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Abstract: Reliability analysis is often based on stochastic discrete event models like Markov models or stochastic Petri nets. 

For complex dynamical systems with numerous components, analytical expressions of the steady state are tedious to work out 

because of the combinatory explosion with discrete models. Moreover, the convergence of stochastic estimators is slow. For 

these reasons, fluidification can be investigated to estimate the asymptotic behaviour of stochastic processes with timed 

continuous Petri nets. The contributions of this paper are to sum up some properties of the asymptotic mean marking and 

average throughputs of stochastic and timed continuous Petri nets, then to point out the limits of the fluidification in the 

context of the stochastic steady state approximation. To overcome these limitations, the new semantic and the condition for 

convergence is proposed: fluid Petri nets with Non Linear Timed Continuous Petri Net (NL-CPN). 
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1. Introduction 

Reliability analysis is a major challenge to improve the 

safety of industrial processes. For complex dynamical 

systems with numerous interdependent components, such 

studies are mainly based on stochastic discrete event models 

like Markov models or stochastic Petri nets (SPNs) [8]. Such 

models are mathematically well founded and can be 

investigated in order to work out either analytical results or 

numerical simulations. But in case of large systems, the 

combinatory explosion limits their use. In this context, 

fluidification can be discussed as a relaxation method. 

The aim of this paper is to discuss the estimation of the 

SPNs asymptotic mean markings by using fluid models and 

to introduce new semantics of Continuous Peti nets (CPNs) 

for that issue. The fluidification of discrete Petri nets has 

been investigated first for the analysis and performance 

evaluation of discrete event systems (DES) [3], [4], [11], then 

for control applications [12], [7]. Recently fluidification has 

been also introduced for SPNs [13], [14]. In this paper, the 

limits of the fluidification of SPNs with timed CPNs with 

constant firing rates and infinite server semantic are first 

discussed. The set of asymptotic mean markings (reached 

from an identical initial marking) are sometimes different for 

SPNs and CPNs with same structures. 

The paper has five sections. The section two introduces 

PNs, SPNs, CPNs. Then, the section three discusses the 

fluidification of SPNs according to CPNs. The section four 

introduces Non Linear Timed Continuous Petri Net (NL-

CPN) is proposed and discussed. The last section gives some 

conclusions 

2. Stochastic and Continuous Petri Nets 

2.1. Petri Nets (PN) 

A Petri net (PN) is defined as <P, T, WPR, WPO > where 

P = {Pi} is a set of n places and T = {Tj} is a set of q 

transitions. WPR = (w
PR

ij) ∈(Z
+
)

n×q
 is the pre-incidence 

matrix where Z
+
 is the set of non negative integer numbers 

(w
PR

ij is the weight of arc from place Pi to transition Tj) and n 

x q are the dimensions of matrix WPR. WPO = (w
PO

ij) 

∈(Z
+
)

n×q
 is the post-incidence one (w 

PO
ij is the weight of arc 

from transition Tj to place Pi)[4]. The PN incidence matrix W 

is defined as W = WPO – WPR ∈(Z)
n×q

. The PN marking 

vector M (t) = (mi(t)), i = 1,…n, is an application from the set 

of non negative real numbers R
+
 to (Z

+
)

n
 such that, for each 

place Pi ∈ P, mi(t) = M (Pi, t) is the number of tokens in place 

Pi at time t. MI is the PN initial marking and M (t) = (mi(t)), i 
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= 1,…n is the mean marking vector at time t (i.e. mi(t) is the 

mean number of tokens in place Pi during the time interval 

[0, t]). Each transition Tj fires according to the round towards 

zeros (i.e. “floor” function) of its enabling degree nj(M (t)) 

defined for marking M (t) by equation (1): 

nj(M) = min (mi / w
PR

ij) for all Pi ∈ °Tj              (1) 

where °Tj stands for the set of Tj upstream places. The place 

Pi such that i = argmin (mk(t) / w
PR

kj) for all Pk ∈°Tj is the 

critical place for transition Tj at time t. Right and left natural 

annullers of the token flow matrix W are called T-semiflows 

and P-semi flows, respectively. When Y
T
. W = 0, the net is 

said to be conservative and when W. x = 0. The net is said to 

be consistent. In a consistent net, a vector x such that W. x = 

0 represents a repetitive sequence, or in other words, a 

potential steady-state behaviour of the system in which all 

transitions are fired [17]. 

