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Abstract: Cloaking refers to hiding a body from detection by surrounding it with a coating consisting of an unusual 

anisotropic nonhomogeneous material. The permittivity and permeability of such a cloak are determined by the coordinate 

transformation of compressing a hidden body into a point or a line. In this work, the scattering properties of cloaked spherical 

bodies (conducting and dielectric) are investigated using a combination of approximate cloaking, where the conducting 

sphere is transformed into a small sphere rather than to a point, and using two types of nonlinear transformations; concave-up 

and concave-down. The radially-dependent spherical cloaking shell is approximately discretized into many homogeneous 

anisotropic layers, provided that the thickness of each layer is much less than the wavelength, and this discretization raises the 

level of scattering as the number of layers decreases. Each anisotropic layer can be replaced by a pair of equivalent isotropic 

sub-layers, where the effective medium approximation is used to find the parameters of these two equivalent sub-layers. The 

effect of nonlinearity in the coordinate transformation on the scattering performance is studied. The back-scattering 

normalized radar cross section, the scattering pattern are studied and the total scattering cross section against the frequency 

for different number of layers and transformed radius. 
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1. Introduction 

Recently, the concept of electromagnetic cloaking has 

drawn considerable attention concerning theoretical, 

numerical and experimental aspects [1] - [8]. One approach 

to achieve electromagnetic cloaking is to deflect the rays 

that would have struck the object, guide them around the 

object, and return them to their original trajectory, thus no 

waves are scattered fromthe body [1]. In the coordinate 

transformation method for cloaking, the body to be hidden is 

transformed virtually into a point (3D or spherical 

configuration) or a line (2D or cylindrical configuration), 

and this transformation leads to the profile of ε, µ in the 

cloaking coating. Some components of the electrical 

parameters of the cloaking material (ε, µ) are required to 

have infinite or zero value at the boundary of the hidden 

object. Thisrequires the use of metamaterials which can 

produce such values, however, they are narrow band since 

they rely onusing array of resonant elements (as split ring 

resonators) [9] - [12].Approximate cloaking can be achieved 

by transforming the hidden body virtually into a small object 

rather than a point or a line as shown in Fig. 1, which 

eliminates the zero (point transformed) or infinite (line 

transformed) values of the electrical parameters [13], [14]. 

This, however, leads to some scattering, since the hidden 

body is virtually transformed into a small object rather than a 

point or a line, and the scattering decreases as the 

transformed sphere radius is smaller. 

 

Fig. 1. (a) Virtual domain, (b) Actual Domain 
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The nonlinear-transformation-based cloaks [15], [16] 

cannot be solved by the analytic method proposed for 

classic spherical cloak [17], [18], [19]. Therefore, a 

discretized non-ideal model has to be implemented in 

which each layer is homogeneously anisotropic, provided 

that the thickness of each layer is much less than the 

wavelength, and this discretization decreases the level of 

scattering as the number of layers increases. Each 

anisotropic layer can be replaced by a pair of equivalent 

isotropic sub-layers, where the effective medium 

approximation is used to find the parameters of these two 

equivalent sub-layers [20]. Near the boundary of the hidden 

sphere, the values of the radial components of ε, µ of the 

cloaking material are nearly zero. This makes the values of 

ε, µ in one of the pair of isotropic layers to be very small, 

and can be implemented using metamaterials [11], [21], 

[22]. Two approaches are possible in choosing the 

materialproperties in the pair of sub-layers. The first is to 

take the smaller values of ε, together with the smaller value 

of µ in one sub-layer, and the opposite combination in the 

other sub-layer [20], whereas the other possibility is to take 

the smaller value of ε together with the larger value of µ in 

one sub-layer, and the opposite combination in the other 

sub-layer [23].  The first approach leads to improved back 

scattering with high forward and total scattering. The 

second approach leads to great reduction in forward and 

total scattering, while the back scattering is low enough. In 

this paper, we study the scattering performance of cloaked 

conducting and dielectric spheres using the second 

approach with approximate cloaking and nonlinear 

transformations.  

2. The Nonlinear Transformations 

Pendry’s spherical cloak [1] uses a linear transformation 

between the radius r in the virtual domain and the physical 

radius r, Fig. 1. In this section, we consider the two classes of 

nonlinear-transformation; the concave–up and 

concave-down transformations [15], [16], modified for 

approximate cloaking. In the concave-down and concave-up 

transformation, the transformation is sharper near the inner 

or the outer radius of the cloak, respectively. The resulting 

permittivity and permeability of the approximate nonlinear 

spherical cloak are given. 

