

American Journal of Embedded Systems and Applications
2017; 5(6): 54-59

http://www.sciencepublishinggroup.com/j/ajesa

doi: 10.11648/j.ajesa.20170506.13

ISSN: 2376-6069 (Print); ISSN: 2376-6085 (Online)

Towards a Meta-Model for Real-Time Embedded Systems

Soukaina Moujtahid, Abdessamad Belangour, Abdelaziz Marzak

Faculty of Science Ben M‘Sik, University Hassan II, Casablanca, Morocco

Email address:

soukainamoujtahid@gmail.com (S. Moujtahid)

To cite this article:
Soukaina Moujtahid, Abdessamad Belangour, Abdelaziz Marzak. Towards a Meta-Model for Real-Time Embedded Systems. American

Journal of Embedded Systems and Applications. Vol. 5, No. 6, 2017, pp. 54-59. doi: 10.11648/j.ajesa.20170506.13

Received: December 5, 2017; Accepted: December 18, 2017; Published: January 11, 2018

Abstract: Embedded real-time systems are combinations of hardware and software fully integrated into the systems they

control. Due to the continuous technological evolution in the hardware and software and the diversity of the targeted areas of

application, these systems have become omnipresent in our professional and personal lives. Thus, various approaches based on

model driven engineering (MDE) have been proposed in order to control the inefficiency of the methods of their current design.

Each of these approaches has its own meta-model and its corresponding UML profile, specialized or adapted to a particular

category of these systems. Indeed, in this paper we will propose a generic meta-model, taking advantage of a large number of

these meta-models, which can be adapted to the majority of embedded real-time systems.

Keywords: Real-Time Embedded System, MDE, Meta-Model

1. Introduction

Embedded real-time systems are now omnipresent in

various fields. Their intelligence makes them more and more

indispensable [17]. They are, however, characterized by

complexity arising from their specific characteristics and the

high industrial constraints to which they are subjected. To

master this complexity, various software abstractions have

been implemented [18]. The abstraction offered by model

driven engineering (MDE) provides an adequate framework

for mastering this complexity. It is a new discipline of

software engineering that advocates the massive use of

models throughout the software development process. Thus,

various approaches based on the MDE have been created by

proposing their own process of development of the embedded

real-time systems [6]. Our research work lies within of this

problem. We aim to propose a new model-based development

process for embedded real-time systems. To this end, we

have begun by characterizing these systems. We have tried to

collect the characteristics of these systems which distinguish

them from other computer systems. Then, we studied the

different development processes based on models proposed

for these systems while carrying out a comparative and

detailed analysis of the most well-known meta-models. The

aim object of this article is a generic meta-model taking

advantage of these different meta-models. Thus, this paper is

structured in four parts: The first gives a general view on

embedded real-time systems and more precisely on their

characteristics. The second part presents the integration of the

MDE in the process of development of embedded real-time

systems via a panorama of the most known meta-models and

on which we were based to create a generic meta-model. This

last one which will be the subject of the third section and

finally the fourth section concludes with a synthesis of the

paper.

2. Characterization of Embedded

Real-Time Systems

A real-time system is a computer system to control the

behavior of a physical process to which it is connected [1].

To do this, a real-time system consists essentially of a

software application controlling the process, a hardware

and/or software execution support executing this application,

sensors supplying the input data of this application, and

actuators executing the orders produced by this application.