2.2. Stochastic Petri Nets (SPN) 

A stochastic Petri net is defined as a timed PN whose 

transitions firing periods are characterized by random 

distributions. The basic model (SPN) has been introduced 

by [8], [9] and several extensions have been developed [1], 

[5] for the reliability analysis of reparable systems. 

Basically, a SPN, <PN, µ>, is a PN with a firing rate vector 

µ = (µj) ∈(R
+
)

q
. Each transitions Tj is characterized by the 

firing rate µj so that µj. dt is the probability that the 

transition Tj will fire between t and t+dt when the transition 

Tj has been enabled, with degree 1 at t. The marking 

process of a SPN is characterized according to the PN 

incidence matrices, the initial marking, the firing rates, the 

firing policy, the server policy and the execution policy [2], 

[5]. The average throughput, marking and mean marking 

vectors of a SPN at time t will be referred as Xs(t), Ms(t). 

The SPNs that are considered in this paper satisfy the 

assumptions (H1) to (H5): 

(H1) the marked SPNs are bounded. 

(H2) the marked SPNs are reinitialisable. 

(H3) the firing policy is a race policy: the transition whose 

firing time elapses first is assumed to be the one that will fire 

next. 

(H4) the server policy is of type infinite server: the 

minimal period of each transition Tj is defined with a 

stochastic duration which is characterized according to an 

exponential distribution of varying parameter: floor (nj(M 

(t))). µj. 

(H5) the execution policy is of type resampling memory: at 

the entrance in a marking, the remaining firing time of all 

transitions that were enabled is reset. 

As a consequence, the considered SPNs have a 

reachability graph R (SPN, MI) with a finite number N of 

states and their marking process is mapped into a Markov 

model with state space isomorphic to R (SPN, MI) [8], [2]. In 

that case, the asymptotic behaviour of SPNs can be worked 

out according to the steady state probabilities of the Markov 

model. 

2.3. Continuous Petri Nets 

CPNs have been developed in order to provide continuous 

approximations of the discrete behaviours of PNs. The 

marking of each place is a continuous non negative real 

valued function of time [11]. A CPN is defined as <PN, 

Xmax > where PN is a Petri nets and Xmax = diag (xmax j) ∈ 

(R
+
)

qxq
 is the diagonal matrix of maximal firing speeds xmaxj, j 

= 1,…q [4]. Mc(t) is the marking vector and Xc(t) = (xcj(t)) ∈ 

(R
+
)

q
 is the firing speeds vector at time t. The marking 

variation is given by (2): 

dMc(t) / dt = W. Xc(t), Mc(0) = MI                 (2) 

Finite server (i.e. constant speeds) and infinite server (i.e. 

variable speeds) semantics exist for CPN. In this paper only 

the infinite server semantic is considered. Xc (t) depends 

continuously on the marking of the places according to (3): 

xcj(t) = xmax j.nj(Mc(t))                          (3) 

2.4. Steady States of SPNs 

For live SPN that satisfy hypotheses (H1) to (H5) and with a 

finite number of states in the reachability graph, the marking 

process is mapped into a Markov model with state space 

isomorphic to the reachability graph of the SPN model [2]; [9]; 

[13] In that case the steady state of SPN can be worked out 

according to the steady state probabilities of the Markov model. 

Let define Xs = (xsj) ∈ (R
+
)

q
 as the average throughputs 

vector and Ms = (msi) ∈ (R
+
)

n
 as the mean markings vector of 

SPN and Πss = (πssk) ∈ [0, 1]
1 x N

 as the steady state 

probabilities vector of the associated Markov model with N 

states. Let define A (µ) ∈	 (R)
N x N

 as the generator of the 

underlying continuous time Markov model (i.e. the 

continuous time Markov model that defines the variations of 

the state probability vector according to the Petri net 

reachability graph) and 1N = (1,…, 1)
T
 ∈ (R

+
)

N
 as the column 

vector of size N with all entries equal to 1. It is well known 

that Πss is the single solution of equations (4) [7], [10]: 

Πss. A (µ) = 0 

Πss. 1N = 1                                        (4) 

As a consequence, Xs and Ms are obtained according to 

equations (5) and (6): 

( )sj j j k k

k=1...N

x = . n M .π
 µ  
 
∑                        (5) 