2.1. Concave-Down Nonlinear Transformation 

The concave-down nonlinear function ���� to transform 

from the physical space � to the virual space �� is given by: 

f�r� 	  r� 	  
�� � 
�
� �

��
 
��

� 1 � �
�
� ��� � c   (1) 

which obviously satisfies the requirements at the inner and 

outer boundaries (when r = ��, �� = c, and when r = ��, 

�� 	 ��), Fig.1. The value of “x” is a factor to control the 

nonlinearity degree in the transformation, which can be 

arbitrary from 0 to ∞. 

Fig. 2 shows typical concave-down nonlinear 

transformation function r�  for different values of x with 

R� 	  2R� . When x ! 0.1 , all mapping curves are 

overlapping (i.e. they effectively lead to the same 

performance). When x becomes large, the transformation 

function changessharply near the inner radius r 	  R�. All 

curves belonging to the concave-downtransformation 

functions in Eq. (1) have negative second derivative with 

respect to the physical space radius r. 

 

Fig. 2. The concave-down nonlinear transformation function ��, �� 	
 2�� and c = ��/20 

The radial and transverse permittivity and permeability of 

the spherical cloak, depending on r, are given as [24]: 
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Thus, the permittivity and permeability of the 

approximate spherical cloak in the physical space become: 
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For modeling scattering by discretized cloak layers, it is 

possible to use equal thickness of the layers either in the 

physical space or in the virtual space. In order to avoid sharp 

variations of the parameters ε, µ in the inner layers, Fig. 2, 

the discretized layers are taken to be of equal thickness in the 

virtual space [15], [16] which leads to finer segmentation in 

the physical space,where f�r�  turns to be steeper. The 

virtual space r′ is discretized into 2M layers with identical 

thickness, thus 

�3� 	   4 �
�
��
5 � c , i = 1, 2,…, 2M   (5) 

The corresponding radii in the physical space r become: 

r4�x� 	   R� · �1 � 
��
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��

78*
�

�
��

9�
� ,i = 1, 2, .. , 2M (6) 

2.2. Concave-Up Nonlinear Transformation 

The concave-up nonlinear transformation function is 
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given by:  

f�r� 	  r� 	  
�� � 
�
� �

��
 
��

�� �

��� �  1� � c  (7) 

Fig. 3 shows typical concave-up nonlinear 

transformation function r� for different values of x with 

R� 	  2R� . When x 	 1 , it is exactly Pendry’s linear 

spherical cloak. When x gets extremely large, the mapping 

curve will become sharp near the outer radius 	  R�. All 

curves belonging to the concave-up transformation 

functions in Eq. (7) have positive second derivative with 

respect to the physical space radius r. 

 

Fig. 3. The concave-up nonlinear transformation function ��, �� 	  2�� 

and c = ��/20 

In the same way, we can obtain the permittivity and 

permeability of the approximate spherical cloak in the 

physical space as: 
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As in concave-down transformation, the virtual space is 

discretized into equal thickness layers, Eqn. 5, the 

corresponding radii in the physical space r turn out to be: 

r4�x� 	   R� · �
��
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�
�,i = 1, 2, .., 2M   (10) 

3. Spherical Nonlinear Cloak by 

Layered Structure of Homogeneous 

Isotropic Materials 

The fields in the cloak layer can be obtained by solving 

Maxwell equations using the magnetic and electric vector 

potentials [17], [18], [19]. The equation for the radial 

component of the field potentials becomes: 

:�;���
:�� �  �K=� � AR ?�?.��

�� � H�r� 	 0    (11) 

where K=� 	  ω�µ=ε=, (AR) denotes the anisotropy ratio of 

the cloak, for TM wave,�AR� 	 ε=/ε�, and for TE wave, a 

similar equation is obtained with  �AR� 	 µ=/µ�.  

For µ and ε  of perfect linear spherical cloaks 

[17]-[19],AR 	  r� �r � R���⁄ , Eq. (10) is reduced to: 

F�G�7�
F7� �  �HI� � J�J.��

�7
K���� L��� 	 0     (12) 

Thus, the radial component L��� can be solved in a 

way similar to that for isotropic materials, except for the 

changein the argument of resultant Bessel/Hankel functions. 

However, given a set of M and N  derived from a certain 

transform, the anisotropy ratio may not be 

�� �� � ����⁄ anymore, and then the radial component 

cannot be solved explicitly in the same way. In this situation, 

the original inhomogeneous anisotropic cloaking materials 

can be approximated by the limit of many (M) thin, 

concentric, homogeneous, anisotropic coating layers [15], 

[20]. Each anisotropic layer can be replaced by a pair of 

equivalent homogeneous isotropic sub-layers A and B with 

different thickness, where the effective medium 

approximation is used to find the parameters of these two 

equivalent sub-layers as shown in Fig. 4. 

