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Abstract: β-galactosidase (EC 3.2.1.23) is important in the formation of a medicinal plant Artemisia judaica (al-ba’atharan) 

aroma. The crude plant extracts of Artemisia judaica were used to characterize the enzyme in the term of pH, temperature, 

enzyme kinetic and effects of some heavy metals on its activity. The enzyme activity was measured by its ability to hydrolyze 

the substrate 2-nitrophenyl β-D-galactopyranoside (ONPG). The enzyme activity was reached maximum at 50°C and at pH 

6.0. The Km and Vmax values of the enzyme were 3.6 mM and 1.67 µmol/min, respectively. Uncompetitive inhibition was 

observed in presence of Hg
+2

, Fe
+3

 and Zn
+2

 for the enzyme β-galactosidase in the crude extract through the decrease in the Km 

and Vmax values. Pb
+2

 and Cu
+2

 were found to act as a noncompetitive inhibitors on the enzyme β-galactosidase in the crude 

extract due to increase in the Km values and decrease in Vmax values. The study showed that Hg
+2

 was the most potent inhibitor 

while Cu
+2

 exhibited the least inhibition degree on β-galactosidase activity in the Artemisia judaica. These finding indicated 

that the enzyme β-galactosidase in the crude leaves extract of Artemisia judaica can be used in industrial and medical 

applications. 
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1. Introduction 

β-galactosidase (also β-D-galactohydrolase) called lactase 

and transglycosylases [1] are group of enzymes able to 

cleave β linked galactose residues from various compounds 

and is commonly used to cleave lactose into galactose and 

glucose [2], it was widely distributed in nature and found in 

many microorganisms, plant and animal tissues [3, 4, 5, 6]. 

β-galactosidases have many biological roles include 

degradation of structural polysaccharides in plant cell walls; 

thereby can promote their loosening and the consequent 

elongating of the cell [7, 8]. They have many medical and 

industrial applications include treatment of lactose 

malabsorption and production of lactose hydrolyzed milk [9, 

10, 11]. These enzymes have two important applications: the 

removal of lactose from milk products for lactose intolerant 

people and production of galactosylated products [12, 13, 14, 

15]. β-galactosidases have been detected in a wide range of 

plant organs and tissues and are described by their ability to 

hydrolyze terminal non-reducing β-D-galactosyl residues 

from β-D-galactosides [16]. It has been purified from various 

plant sources, like chick pea [17], almond [6], apricots [18], 

Vigna unguiculata [19], apricot seed [20]. β-galactosidase 

play key roles in fruit ripening. β-galactosidase activity was 

reported during fruit development and ripening for rice [21], 

pepper [22] and Arabidopsis [23]. Many studies have 

indicated remarkable increase in expression level of mRNA 

β-galactosidase during fruit ripening in many fruits [24, 25]. 

It was reported that β-galactosidases are widely distributed in 

many plant tissues, like seeds [6, 20], stems [19], and 

meristem zones of roots, trichomes, cotyledons, vascular 

tissues, and pollens [26, 27]. On the other hand, it also 
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participates in the cell wall modification during elongation 

and differentiation of plant cells [28, 29]. Plant β-

galactosidase would be best suited for industrial applications 

because of its easy availability, cost effectiveness and easy 

adaptability [30]. β-galactosidase from almond seeds was 

used for the preparation of delactosed milk for those lactose-

intolerant individuals [6]. 

Heavy metals are essential and important for plants 

growth, and play a great role in many vital compounds [31]. 

Some of these metals are micronutrients necessary for plant 

growth, such as Zn
2+

, Cu
2+

, Mn
2+

, Ni
2+

, and Co
2+

, while 

others have unknown biological function, such as Cd
2+

, Pb
2+

 

and Hg
2+

 [32]. At high concentrations, all heavy metals have 

strong toxic effects and are regarded as environmental 

pollutants [33, 34]. They may alter the reaction rates and 

influence the kinetics properties of enzymes which cause 

changes in metabolism of plant, or any excessive amount of 

heavy metals may drive the oxidative stress [35]. 