The application, the execution platforms, the sensors and the

actuators are then embedded. They are buried in the process

to which they are connected [2]. Embedded systems are

combinations of hardware and software [1] completely

55 Soukaina Moujtahid et al.: Towards a Meta-Model for Real-Time Embedded Systems

integrated in the system they control. The complexity of the

development of embedded systems stems from the specific

characteristics of embedded systems that distinguish them

from purely software systems (measurement and control of

the physical world, execution on a physical platform limited

in resources, autonomy, reliability, reactivity, Etc.), and on

the other hand, the high industrial constraints to which these

systems are subjected: development and manufacturing costs

and delays, multidisciplinary teams, certification and

documentation etc. Various methods and languages were

proposed in order to master this complexity by emphasizing

the modeling of the application and the platform constituting

the embedded system [4]. Embedded real-time systems differ

from conventional software systems by a set of features. The

characterization of these systems will allow us to understand

their specificities in order to propose a development approach

that is specific to them. However, we can classify these

specificities into two categories: characteristics specific to

embedded systems and others to real-time systems.

Embedded real-time systems are characterized by a memory

footprint, energy consumption, weight and volume, autonomy,

mobility, communication, security constraints, cost of

products in relation to the target sector and other

characteristics which will be seen in detail [6] [3]. On the

other hand, they have a common characteristic that resides in

the existence of temporal constraints to be taken into account.

These constraints can take various forms such as deadlines,

time intervals, duration of validity, etc. And apply to various

objects [1] [2] [4]. The data have a limited lifetime and

become obsolete after a certain time, the events appear at

special moments and must be taken into account after known

delays and the treatments often have moments of beginning,

end and fixed execution times. Therefore, these systems work

in real-time to manage information and to deduce actions in a

controlled time [4]. This means that the accuracy of the

results of these systems depends not only on the functional

aspects but also on the time in which these results were

obtained [3]. Embedded real-time systems are present in

several fields [14] such as healthcare, the automotive industry,

telecommunications, aeronautics, commerce, household

appliances, etc. in addition to their traditional fields such as

military or Spatial [1] [2] [3] [11]. Thus, for example, an on-

board computer is a computer integrated in a vehicle that

collects, in real time, information about the condition of the

vehicle such as fuel level, oil level, door opening, seat belt

buckle, speed control, etc. It is certainly unnecessary if this

information is available only after a significant period of time

[5]. So the on-board computer is an embedded real-time

system.

3. Modeling Embedded Real-Time

Systems with the MDE

The development of quality embedded real-time systems at

controlled costs represents a very important technological

and industrial challenge. In some industrial sectors, such as

transport, aeronautics, or telecommunications, the

maintenance of these quality / cost objectives implies the use

of formal validation and verification tools and techniques [4].

This requires the use of a model-oriented approach. One of

the characteristics of this approach is the use of executable

models that contain information about the different aspects of

the system: functional requirements, static architecture, no-

functional requirements, etc. For the use of such models to be

relevant, the formalism used must be sufficiently expressive,

and its use must be supported, not only by tools for code

generation, but also by validation and formal verification

tools at the level of the model [10]. The OMG has defined

the MDA approach (Architecture Directed by the Models).

The key objective of this approach is to develop business

models independent of the execution platforms (PIMs) and to

transform them into models specific to a given execution

platform (PSM) such as Java / J2EE, ASP.Net, etc. This was

to preserve information systems against technological

changes and increase productivity. The transition from PIM

to PSM involves a platform description model (PDM) and

model transformation mechanisms [5]. MDE is a discipline

that is a continuation of post-object technologies, such as

UML, design patterns and the MDA [6]. It generalizes the

idea of MDA where the goal is not limited to the PIM-PSM

transformation but to the use of the models in all the

activities of the software production. Each model conforms

to a meta-model expressed by the meta-model MOF (Meta

Object Facility) [10]. As part of a model-driven engineering

we used the following meta-models to create a generic meta-

model:

SPT (Schedulability, Performance and Time) is a profile

adopted by OMG [17] based on version 1.3 of UML [10],

taking into account the specificities of real time while

retaining the benefits of the object-oriented approach, and

provides a framework for temporal modeling [17] of system

planning processes that can be used during the making-

decision process [12]. SPT's goal was to fill the gaps in AML

(Abstract Modeling Level) 1.4 for designers and developers

of real-time applications by allowing annotation of model

elements by quantitative information about time [17]. This

information is then used for performance analyzes based on

models, scheduling or verification of compliance with real-

time constraints [15]. SPT considers only a metric time that

implicitly refers to physical time. SPT introduces the

concepts of instant (moment) and duration (duration), as well

as those of time-related events and stimuli. SPT also models

timing mechanisms and associated services (start, stop,

suspend, resume). All this via stereotypes to be applied in

UML modeling elements to specify the time values "RTtime",

"RTclock", "RTtimer", "RTtimeout", "RTdelay",

"RTintervale" etc. [17]. The general structure of SPT as

shown in the figure below consists of various sub-profiles

[17].

 American Journal of Embedded Systems and Applications 2017; 5(6): 54-59 56

Figure 1. SPT meta-model.

However, SPT has power gaps and flexibility problems.

Hence SPT has been replaced by MARTE [15].

Modeling and Analysis of Embedded Real-Time Systems

(MARTE) is a UML profile [14] which follows the SPT

profile [10]. MARTE enriches UML with new concepts in

order to analyze and model software as well as the hardware

of embedded real time systems [6]. The architecture of the

profile, as shown in the figure below, consists of the

packages: foundations, design model, analysis model and

appendices [9].

Figure 2. Marte meta-model.

57 Soukaina Moujtahid et al.: Towards a Meta-Model for Real-Time Embedded Systems

The basic concepts in the MARTE meta-model are defined

in the Core Elements sub-package (such as Model Element,

Classifier, Instance, etc.) [9] which is itself divided into two

packages: Foundations and Causality. The first introduces the

concepts of Model Elements, Classifer, and Instance. The

second deals with behavioral concepts (common Beravior) in

which events, executions and execution contexts are

introduced. Because of these multiple concepts, MARTE

presents a great difficulty of use [15].

MASTE (Modeling and Analysis Suite for Real Time

Applications) defines a meta-model to describe the temporal

behavior of real-time systems to be analyzed by scheduling

analysis techniques. MAST also provides a set of open-

source tools for performing scheduling analysis or other time

analysis to determine whether the system will be able to meet

its time requirements. Tools are also provided to assist the

designer in assigning scheduling parameters. By having an

explicit model of the system and automatic analysis tools, it

is also possible to carry out the design of space exploration. A

discrete event simulator is also provided to obtain statistical

information on the performance of the modeled system [13].

Figure 3. Maste meta-model.

For general design and basic concepts, each of these

meta-models uses its own concepts based on the UML

meta-model. MASTE represents only the time part of the

embedded real-time systems, on the other hand MARTE

and SPT allows in addition the presentation of the hardware

part but with various notions which makes their

implementation difficult.

4. Proposition of a Generic Meta-Model

for Embedded Real-Time Systems

We have noted in the above that there is not a complete

meta-model covering all aspects related to embedded real-

time systems and easy to be interpreted. However the

coupling between them is possible and can lead to better

results. This coupling is possible since most of the profiles

are focusing on the process paradigm. What we need is a

meta-model, in which we must define rules for the automatic

transition from one meta-model to another. This led us to

work on a generic meta-model representing an integration of

these meta-models: SPT, MARTE and MAST. Below we will

give examples of parts of this meta-model. The key elements

of this meta-model are resources, services provided by these

resources and operations given by them. This resource can be

hardware or software. A software resource can be a resource

of calculation, communication, backup, time,

synchronization etc. The captures below give a general view

of the most important parts of this meta-model:

 American Journal of Embedded Systems and Applications 2017; 5(6): 54-59 58

Figure 4. Resource model.

This model provides an abstract definition of the resource

and its different uses. The type of use of a resource depends

on the type of this resource. For example, each dynamic

object creation consumes memory and CPU time. We can

precisely specify the amount of resource used, by using the

class Resource Usage. This class includes a number of

optional parameters, including the amount of memory

required by a service request (assigned Memory).

Figure 5. Time model.