The layer thicknesses (OP, OQ) of these shells are much 

less than the wavelength λ and when O R λ, the permittivity 

and the permeability relationship between the anisotropic 

material � N7 , NS�  or � M7 , MS� and the two-layer isotropic 

materials NP, NQare given by: 

ε� 	  ��.T�%U%V
%V.T%U             (13) 

εW 	  %U. T%V
�.T                (14) 

in which, η 	 dY/dZ ,  dZ  and dY  are the thicknesses of 

the layers A and B, respectively. For the permittivity these 

equations correspond to series and parallel addition of 

capacitances, respectively. 

 

Fig. 4. Equivalence of an anisotropic spherical shell and two isotropic 

sub-shells 

By solving the above equations for εZand εY, one can 

obtain the equivalent medium parameters for the isotropic 

sub-layers when the thicknesses are not identical: 

εY 	   -�T
��%&. ��.T�%+/[ \-�T
��%&. ��.T�%+/�
]T�%+%&
�T  (15) 

εZ 	  -��.T�%+
 �T
��%&/^ \-�T
��%&. ��.T�%+/�
]T�%+%&
�  (16) 

For identical thicknesses (η 	 1),     
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εY 	  εW  [  \εW� �  εW ε�    (17) 

εZ 	  εW  ^  \εW� �  εW ε�    (18) 

It is possible to use different combinations for ε and µ  

in the first and second layers, Table 1. 

Table 1.Different combinations of N, M 

Case FirstLayer Second Layer 

 
I 

NP 	  NS � \NS� � NS N7 

MP 	  MS � \MS� �  MS M7 

NQ 	  NS  � \NS� �  NS N7 

MQ 	  MS � \MS� � MS M7 

 

II 
NP 	  NS � \NS� � NS N7 

MP 	  MS � \MS� �  MS M7 

NQ 	  NS  � \NS� �  NS N7 

MQ 	  MS � \MS� � MS M7 

 

 

III 
NP 	  NS � \NS� � NS N7 

MP 	  MS � \MS� �  MS M7 

 

NQ 	  NS � \NS� � NS N7 

MQ 	  MS � \MS� � MS M7 

 

In case I, the impedances in the layers \µ/ε    are equal, 

whereas in cases II and III the refractive index √ε�µ�  is 

equal in the layers. Cases II and III differ only in whether 

the inner layer has the larger or the smaller value of ε. 

4. Scattering from a Dielectric Sphere 

with Multilayered Coating 

The configuration for electromagnetic scattering by the 

spherical body coated by 2M layers is shown in Fig. 5. The 

external radius, permittivity, and permeability of the core 

and the layers are denoted by a4, ε4 and µ4(i= 1, 2,.., 2M+1), 

respectively. The outer radius of each sub-layer in the 

physical space is given by Eqns. 6, 10. The values of the 

anisotropic parameters are used at the center of each 

anisotropic layer, i.e. for the even values of i [16]. 

Fig. 5 shows an Ea polarized plane wave with amplitude 

Eb, E4 	  Ec  e
ef'gx h, incident upon the coated sphere along 

the zj direction. kb 	  ω\µbεb is the wave number in free 

space. The time dependence eel= is suppressed. 

 

Fig.5. Plane wave scattering by a multilayer dielectric sphere 

The fields in the different regions are expanded in terms 

of spherical harmonics of  mn7  and mo7  modes w.r.t. the 

radial direction.The field ( n  or L�  with only 

transversecomponents (p, ,� is expressed by the harmonics 

m, whereas the other field having the three components is 

expressed by the harmonics n [25], [26]. 

mrc 	 [ �
 s4?W J?�kr�P?��cosθ�cos

sin , θz � J?�kr� :{|�
:W

sin
cos  , ,} (19) 

nrc 	
 ?�?.��

~� J?�kr�P?��cosθ� sin
cos  , rj �

�
~� -krJ?�kr�/� :{|�

:W
sin
cos  , θz �

~�s4?W -krJ?�kr�/� P?��cosθ�cos
sin ,   


. , }   (20) 

where J?�kr� is a spherical Bessel function of order n of any 

kind and P?��cosθ� is a Legendre polynomial of the first 

kind, first order and n=�degree. The ,-dependnce is taken 

as sin, or cos, (odd, o, or even, e) to conform with the 

incident plane wave.  