Artemisia judaica L. (Wormwood), known al-ba’atharan 

in Arabic, is a perennial fragrant shrub, bushy herbs, 

grows in the valley bottoms in the desert areas particularly 

at the Southern part nearest Saudi-Jordan borders (Al-

Mudawarah) and in Sinai Peninsula in Egypt [36, 37, 38]. 

It is used traditionally as a medicinal herb in Jordan and 

Egypt. Artemisia has multiple beneficial bioactivities such 

as antiviral, antipyretic, antihemorhagic, anticoagulant, 

antitumor, anti-anginal, anti-ulcerogenic and anti-hepatitis 

[39, 40]. In this original study, the crude plant extracts of 

leaves of Artemisia judaica L. were used as a source for 

the enzyme β-galactosidase. The enzyme activities, 

kinetics and the effects of heavy metals were investigated 

as a primary step for the use of β-galactosidase in 

industrial, biotechnological and medical applications in 

future. 

2. Materials and Methods 

2.1. Materials 

Fresh plant sample of Artemisia judaica L. was collected 

from Wadi Rum (South Jordan) during February-August, 

2014. Characterization of β-galactosidase was conducted at 

the Biochemistry lab in Mutah University. 

2.2. Crude Plant Extract Preparation 

Crude plant extract was prepared from leaves of Artemisia 

judaica and used as source for β-galactosidase. Plant leaves 

were homogenized in 100 mM sodium-phosphate buffer (pH 

6.0) in a blender for 4 min. The homogenate was filtered 

using cloth sheet and then was centrifuged for 20 min at 

10,000 rpm. The supernatants were used for β-galactosidase 

assay as crude enzyme solution [22]. 

2.3. Protein Estimation 

Protein concentration was determined by Lowry et al., [41] 

using Bovine Serum Albumin (BSA) as standard. 

2.4. Enzyme Assay 

Crude plant extract was prepared from leaves of 

Artemisia judaica and used as source for β-galactosidase. 

β-galactosidase activity was assayed by measuring the 

rate at which it hydrolyzes ONPG by the method 

described by Sekimata et al. [42]. In the presence of β-

D-galactosidase, ONPG is hydrolyzed to D-galactose 

(colorless) and o-nitrophenol (ONP) (yellow). The 

reaction mixture of β-galactosidase contained 0.4 ml of 

0.1 M acetate buffer (pH 4.0), 0.5 ml of 2 mM of 

substrate and 0.1 ml of enzyme solution. After 

incubation for 15 min at 37°C, the reaction was 

terminated by addition of 1 ml of 0.1 mM Na2CO3 and 

monitored at 420 nm. One unit of enzyme activity is 

defined as the amount of enzyme that liberates 1.0 µmol 

of ONP per minute under the assay conditions. 

2.5. Determination of Kinetic Parameters 

To determine the maximum velocity (Vmax) and 

Michaelis-Menten constant (Km) of β-galactosidases, 

ONGP was used as substrate, and the effect of substrate 

concentration on enzyme activity were studied at pH 6.0 

and at temperature 50°C. The concentration of ONGP was 

increased from 1 mM to 9 mM. The enzyme activity was 

assayed by monitoring the absorbance at 420 nm. Line 

weaver-Burk Plot (Reciprocal plots) used to determine 

Vmax, and Km values [43]. 

2.6. Effect of pH on Enzyme Activity 

The optimal pH of β-galactosidases was determined by 

incubating it at 50°C in various buffers with different pH 

values ranging from 2.0 to 9.0 according to Gulzar and Amin 

[18]. The enzyme assay was performed separately in each 

buffer system. Relative activity (%) was calculated. 

2.7. Effect of Temperature on Enzyme Activity 

The optimal temperature of β-galactosidases was 

determined by incubating the reaction mixtures at various 

temperatures ranging from 20°C to 90°C, and the activity 

was expressed by relative activity (%). 