∑si k i k

k=1...N

m = m .π                                 (6) 

where Mk = (mki) ∈ (R
+
)

n
 stands for the marking vector 

corresponding to the state k of the Markov model. This 

method gives an analytical solution of the SPN steady state in 

case of ergodic Markov models, but requires the computation 

of the transition matrix A (µ) and as a consequence the 

reachability graph R (PN, MI) of the SPN. For large systems, 

the computational time and memory requirements necessary 
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to work out R (PN, MI) become important as long as the 

number N of states increases exponentially. In that sense, 

SPN can be considered as a stochastic estimator for the 

Markov model. The advantage of this estimator is that the 

determination of R (PN, MI) is no longer required, the 

drawback is the slow convergence of the stochastic estimator, 

particularly in case of rare events. 

The system in Figure 1 models a simple manufacturing 

system. The final product is composed of two different parts, 

A and B, that are processed in machines M1 and M2 

(represented by transitions T1 and T2), and stored in buffers 

P4 and P6, respectively. Then, they are assembled by M3 (i.e. 

transition T3), and processed in M4 (i.e. transition T4). 

Finally, M5 (i.e. transition T5) packages them. During the 

processing of parts A and B, tool1 (tokens in place P5) and 

tool2 (tokens in place P7) are needed. Also tool3 (tokens in 

place P3) has to be used in the three final operations. The 

machines M1, M2, M4 and M5 are assumed to be reliable and 

an active redundancy (n = 3) is considered for the assembly 

machine M3 that is assumed to have failure and repair rates λ 

= 1.5e
-2 

TU
-1 

and µ = 1e
-1

 TU
-1

. To achieve high availability 

requirements 3 active redundancies are considered for M3 

(place P10). The productivity of the workshop is evaluated 

with the computation of the output flow x5 with respect to the 

number k of pallets and tools: MI = (2k 2k k 0 k 0 k 0 0 3 0)
T
 

 

Figure 1. Assembly workshop. 

Only the flow of transition T5 and the marking of places 

P1, P2, P8 and P9 will be considered. Other flows and 

markings are given by (7): 

x1 = x2 = x3 = x4 =2.x5 

m4 = y4.MI – m1-m8-m9 

m6 = y5.MI – m2-m8-m9 

m3 = y3.MI – m8-m9                                 (7) 

m5 = y1.MI – y4.MI + m1+m8+m9 

m7 = y2.MI – y5.MI + m2+m8+m9 

Equations (7) hold for SPN and CPN. Steady state 

markings and flows are reported in Table 1 with respect to 

initial marking. 

Table 1. Number of states, average throughputs and mean markings of SPN 

from Figure 1 in function of k. 

k N xs 5 ms1 ms2  ms8 ms9 

1 205 0.50 1.75 1.75  1.00 1.48 

2 1885 1.13 3.51 3.51  2.25 2.75 

3 7796 1.77 5.20 5.21  3.54 4.07 

4 22187 2.42 6.97 6.91  4.84 5.36 

… … … … …  … … 

∞ ∞ ∞ ∞ ∞  ∞ ∞ 

The productivity of the system in Figure 1 is evaluated 

with the computation of the output flow xs5 (t) with respect to 

the number of pallets and tools. The results obtained with 

Markov models and SPNs simulation over a time interval of 

D = 1000 TU are summed up in Table 2 and Table 3. 

P9T4 T5

P3

P6T2

P7

P4T1

T3

P5

P8

P1

P2

P10

P11

T6 : λ

T7: µ
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Table 2. Performance evaluation with Markov models. 

k N x5 (t) Markov model Computational effort (TU) 

1 48 0.29 0.1 

2 216 0.61 0.9 

3 640 0.93 12 

4 1500 1.25 108 

… … … … 

For k > 4, the computational effort becomes heavy because 

of the large number N of states and the performance evaluation 

with Markov model analysis is no longer computable [17]. 

Table 3. Performance evaluation with SPNs. 

k xs5 (t) SPN Computational effort (TU) 

1 0.30 0.59 

2 0.61 2.0 

3 0.94 4.0 

4 1.24 6.8 

5 1.55 11 

10 2.41 30 

Simulation with SPN can be used to overcome the 

computational limitation with Markov model. The simulation 

error does not exceed 1%. One can also notice that the 

computational effort increases but remains acceptable up to 

k=10. For k > 10, fluidification must be introduced. 