59 Soukaina Moujtahid et al.: Towards a Meta-Model for Real-Time Embedded Systems

Time plays a crucial role in real-time and embedded

software applications and needs to be properly accounted for

in many kinds of engineering analyses. This model describes

the timing behaviour of real-time systems designed to be

analyzable via schedulability analysis techniques. It allows

time and its progress to be associated with model elements

that represent dynamic behavior, such as operation

invocations, messages, state machine transitions, actions and

activities, and so forth.

5. Conclusion

We have tried to present in the different sections of this

article the contribution of MDE in the modeling process of

embedded real-time systems. This is done through its

specialized meta-models adapted to its systems. We can find

that each of the profiles has these own advantages, although

each of them applies to a particular category of embedded

real-time systems. It would be more benefit to take advantage

of these specificities to have a meta-model suitable for the

majority of embedded real-time systems. It is in this context

that was presented in the last section the generic meta-model

proposed.

References

[1] Embedded Systems Design for High-Speed Data Acquisition
and Control. Springer International Publishing Switzerland
(2015)

[2] Peter Hintenaus: Engineering Embedded Systems. Physics,
Programs, Circuits. Springer International Publishing (2015)

[3] Dynamic Memory Management for Embedded Systems.
Springer International Publishing Switzerland (2015)

[4] Nicolas Hili: Une méthode pour le développement collaboratif
de systèmes embarqués (2014)

[5] Model-Driven Engineering of information systems. Principles,
techniques and practice. Apple Academic Press, Inc. (2015)

[6] Wiley-ISTE: Model-Driven Engineering for Distributed Real-
Time Systems MARTE Modeling, Model Transformations and
their Usages (2010)

[7] Pascal Roques. Modélisation de systèmes complexes avec
SysML. Broché (2013)

[8] Nicolas Belloir, Jean-Michel Bruel, Raphael Faudou:
Modélisation des exigences en UML/SysML. (2014)

[9] Mohamed-Lamine Boukhanoufa: Approche basée sur les
modéles pour la conception des systémes dynamiquement
reconfigurable: de MARTE vers RecoMARTE. (2013)

[10] Elsevier Inc. Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE. Developing
Cyber-Physical Systems". Bran Selic et Sébastien Gérard
(2014)

[11] Jon Holt et Simon Perry. Sys ML for Systems Engineering. A
model-based approach. The Institution of Engineering and
Technology (2013)

[12] Samba Diaw et Rédouane Lbath et Bernard Coulette.
“SPEM4MDE: un métamodèle basé sur SPEM 2 pour la
spécification des procédés MDE”. Majec STIC 2009. Avignon,
France. 18 novembre (2009)

[13] César Cuevas Cuesta, José María Drake, Michael González
Harbour, José Javier Gutiérrez, Patricia López Martínez, Julio
Luis Medina et José Carlos Palencia. Modeling and Analysis
Suite for Real Time Applications. Universidad de Cantabria,
SPAIN (2010)

[14] Alberto Sangiovanni-Vincentelli, Haibo Zeng, Marco Di
Natale et Peter Marwedel. Embedded Systems Development.
From Functional Models to Implementations. Springer
Science+Business Media New York (2014)

[15] Muhammad Waqar Aziz, Radziah Mohamad et Dayang N. A.
Jawawi. Critical evaluation of two UML profiles for
Distributed Embedded Real-Time Systems Design.
International Journal of Software Engineering and Its
Applications Vol. 7, No. 3 (2013)

[16] Mohd Zulkifli Bin Mohd Zaki et Dayang Norhayati Binti
Abang Jawawi: A Review on UML-RT and UML-SPT for
Embedded Real-Time Component-Based Development (2013)

[17] Jiacun Wang: Real-Time Embedded Systems. 7 John Wiley &
Sons, Inc. (2017)

[18] Embedded and Real-Time Operating Systems. Springer
International Publishing (2017)