2.8. Effect of Different Heavy Metals on Enzyme Activity 

The effect of various metal ions (Hg
+2

, Zn
+2

, Cu
+2

, Fe
+3

 

and Pb
+2

) on β-galactosidase activity was determined 

through incorporated them in the standard assay mixture at 

different concentrations ranging from 100-900 µM. The 

activity was expressed as relative activity (%) compared 

to control. 

2.9. Statistical Analysis 

All experiments were implemented in triplicates and the 

results are expressed as mean values ± standard deviations 

(SD) using Microsoft excel 2007. 
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3. Results and Discussion 

3.1. Protein Content 

The protein content in the crude extract of leaves of 

Artemisia judaica was measured by Lowry method using 

BSA as standard protein (Figure 1). The result showed that 

the crude extract of leaves of Artemisia judaica has (0.56 

mg/ml) amount of protein. 

 
Figure 1. Determination of protein content (mg/ml) in crude extract of 

leaves Artemisia judaica using BSA as standard. 

3.2. Effect of pH on β-galactosidase Activity 

Each enzyme has an optimum pH at which it performs best. 

Any changing in pH will cause alteration in the enzyme 

structure and affecting their activity. As pH increases or 

decreases, certain amino acids are deprotonated or protonated, 

thereby changing the proteins conformation and activity [44]. 

The β-galactosidase activity was found to vary with pH 

values (Figure 2). The optimum pH of the enzyme activity 

was 6.0 and the enzyme was stable at pH from 2.0 to 9.0. The 

relative activities of β–galactosidase at pH 2.0, 3.0, 4.0, 5.0, 

7.0, 8.0 and 9.0 were 28%, 45%, 62%, 87%, 67%, 37% and 

24%, respectively. 

 
Figure 2. Relative activity (%) of the enzyme β-galactosidase in the crude 

extract of Artemisia judaica at different pH values. Mean ± SD (n=3). 

These results agreed with the observations reported that 

the optimum pH of plant β-galactosidase lie in the acidic 

range [45]. It has been found that the extraction of three 

isoenzymes of β-galactosidase from apricots had an optimum 

pH between 4.0 and 6.0 [18] and in almond was 5.5 [6] but 

the optimum pH value of β-galactosidase from peach was 3.0 

[46] Hymenaea courbaril 3.5 [47] and kidney beans 4.0 [48]. 

The results indicated that the enzyme is suitable for 

hydrolysis of lactose present in whey or milk where pH 

varies from 4.5 to 6.8 [6]. 

3.3. Effect of Temperature on β-galactosidase Activity 

Each enzyme has an optimum temperature at which 

reaction reaches Vmax. The reaction velocity increases with 

temperature until a peak velocity is reached, where 

maximum number of molecules having sufficient energy to 

pass over the energy barrier and form the products of the 

reaction [49]. Further increase in temperature will lead to 

decrease the reaction velocity as a result of temperature-

induced denaturation of the enzyme due to changing the 

native folded structure of proteins to uncoil into random 

configuration. At high temperature, the hydrogen bonds are 

broken, therefore, the molecular conformation of the 

enzyme becomes altered. 

The effect of temperature on β-galactosidase activity in 

the crude plant extract was investigated by measuring 

enzyme activity at different temperature values ranging 

from 20°C to 80°C. The optimum temperature was found to 

be 50°C as shown in figure (3). The enzyme was stable at 

temperature from 20°C to 60°C and at 80°C the enzyme 

exhibited 4% of the maximum activity. The relative 

activities of β - galactosidase at 20°C, 30°C, 40°C, 60°C, 

70°C, 80°C and 90°C were 40%, 63%, 84, 72%, 13% and 

4%, respectively. 

 

Figure 3. Relative activity (%) of the enzyme β-galactosidase in the crude 

extract of Artemisia judaica at different temperature degrees. Mean±SD 

(n=3). 