3. Fluidification of SPN 

The aim of this section is to pinpoint the limit of the 

fluidification of SPNs by CPNs with same structure and same 

initial marking. The several example for which CPNs do not 

converge to the asymptotic mean marking of SPNs is presented. 

3.1. Trivial Fluidification of SPNs 

The steady state of a SPN = <PN, µ>and the one resulting 

of a CPN = <PN, Xmax> with same structure, initial marking 

and Xmax = µ are in general case not identical. For example, 

the steady state of the PN in Figure 1 considered as 

continuous is given in Table 4. It can also be noticed that the 

difference between SPN and CPN steady state decreases with 

respect to the marking. More generally, a PN can be live as 

discrete and non-live as continuous. In a similar way, a 

discrete bounded system may be unbounded as continuous 

[11]. Moreover, like in discrete nets, the throughput of a CPN 

does not fulfil in general any monotonicity property, neither 

with respect to the initial marking, nor with respect to the 

structure of the net, nor with respect to the transitions rates. 

[12]. The throughput of a CPN is notin general an upper 

bound of the throughput of the discrete PN [6]. 

Table 4. Average throughputs and mean markings of CPN from Figure 1 in 

function of k. 

k xc5 mc1 mc2 mc8 mc9 

1 0.67 1.67 1.67 1.33 1.33 

2 1.33 3.33 3.33 2.67 2.67 

3 2 5 5 4 4 

4 2.67 6.67 6.67 5.33 5.33 

… … … … … … 

∞ ∞ ∞ ∞ ∞ ∞ 

3.2. Regions in the Reachability Space 

According to the function “min (.)” in the expression of 

the enabling degree (1), the marking space of CPNs is 

divided into K regions Ak with K = |°T1|..….|°Tq|. Each 

region Ak is defined by its configuration [7], also called PT-

set [6] defined by (8): 

PT-set (Ak) = {(Pi, Tj) s. t. 

∀ Mc(t) ∈ Ak, xcj(t) = xmaxj(t). mci(t)/w
PR

ij}       (8) 

The place Pi such that i = argmin (mk(t) / w
PR

kj) for all Pk 

∈ °Tj is the critical place for transition Tj at time t. PT-

set(Ak) represents the set of all pairs (Pi, Tj), j = 1,…, q such 

that Pi is the critical place of transition Tj in region Ak. 

According to the PT-sets. A region Ak is critical if there 

exists two transitions Tj and Tm that have the same critical 

place Pi in region Ak (i.e. (Pi, Tj) ∈ PT-set (Ak) and (Pi, Tm) 

∈PT-set (Ak)). In a critical region Ak, a single place drives 

the throughputs of at least two distinct transitions and the 

rank of matrix Ak is less than the rank of the constraint 

matrices in other regions. 

Each r-region Ak is characterized by a constraint matrix Ak 

= (a
k
ij) ∈ (R

+
)

q x n
, k = 1,…, K, i = 1,..., q and j = 1,..., n: 

� a
k
ji(k,j) = 1/w

PR
i(k,j)j for all Tj ∈ T, 

� a
k
ji = 0 otherwise. 

As a consequence, in each region Ak, the firing speed vector 

can be written as Xc(t) = Xmax. Ak. Mc(t), equation (9) holds: 

∀ Mc(t) ∈ Ak, dMc(t) / dt = W. Xmax. Ak. Mc(t)      (9) 

3.3. Problem Statement 

Fluidification of discrete PNs leads to some unexpected 

results and numerous structural and behavioural properties 

are not preserved with fluidification. In particular, a PN can 

be live as discrete and non-live as continuous and a discrete 

bounded system may be unbounded as continuous [12]. The 

throughput of a CPN is mainly not identical to the throughput 

of a discrete PN. It is often but not always an upper bound of 

this throughput [6], [18]. 

