the 

vibration of the tubular frame under the periodical force in 

Equation (12). 3D model is the most accurate one because it 

can simulate every details of the tubular frame, and it is 

shown in Figure 6 (b). In the 3D model, hexahedron element 

is used in the discretization of the entire structure, and overall 

96296 elements are used in the finite element mesh. The 

element size far away from the weld is 30mm while the 

element size around the weld is 10mm to simulate high stress 

gradient in this region. The second model is conventional 

frame model with rigid connection, and beam elements with 

rigid joints at both ends are used. The overall element 

number is 1318. In the third model, FBE is used to simulate 

the LJF, and hence 6 additional FBEs as shown in Figure 6 (d) 

are used compared to conventional frame model with rigid 

connection. 



 American Journal of Mechanics and Applications 2017; 5(5): 41-46 45 

 

As mentioned previously, definition on the FBE depends 

on the LJFs, as seen from Equations (8) and (11). In the 

literature, Fessler et al. presented the LJFs of tubular 

T/Y-joints under axial load and in-plane bending moment as 

follows [18] 

( )1.32.15 1.29
, 1.95 1 sinT Y

AXLJF
ED

γ β θ−
=         (13) 

1.73 4.52 1.22
,

3

134 sinT Y
IPB

e
LJF

ED

βγ θ−
=  

In Equation (13), γ is the ratio of the radius to the thickness 

of the chord, and β is the diameter ratio of the brace to the 

chord. 

For the FBE, its cross section is assumed to be rectangular, 

and the breadth X and the height Y of the FBE are calculated 

based on the values of A and I determined from Equations (8) 

and (11) respectively. The detailed values for some 

parameters are listed in Table 1. 

Table 1. LJFs and geometrical parameters of FBEs. 

LJF(AX) (mm/N) LJF(IPB) (rad/N·mm) A (mm2) I (mm4) X (mm) Y (mm) 

7.88×106 7.93×1010 66.1 657539 0.191 345.5 

 

3.2. Results and Discussion 

The vibrations of the tubular frame with the above 

mentioned different models are illustrated in Figure 8 in 

which the displacement development history with the time is 

shown. From the comparison in Figure 8, it is found that the 

frame model with simulation on the LJF by using FBE can 

produce very similar result compared to the 3D model. The 

difference of the displacement amplitudes between the FBE 

frame model and the 3D model is only 0.03%. However, the 

frame model with rigid connection underestimates the 

displacement amplitude compared to the other two models, 

which indicates that conventional frame model with rigid 

connection has higher stiffness and provides unsafe 

prediction on the dynamic performance of the tubular frame. 

The difference of the displacement amplitudes between the 

frame model with rigid connection and the 3D model is as 

large as 31%. Therefore, the conventional frame model with 

rigid connection should be used with caution for design 

purpose. 

 

Figure 8. Vibration analyses of the tubular frame with different models. 

Using the three different models, the vibration of the 

tubular frame in 5 seconds is analyzed in a same computer, 

and thus the computing time can be compared to evaluate the 

computing efficiency of the three models. The computing 

periods for the 3D model, the conventional frame model with 

rigid connection and the FBE model are 3 minutes, 23 

seconds and 25 seconds respectively. It is concluded that the 

presented FBE model has almost same computing time 

compared to the conventional frame with rigid connection 

while it has much shorter computing time compared to the 

3D model. Therefore, the presented FBE frame model has the 

advantages of both high accuracy and computing efficiency. 

4. Conclusion 

Through introducing a fictitious beam element (FBE), the 

local joint flexibility (LJF) of a welded tubular joint in 

tubular structures is simulated. The definition and the 

calculation on the presented FBE are given based on 

theoretical analysis. Based on the simulation on the LJF of a 

tubular joint with FBE, a welded tubular structure can be 

simplified into a frame model consisted of beam elements. 

Using the presented method, the vibration of a tubular frame 

is analyzed, and its result is compared with those calculated 
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from 3D finite element model and conventional frame model 

with rigid connection at the joint. The comparison shows that 

the presented model is reliable and accurate in analyzing the 

vibration of welded tubular joints while the conventional 

frame model with rigid connection overestimates the 

structural stiffness and produces an unsafe prediction. 