The loss of activity of the enzyme at higher temperatures 

could be attributed to its unfolding and subsequent loss of 

active site due to denaturated proteins [50]. The same 

optimum temperature obtained (50°C) for nasturtium, peach 

and Hymenaea courbaril [51, 46, 47]. It has been found the 

extraction of three isoforms of β-galactosidase from mung 

bean seedlings have the optimum temperature between 50°C 

to 53°C [51]. In many plants, The optimum temperature was 

slightly different, such as in chick pea, cowpea and almond, it 

was 60°C [52, 17, 6], apricots 40°C [18] and for apricot seed 

was 70°C [20]. Most of above studies provided that the 

optimum temperature of most β-galactosidase in the range 

40-60°C. 

Determination of optimum temperature is an important 

factor for the selection of enzymes for industrial, 

biotechnological and medical applications. It has been 
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reported that most of industrial enzymes have Vmax at 40-

50°C [54]. Artemisia judaica has optimum temperature 50°C, 

that means it can be used in industrial and medical 

applications. 

3.4. Kinetics Analysis 

To determine the enzyme kinetic parameters (Km and Vmax 

of β-galactosidase), initial reaction rates at different ONPG 

concentration ranging from 1 mM to 9 mM were measured. 

The data were analyzed according to Line weaver Burk plot 

by plotting 1/V value against 1/[S] value and kinetic 

parameters were calculated from the graph. The results of Km 

and Vmax values of the enzyme were 3.6 mM and 1.67 

µmol/min, respectively (Figure 4). 

 
Figure 4. Determination of Vmax and Km values of the enzyme β-

galactosidase in the crude extracts of Artemisia judaica using ONPG as a 

substrate. Mean±SD (n=3). 

Km is the concentration of substrate at which the 

reaction rate is half- maximum. Km is important in enzyme 

kinetic because its value includes not only the affinity of 

substrate for the enzyme but also the rate at which the 

enzyme-bound substrate is converted to the product in the 

catalytic reaction. Thus, Km value can be interpreted as a 

crude measurement of the affinity of the substrate for the 

enzyme [55]. 

The Km value of the enzyme was higher than reported 

earlier, 1.67 mM for carrot [56], 1.77 mM for tomato fruit 

[57], 1.85 mM for apricot β-galactosidase I [18], 1.73 mM 

for chick pea [17] and 1.19 mM for radish seed [42], but it 

was lower than that of other plants such as 5.16 mM for 

peach [46] and 10.53 mM for almond [6]. 

The rate or velocity of a reaction (V) is the number of 

substrate molecules converted to product per unit time. The 

rate of an enzyme-catalyzed reaction increases with 

substrate concentration until a maximal velocity (Vmax) is 

reached. The leveling off of the reaction rate at high 

substrate concentrations reflects the saturation with 

substrate of all available binding sites on the enzyme 

molecules present [49]. 

However, the Vmax value of the enzyme β-galactosidase 

in the crude extract was higher than reported earlier. The 

Vmax value for β-galactosidase I, β-galactosidase II and β-

galactosidase III isolated from apricots was found to be 

0.52, 0.70 and 0.38 µmol/min, respectively [18], but it was 

lower than that of other plants such as 5.2 µmol/min for 

rice [56]. 

3.5. Effect of Heavy Metals on β-galactosidase Activity in 

Artemisia judaica Leaves Extract 

Heavy metals can be stimulatory, inhibitory, or even toxic 

in biochemical reactions depending on their concentrations 

and type of heavy metals [44]. All results are analyzed 

according to their effects: uncompetitive inhibition and 

noncompetitive inhibition. 

The apparent effect of an uncompetitive inhibitor is to 

decrease Vmax and to actually decrease Km. Once the inhibitor 

has bound to enzyme, it will prevent it from turning the 

substrate into product by direct interaction, or due to a 

change in conformation of the active site [58]. 

The Vmax/Km ratio is called "catalytic power" and it is a 

good parameter for finding the most effective or ineffective 

heavy metal (Table 1) [59]. 