Concerning SPNs, the approximation of the steady state by 

CPNs is of particular interest as long as the estimation of the 

asymptotic mean markings can be used to work out the 

availability, the mean time between failures, and other 

indicators for reliability. Large approximation errors appear 

frequently even if such errors decrease with respect to the 

initial marking. The asymptotic mean markings of SPNs can 

be approximated (with an acceptable accuracy) with the 

steady state of CPNs if (1) all transitions remain enabled with 

degree at least 1 in long run; (2) the marking vector does not 

leave the region of initial marking in long run. Markovian 

Continuous Petri Nets (i.e. CPNs with an additive normally 

distributed noise) have been investigated to relaxe the 

condition (2) [13]. In addition, a partial relaxation of SPNs 

leads to Hybrid Markovian Continuous Petri Nets and can be 

used to relax condition (1) [14], [19], [21]. But in the former 

works the continuous models are non-deterministic and the 

steady state is no longer easy to work out. 
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4. Fluidification with NL-CPN 

In this section, continuous Petri nets with adaptive 

maximal firing speeds are proposed to converge to the 

asymptotic mean marking of SPNs also in critical regions 

[18]. The maximal firing speeds are considered as functions 

of time and updated in order to compensate on line the errors 

on the throughputs and markings regarding the asymptotic 

stochastic average throughputs and mean markings to be 

reached. Non linear timed continuous Petri nets with adaptive 

maximal firing speeds are defined as a consequence. 

4.1. Definition  

A Non Linear Timed Continuous Petri Net: NL- CPN = 

<P, T, WPR, WPO, Ms, Xs > is defined by a set of n + q 

differential equations defined by (10): 

dMc(t)/dt = W. Xc(t)                           (10) 

dXmax/dt = η. diag(β. W
T
. (Ms – Mc(t)) + (1- β). (Xs – Xc(t))) 

under the constraint Xmax ≥ 0. 

η is the adaptation parameter, and β ∈[0, 1] is a ratio that 

balances the weight of the marking and throughput errors in 

the variation of Xmaxj. The initial marking is MI and the initial 

maximal firing speeds are given by Xmax(0) = diag(µ). In order 

to motivate the updating equation (10) of the maximal firing 

speeds, let consider a transition Tj and define wj as the column 

j of incidence matrix W. If at time t, for any places Pi ∈ °Tj, the 

marking mci(t) satisfies msi – mci(t) > 0 (resp. msi – mci(t) < 0) 

and for any places Pk ∈ Tj°, the marking mck(t) satisfies msk – 

mck(t) < 0 (resp. msk – mck(t) > 0) then wj
T
(Ms – Mc(t)) < 0 

(resp. wj
T
(Ms – Mc(t)) > 0) and xmaxj decreases (resp. xmaxj 

increases). The variation of Xmax is also driven according to the 

firing speed xcj(t) of transition Tj: If xsj – xcj(t) < 0 (resp. xsj – 

xcj(t) > 0) then xmaxj decreases (resp. xmaxj increases). But when 

the preceding conditions are not simultaneously satisfied, the 

convergence of Mc(t) to Ms is no longer monotonic. 

4.2. Introductive Example 

Consider for example the SPN described in Figure 2 [6]. 

This PN has 1 T-semiflow x = (1 1 1 1)
T 

and 2 P-semiflows 

y1 = (0 0 0 1 1), y2 = (1 1 2 1 0). As a consequence only the 

flow of transition T1 and the marking of places P1, P2 and P4 

will be considered. 

 

Figure 2. An SPN with firing rate vector µ = (3 1 1 10)T and initial marking 

MI = (5 0 0 0 4)T. 

 

Figure 3. Throughput evolution of CPN (solid line) and SPN (dashed line) in 

function of time of Figure 2. 

 

Figure 4. Markings evolution of CPN (solid line) and SPN (dashed line) in 

function of time of Figure 2. 

under the constraint Xmax ≥ 0, where η is the adaptation 

parameter arbitrary fixed to 0.1, diag (µ)∈ (R
+
)

q x q
 is the 

diagonal matrix with SPN firing rates. As a consequence only 

the flow of transition T1 and the marking of places P1, P2 and 

P4 will be considered (Figure 3 and Figure 4). 

5. Conclusions 

This paper has pointed out that the asymptotic behaviour 

of SPNs cannot be trivially approximated with CPNs. 

Moreover it is not always possible to find any CPN with 

same structure and same initial marking that converges to the 

asymptotic mean marking of SPN in long run. In the present 

form, the proposed semantic cannot be used immediately for 

the performances evaluation of SPNs but provide an 

T4

T3

P4

T2

P5

T1

P3

P2

P1

2

2
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innovative point of view for the investigations of stochastic 

systems and may be used for controllers. Our future works 

are to continue the study of CPN. We will also study 

continuous approximations directly derived from the SPNs 

transition firing rates. 
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