 

References 

[1] API. Recommended practice for planning, designing and 
constructing heliports for fixed offshore platforms. API 
PR2A-WSD, American Petroleum Institute, USA, 2000. 

[2] H. Liu, Z. Chen, S. Xu, Y. Bu, “Structural behavior of 
aluminum reticulated shell structures considering semi-rigid 
and skin effect”, Steel and Composite Structures, 2015, vol. 
54, pp. 121-133. 

[3] B. Z. Chen, Y. R. Hu, M. J. Tan, “Local joint flexibility of 
tubular joints of offshore, structures”, Marine Structures, 1990, 
vol. 3, pp. 177-197. 

[4] L. X. Yang, T. Y. Chen, S. Y. Wu, “Local flexibility behavior 
of tubular joints and its effect on global analysis of tubular 
structures”, China Ocean Engineering, 1990, vol. 4, pp. 
371-384. 

[5] Y. R. Hu, B. Z. Chen, M. J. Tan, “An equivalent element 
representing local flexibility of tubular joints in structural 
analysis of offshore platforms”, Computers and Structures, 
1993, vol. 47, pp. 957-969. 

[6] T. Chen, H. Zhang, “Stress analysis of spatial frames with 
consideration of local flexibility of multiplanar tubular joint”, 
Engineering Structures, 1996, vol. 18, pp. 465-471. 

[7] W. Wang, Y. Y. Chen, “Modeling and classification of tubular 
joint rigidity and its effect on the global response of CHS 
lattice girders”, Structural Engineering and Mechanics, vol. 21, 
pp. 677-698. 

[8] M. Mirtaheri, H. Ali Zakeri, P. Alanjari, M. Amin Assareh, 
“Effect of joint flexibility on overall behavior of jacket type 
offshore platforms”, American Journal of Engineering and 
Applied Sciences, 2009, vol. 2, pp. 25-30. 

[9] P. Alanjari, B. Asgarian, M. Kia, “Nonlinear joint flexibility 
element for the modelling of jacket-type offshore platforms”, 
Applied Ocean Research, 2011, vol. 33, pp. 147-157. 

[10] J. G. Bouwkamp, “An improved joint model and equations for 
flexibility of tubular joints”, Journal of Petroleum Technology, 
1996, vol. 18, pp. 1491-1499. 

[11] Y. Ueda, S. M. H. Rashed, K. Nakacho, “An improved joint 
model and equations for flexibility of tubular joints”, Journal 
of Offshore Mechanics and Arctic Engineering, 1990, vol. 112, 
pp. 157-168. 

[12] G. Z. Qiu, J. C. Zhao, “Analysis and calculation of axial 
stiffness of tubular X-joints under compression on braces”, 
Journal of Shanghai Jiaotong University (Science Edition), 
2009, vol. 14, pp. 410-417. 

[13] G. Z. Qiu, J. H. Gong, J. C. Zhao, “Parametric formulae for 
axial stiffness of CHS X-joints subjected to brace axial 
tension”, Journal of Zhejiang University - Science A (Applied 
Physics & Engineering), 2011, vol. 12, pp. 121-130. 

[14] F. Gao, B. Hu, H. P. Zhu, “Parametric equations to predict LJF 
of completely overlapped tubular joints under lap brace axial 
loading”, Journal of Constructional Steel Research, 2013, vol. 
89, pp. 284-292. 

[15] F. Gao, B. Hu, H. P. Zhu, “Local joint flexibility of completely 
overlapped tubular joints under in-plane bending”, Journal of 
Constructional Steel Research, 2014, vol. 99, pp. 1-9. 

[16] L. J. Jia, Y. Y. Chen, “Evaluation of elastic in-plane flexural 
rigidity of unstiffened multiplanar CHS X-joints”, 
International Journal of Steel Structures, 2014, vol. 14, pp. 
23-30. 

[17] B. Asgarian, V. Mokarram, P. Alanjari, “Local joint flexibility 
equations for Y-, T and K-type tubular joints”, Ocean System 
Engineering, 2014, vol. 4, pp. 151-167. 

[18] H. Fessler, P. B. Mockford, J. J. Webster, “Parametric 
equations for the flexibility matrix of single brace tubular joint 
in offshore structures”, Proceedings of the Institution of Civil 
Engineers, 1986, vol. 81, pp. 659-673. 

 

 