The results (Table 1) indicated that Hg
2+

, Zn
2+

 and Fe
3+

 

have an uncompetitive inhibition on the β-galactosidase 

activity in the crude extract of Artemisia judaica by 

decreasing both Vmax value from 1.67 µmol/min (control) to 

0.676, 1.25 and 1.12, and Km value from 3.6 mM (control) to 

1.75, 2.77 and 2.32, respectively. Figure (5) showed that the 

relative activities of Hg
2+

, Zn
2+

 and Fe
3+

 were 40.4%, 74.8% 

and 67.0%, respectively. 

A compound may have unequal affinity for both free 

enzyme and the enzyme-substrate complex. This mixture of 

competitive and noncompetitive phenotypes is called mixed 

inhibition, so Km value is increased. These inhibitors will 

decrease the Vmax/Km ratio (Table 1) [55]. 

The results which are shown in figures (5) and table (1) 

indicated that that Pb
2+

 and Cu
2+

 acted as a mixed 

noncompetitive inhibitors on the enzyme β-galactosidase in 

the crude extract of Artemisia judaica by decreasing Vmax 

value from 1.67 umol/min (control) to 1.28 and 1.61 

umol/min, relative activities to 76.6% and 96.4%,, and 

increasing Km value from 3.6 mM (control) to 4.54 and 5.55 

mM, respectively. 

 

Figure 5. Relative activity (%) of β- galactosidase in the crude extract of 

Artemisia judaica in control and in the presence of different heavy metals 

using ONPG as substrate. Mean±SD (n=3). 
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Table 1. Kinetic values for the enzyme β-galactosidase in the crude extract 

of Artemisia judaica in control and in the presence of different heavy metals. 

Mean±SD (n=3). 

Heavy 

metals 

Km 

(mM) 

Vmax 

(umol/min) 
Vmax/Km Effects 

Control 3.6 1.67 0.461 Normal 

Hg2+ 1.75 0.676 0.386 Uncompetitive 

Zn2+ 2.77 1.25 0.451 Uncompetitive 

Fe3+ 2.32 1.12 0.482 Uncompetitive 

Pb2+ 4.54 1.28 0.369 Mixed noncompetitive 

Cu2+ 5.55 1.61 0.281 Mixed noncompetitive 

β-galactosidases from different sources like cotyledon of 

cowpea, chick pea, mung bean seedlings were found to be 

inhibited by Hg
+2

, Zn
+2

, Cu
2+

 and Fe
+3

 [60, 53], while Cu
2+

 

and Zn
+2

 had no effect on β-galactosidase activity from peach 

[46]. Recent reports revealed that heavy metals such as Hg
2+

 

and Fe
3+

 as well as some other heavy metals and organic 

compounds are well-known inhibitors of β-galactosidases 

from peach and rice shoots, While Zn
2+

 had no effect on the 

enzyme activity [56, 46]. 

4. Conclusions 

Crude plant extracts of leaves of Artemisia judaica L. were 

analyzed for β-galactosidase activity and kinetics. The results 

demonstrated that the enzyme β-galactosidase in the crude 

extract of Artemisia judaica have a potential activities 

according to the Km and Vmax values. The β-galactosidase of 

Artemisia judaica had its maximum activity at pH 6.0 and 

was stable at pH values from 2.0 to 9.0, and the optimum 

temperature for was 50°C. The results of Km and Vmax values 

of the enzyme were 3.6 mM and 1.67 µmol/min, respectively. 

According to these findings, the enzyme β-galactosidase in 

the crude extract of Artemisia judaica can be used in 

industrial, biotechnological and medical applications. 

Presence of heavy metals altered these activities as 

uncompetitive or mixed noncompetitive inhibitors. For 

example, Hg
2+

, Zn
2+

 and Fe
2+

 acted as uncompetitive 

inhibitors by decreasing Km and Vmax values, while Pb
2+

 and 

Cu
2+

 acted as mixed noncompetitive inhibitors. 
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