The incident plane wave can be expressed in terms of 

spherical harmonics with Bessel functions of the first kind 

as: 

n3 	  n�  �
��'�� h 	  ∑ �J � J�� ��3 �  ���3  �   (21) 

L3 	  � ∑ ��
�'  � J�� ��3 � ���3  �   (22) 

where 

�J 	  ����J �J.�
J�J.�� n�    (23) 

and �0 	  �M0
N0

, � 	  √�1 

The scattered fields can be expanded in terms of spherical 

harmonics with spherical Hankel functions h?��kbr� 

representing scattered outgoing waves with unknown 

coefficients es,  dsof the TE, TM parts, respectively. 

n� 	  ∑ �J � ��J�� ���G �  �O����G �  (24) 

L� 	  � ∑ ��
�'  � J�� O����G � ������G �    (25) 

We can write the fields in the i=�Layer as: 

  n�3 	   ∑ �J � O�G�3J�� ���G� �  ���G�3���G� � O�G�3���G� �
              ���G�3���G�  �       (26) 

H�4 	  � ∑ �|
�'

 � e�;�4?�� mr�;� �  j d�;�4nb�;� � e�;�4mr�;� �
              j d�;�4nc�;�  �  (27) 

where the modes in the cloak region are represented by 

Hankel functions of  the first and second kinds with 

arguments ( k4r4� ,where k4 	  ω√µ4�4 , and unknown 

coefficients d,e. The boundary conditions at the interface 

between layers i, i+1 lead to two equations relating the TM 

coefficients d�;� , d�;�
 of the two layers, and two equations 

relating the TE coefficients e�;� , e�;�
 of the two layers. 

The finiteness of the field in the dielectric core leads to 

thefollowing ratios in the dielectric core [27]: 
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�������
������� 	  1  ,  �������

������� 	  1   (28) 

When cloaking a conducting sphere, the dielectric constant 

in the core is taken to be very large. 

The ratios O�G��3�/O�G��3�  and ��G��3�/��G��3�  in the 

successive larger layers can be obtained iteratively from the 

following equations [27]: 

�����80��
�����80�� 	  � G����80�78�
 K�8 G��*��80�78�

G����80�78�
 K�8 G��*��80�78�,i = 1, 2, … 2M (29) 

�����80��
�����80�� 	  � G����80�78�
 K�8 G��*��80�78�

G����80�78�
 K�8 G��*��80�78�,i= 1, 2, … 2M  (30) 

whereH?��KR� 	 KRh?� �KR�and H?��KR� 	 KRh?��KR� are the 

Riccati-Hankel functions. 

�G3 	  ��80��8
�80��8 

G����878�. �����8�
�����8�G����878�

G��*��878�. �����8�
�����8�G��*��878�

,i = 1, 2, … 2M (31) 

� 3 	  ��8�80�
�8�80� 

G����878�. ¡����8�
¡����8�G����878�

G��*��878�. ¡����8�
¡����8�G��*��878�

,i = 1, 2, … 2M (32) 

Finally, the boundary conditions between the outer layer 

and air lead to the scattering coefficients b? 	  ds(TM part) 

and a? 	   es(TE part): 

£J 	  � ����'K��
 K��¤0���* ��'K��
G����'K��
 K��¤0�G��*��'K��  (33) 

¥J 	  � ����'K��
 K��¤0���* ��'K��
G����'K��
 K��¤0�G��*��'K��   (34) 

The scattering cross section σs and the normalized radar 

cross sections Q�W,¨� are given by [28], [29]: 

σs 	 4πr� |¬­|�
®¬¯®�      (35) 

Q�W,¨� 	  °­
±K�� 	 ]

��'K���  � |S��θ�|�sin�φ � |S��θ�|�cos�φ �  (36) 

whereS��θ� and S��θ� are defined by : 

S��θ� 	  ∑ ��?.��
?�?.��? -a?π?�θ� � b?τ?�θ�/         (37) 

S��θ� 	  ∑ ��?.��
?�?.��? -b?π?�θ� �  a?τ?�θ�/  (38) 

In the above two equations π?�θ� and τ?�θ� describe 

the angular scattering patterns of the spherical harmonics 

used to describe S�and S� and follow from the recurrence 

relations [29], [30]: 

π? 	 {|� ��csW�
s4? W 	  �?
�

?
� cosθ . π?
� �  ?
?
� π?
�     (39) 

τ? 	  µ{|� ��csW�
µ W 	 n cosθ . π? � �n � 1� π?
� (40) 

starting with the initial values: πb 	 0; π� 	 1. 
The total scattering normalized cross section Qs�· 

follows from the integration of the scattered power over all 

directions θ, φ, given by [31]: 

 Qs�· 	  �
��'K��� ∑ �2n � 1��|a?|� � |b?|��?̧��   (41) 

The backscattering normalized radar cross section Q¹ , 

applicable to monostatic radar, is given by [31]: 

Q¹ 	  �
��'K��� |∑ ��1�?�2n � 1��a? �  b?�?̧�� |� (42) 

The mode series is truncated at the mode number 

nº·�=KbR� + 4 * �KbR���/» + 2, [29], [30]. 

5. Results 

5.1. Scattering from cloaked Perfect Electrically 

Conducting (PEC) Sphere 

5.1.1. Effect of Arrangement of Materials in the Layers 

To show the effect of different cases of arrangement of 

materials in the layers, table 1, on the bistatic radar cross 

section σs  (RCS), consider the inner core with radius 

R� 	  λ , the outermost radius R� 	  2λ , where λ  is the 

wavelength, and the operating frequency f is 2GHz , the 

cloak is discretized into 2M=80 Layers (these values are 

used for the bistatic scattering in the paper unless otherwise 

specified). Fig. 6 shows the bistaic  radar cross section area 

(RCS) of the concave-up nonlinear cloaks versus  θ of the 

multilayered isotropic structure for the ideal case (c=0) for 

the three different arrangement cases and the nonlinearity 

degree x = 0.1. The results for cases I and II are checked 

against ref. [16] with identical results. The main difference 

between cases II and III are near the forward direction 

(θ 	 0). 

 

Fig. 6. Bistatic RCS for the concave-up nonlinear ideal cloaks (c=0), x = 

0.1for different cases 

It can be seen from Fig. 6 that the backscattering 

(θ 	 180b� in cases II and III has not been reduced to the 

same level as that in case I. Case I leads to proper impedance 

matching of the layers but leads to large jumps of 

therefractive index (equal to the square root of the product of 

ε, µ) in the successive layers. This leads to low back 

scattering, but high forward scattering[20]. On the other 
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hand, the second and third approaches lead to gradual 

variation of the refractive index in the successive sub-layers, 

but the impedance of the successive sub-layers suffers from 

jumps [23]. This increases the back scattering but improves 

the forward and total scattering. In the near forward angles, 

the scattering from case III is smaller than case II. 

Fig. 7 shows the bistaic RCS of the concave-down 

nonlinear ideal cloaks (c=0) for cases II and III and the 

nonlinearity degree x= 0.1. For x = 0.1for concave-down 

cloak, the results for cases II, III are nearly the same as the 

corresponds results for concave-up cloak (Fig. 6). 

 
Fig. 7. Bistatic RCS for the concave-down nonlinear ideal cloaks for 

different cases 

5.1.2. Effect of the Reduced Radius c 

Figs. 8, 9 and 10 show the bistaic RCS of the concave-up 

nonlinear cloaks (case II) for different values of 

approximate cloaking radius c and the nonlinearity degrees 

x = 0.1, 0.6, 20, respectively. The forward scattering is 

nearly identical for ¾ 	 ¿/10 to ¾ 	 ¿/40 . The back 

scattering improves for ¾ 	 ¿/20, ¿/40 for x = 0.1, 0.6 

than for x = 20. The value of the back scattering depends 

actually on whether the scattering pattern ends in the back 

scattering direction with a peak or trough. As the 

transformed radius c increases to λ/5 , the scattering 

increases as shown in Fig. 9.For the ideal profile (c=0), 

ε�/εb 	 0 at r= R�, Eqn. 8. As c increases,  ε�/εb at r=R� 

increases. For c=  R� /40, x =1, ε�/εb Á 1/3200 . For 

c=R1/10, x =1, ε�/εb Á 1/200.  

 

Fig. 8. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of the cloaking radii c and x =0.1 (case II) 

 

Fig. 9. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of the cloaking radii c and x =0.6 (case II) 

 

Fig. 10. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of the cloaking radii c and x =20 (case II)  

Figs. 11,12 and 13 show the bistaic  RCS of the 

concave-up nonlinear cloaks ( case III ) for different values 

of approximate cloaking radius c and the nonlinearity 

degree x = 0.1, 0.6, 20, respectively. 

 

Fig. 11. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of the cloaking radii c and x =0.1 (case III)  
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Fig. 12. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of the cloaking radii c and x =0.6 (case III) 

 

Fig. 13. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of the cloaking radii c and x =20 (case III) 

5.1.3. Effect of the Nonlinearity Degree x 

Here, we will study the effects of the nonlinearity degree x 

on the scattering from nonlinear spherical cloaks. We fix 

c 	 R�/40, and consider x = 0.1, 0.6, 1, 5, 10 and x=20 for 

concave-down and concave-up nonlinear cloaks, as 

discussed in the following figures. 

Figs. 14 and 15 show the bistaic RCS of the 

concave-down nonlinear cloaks for both cases II and III for 

six different values of the nonlinearity degree x. 

 

Fig. 14. Bistatic RCS for the concave-down nonlinear approximate 

cloaking for different values of x (case II) 

 

Fig. 15. Bistatic RCS for the concave-down nonlinear approximate 

cloaking for different values of x (case III) 

From Figs. 14 and 15, it can be seen that for 

concave-down nonlinear transformations, the cloaking 

property is better retained when x ! 1 . As x increases 

(xÃ 1), their RCSs are increasing dramatically and can be 

larger than that of an uncloaked PEC core (e.g., x = 5,10 and 

20), which is not desired in the cloaking application [15], 

[16].   

Figs. 16 and 17 show the bistaic RCS of the concave-up 

nonlinear cloaks for both cases II and III for different values 

of the nonlinearity degree x.The value of the exponent x has 

much less effect on the scattering than in the concave down 

case. The back scattering in concave up case is higher than in 

the concave down case for x ! 1, Figs. 14-17. 

The increase of x in concave-up transformations will push 

the “hot” areas (region with sharp variations of the electrical 

properties, Figs. 2, 3) further and further away from the 

spherical core, so the far-field pattern become stable with 

increasing x. However, the increase of x in the 

concave-down transformations has little effect in shifting 

away the “hot” positions from the core, which results in 

larger interaction with the spherical core. Hence, the RCS 

reduction in the far field is degraded with the increase of x, 

where the variations of the electrical properties become 

sharper in the concave-down class as shown in the figures 

[15], [16]. 

 

Fig. 16. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of x (case II) 
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Fig. 17. Bistatic RCS for the concave-up nonlinear cloaks for different 

values of x (case III) 

5.1.4. Effect of Frequency and Reduced Radius c 

Figs. 18, 19 show the back scattering RCS of the 

concave-up and concave-down nonlinear cloaks against the 

normalized frequency R�/λ for different values of c (case II) 

at 2M = 80, R� 	 0.15  m, R� 	 2R�  (these values are 

used in the paper for the back scattering versus frequency, 

unless otherwise specified) and for x = 0.6 .  

The average of the back scattering with frequency 

increases with increasing frequency. This is because with a 

fixed cloak thickness and number of layers the layer 

thickness becomes a larger fraction of the wavelength with 

increasing frequency. For concave-up cloak with c 	
R�/40 , Fig. 18, some scattering peaks appear due to 

interactions between the layers. 

The concave-down cloak, Fig. 19, shows lower scattering 

than the concave-up cloak, Fig. 18. 

 

Fig. 18. The back scattering RCS for the concave-up nonlinear cloaks for 

different values of c (case II) at x = 0.6 

 

Fig. 19. The back scattering RCS for the concave-down nonlinear cloaks 

for different values of c (case II) at x = 0.6 

5.1.5. Effect of Frequency and Nonlinearity Degree x 

The scattering properties of an approximate cloaked 

conducting sphere coated with isotropic homogenous layers 

are investigated concerning the back scattering cross section 

versus the normalized frequency R�/λ  for different values 

of the nonlinearity degree x. 

Fig. 20 shows the back scattering RCS of the 

concave-down nonlinear cloaks versus the normalized 

frequency for different values of x (case II) at c 	 R�/40. 

Fig. 21 shows the corresponding results for case III. 

At most frequencies, the cloak with x = 1 show least 

scattering. It can be seen, from Figs. 20 and 21 for concave 

-down profile that when the nonlinearity degree x becomes 

larger than unity, the scattering increase compared to the 

uncoated conducting sphere, which is useless for cloaking. 

Fig. 22 shows the back scattering RCS of the concave-up 

nonlinear cloaks for different values of x (case II) at 

c 	 R�/40. The value of the exponent x has much less effect 

on scattering compared with the concave-down profile. In 

Fig. 22 large values of back scattering at some frequencies 

and exponent x are found due to interaction effects between 

the layers, corresponding to those found in Fig. 18. 

 

Fig. 20. The back scattering RCS for the concave-down nonlinear cloaks 

for different values of x (case II) at ¾ 	 ��/40 
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Fig. 21. The back scattering RCS for the concave-down nonlinear cloaks 

for different values of x (case III) at ¾ 	 ��/40 

 

Fig. 22. The back scattering RCS for the concave-up nonlinear cloaks for 

different values of x (case II) at ¾ 	 ��/40 

5.2. Scattering from cloaked dielectric Sphere 

5.2.1. Effect of Dielectric Constant and Layers 

Configurations 

Fig. 23 shows the bistaic RCS of the concave-up 

nonlinear cloaks for the ideal case (c=0) for cases II and III 

for a dielectric sphere with  εµ 	 2 and the nonlinearity 

degree x = 0.1. The results are nearly identical to the cloaked 

conducting sphere, Fig. 6, due to near perfect cloaking for 

c=0. The results for a sphere with εµ 	 10  are nearly 

identical. 

 

Fig. 23. Bistatic RCS for the concave-up nonlinear ideal cloaks for cloaked 

dielectric sphere with N� 	 2 

Fig. 24 shows the bistaic RCS of the concave-down 

nonlinear cloaks for the ideal case (c=0) for cases II and III 

for a dielectric sphere with  εµ 	 2 and the nonlinearity 

degree x = 0.1. The scattering is nearly identical to the 

cloaked conducting sphere, Fig. 7, with slight difference for 

back scattering. This shows that the cloaking of the body is 

nearly ideal and the scattering properties are mainly a result 

of the scattering from the cloaking layers. Similar behavior 

is also found for εµ 	 10. 

 

Fig. 24. Bistatic RCS for the concave-down nonlinear ideal cloaks for 

cloaked dielectric sphere with N� 	 10 

5.2.2. Effect of the Reduced Radius c  

Figs. 25, 26 show the effect of the reduced radius c on the 

bistaic RCS of the concave-up and concave-down nonlinear 

cloaks , respectively, for case II for cloaked dielectric sphere 

with  εµ 	 10 and the nonlinearity degree x = 0.6 (R� 	 λ, 

R� 	 2R�) . The scattering increases for c 	 λ/10, λ/5.  

 

Fig. 25. Bistatic RCS for the concave-up nonlinear approximate cloaking 

for different values of the cloaking radii c and x =0.6 for cloaked dielectric 

sphere with N� 	 10 (case II) 

 

Fig. 26. Bistatic RCS for the concave-down nonlinear approximate 

cloaking for different values of the cloaking radii c and x =0.6 for cloaked 

dielectric sphere with N� 	 10 (case II) 
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Figs. 27, 28 show the corresponding results for case III for 

the bistaic RCS of the concave-up and concave-down 

nonlinear cloaks, respectively. The back scattering for the 

concave-down profile, Fig. 28, is lower than that of the 

concave-up profile, Fig.27. 

 

Fig. 27. Bistatic RCS for the concave-up nonlinear approximate cloaking 

for different values of the cloaking radii c and x =0.6 for cloaked dielectric 

sphere with N� 	 10 (case III) 

 

Fig. 28. Bistatic RCS for the concave-down nonlinear approximate 

cloaking for different values of the cloaking radii c and x =0.6 for cloaked 

dielectric sphere with N� 	 10 (case III) 

5.2.3. Effect of the Nonlinearity Degree x 

Fig. 29 shows the effect of the nonlinearity degree x on 

the bistaic RCS of the concave-down nonlinear cloaks for 

cloaked dielectric sphere with εµ 	 10 , for case II, c= 

R�/40. The behavior is similar to the cloaked conducting 

sphere except for back scattering, Fig. 14. The results for 

case III are similar to those of Fig. 15 for the cloaked 

conducting sphere. 

 

Fig. 29. Bistatic RCS for the concave-down nonlinear ideal cloaks for 

cloaked dielectric sphere with N� 	 10 for different values of x (case II) 

Fig. 30 shows the effect of the nonlinearity degree x on 

the bistaic RCS of the concave-up nonlinear cloaks for 

cloaked dielectric sphere with εµ 	 10 , for case II. The 

results for case II are nearly identical to Fig. 16 for the 

conducting sphere. The concave-up results for case III are 

identical to those of the cloaked conducting sphere, Fig. 17.  

From Figs. 29 and 30, it can be seen that for 

concave-down nonlinear transformations, the cloaking 

property is better retained when x ! 1 . As x increases 

(xÃ 1), their RCSs are increasing dramatically and can be 

larger than that of the uncloaked dielectric sphere (e.g., x = 5, 

10 and 20), which is not desired in the cloaking application.   

 

Fig. 30. Bistatic RCS for the concave-up nonlinear ideal cloaks for cloaked 

dielectric sphere with N� 	 10  for different values of x (case II) 

5.2.4. Effect of Frequency and Reduced Radius c 

Figs. 31, 32 show the effect of the reduced radius c on the 

back scattering RCS of the concave-up and concave-down 

nonlinear cloaks, respectively, against the normalized 

frequency R�/λ  for different values of c, R� 	 0.15  m, 

R� 	 2R�  for case II.  
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Fig. 31. The back scattering RCS for the concave-up nonlinear 

approximate cloaking for different values of the cloaking radii c and x =0.6 

for cloaked dielectric sphere with N� 	 10 (case II) 

 

Fig. 32. The back scattering RCS for the concave-down nonlinear 

approximate cloaking for different values of the cloaking radii c and x =0.6 

for cloaked dielectric sphere with N� 	 10 (case II) 

5.2.5. Effect of Frequency and Nonlinearity Degree x 

The effect of the nonlinearity degree x on the back 

scattering properties versus normalized frequency R�/λ of 

an approximate cloaked dielectric sphere is investigated for 

the concave-down and concave-up nonlinear cloaks for both 

cases II and III with c= R�/40. 

Fig. 33 and 34 show the back scattering RCS of the 

concave-up nonlinear approximate cloaking for cloaked 

dielectric sphere with εµ 	 10  for both cases II and III, 

respectively, for different values of the nonlinearity degree x. 

The scattering properties have great similarities with those 

of the cloaked conducting sphere for case II, Fig. 22.  

 

Fig. 33. The back scattering RCS for the concave-up nonlinear 

approximate cloaking for cloaked dielectric sphere with N� 	 10   for 

different values of x (case II) at ¾ 	 ��/40 

 

Fig. 34. The back scattering RCS for the concave-up nonlinear 

approximate cloaking for cloaked dielectric sphere with N� 	 10   for 

different values of x (case III) at ¾ 	 ��/40 

Fig. 35 and 36 show the effect of the nonlinearity degree x 

on the back scattering RCS for the concave-down nonlinear 

cloaks for cloaked dielectric sphere with εµ 	 10  for both 

cases II and III, respectively, at c 	 R�/40. The scattering 

properties have great similarities with those of the cloaked 

conducting sphere for case II, Fig. 20. The scattering 

properties for case III have similarities with Fig. 21.  

 

Fig. 35. The back scattering RCS for the concave-down nonlinear 

approximate cloaking for cloaked dielectric sphere with N� 	 10  for 

different values of x (case II) at ¾ 	 ��/40 
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Fig.36. The back scattering RCS for the concave-down nonlinear 

approximate cloaking for cloaked dielectric sphere with N� 	 10   for 

different values of x (case III) at ¾ 	 ��/40 

5.3. Effect of Cloaking Material Thickness  

5.3.1. Effect of Cloaking Material Thickness for Constant 

Layer Thicknesses 

Figs. 37, 38 show the effect of cloaking material thickness 

for constant layer thickness of  λ/80  on the bistatic RCS 

of the nonlinear approximate cloaking for cloaked 

conducting sphere for two different coating thicknesses of  

λ/2  and λ  for concave-down and concave-up nonlinear 

cloaks, respectively . We use  c 	 R�/40 and x = 0.6. For 

fixed layer thickness, as the number of layers increases the 

average scattering decreases.  

 

Fig. 37. Bistatic RCS for the concave-down nonlinear approximate cloaks 

for cloaked conducting sphere for two different thicknesses ¿/2, ¿  and 

¾ 	 ��/40, x = 0.6 (case II) 

 

Fig. 38. Bistatic RCS of the concave-up nonlinear approximate cloaking for 

cloaked conducting sphere for two different thicknesses, ¿/2 , ¿   and 

¾ 	 ��/40, x = 0.6 (case II) 

5.3.2. Effect of Cloaking Material Thickness for Constant 

Number of Layers  

Fig. 39 shows the effect of thickness of cloaking material 

on the bistatic RCS for the nonlinear approximate cloaking 

for cloaked conducting sphere for two different coating 

thicknesses of λ/2  and λ with 80 isotropic layers. Smaller 

cloaking thickness improves scattering since the normalized 

layer thickness decreases.  

Fig. 40 shows the back scattering cross section versus 

normalized frequency R�/λ  of the concave-up nonlinear 

approximate cloaking for cloaked conducting  sphere for 

two different thicknesses R� 	 0.225 m, 0.3  m, with 

R� 	 0.15 m,  c 	 R�/40 and x = 0.6 ( case II ). On the 

average, smaller cloaking thickness improves scattering.  

 

Fig. 39. Bistatic RCS for the concave-up nonlinear approximate cloaking 

for cloaked conducting sphere for two different thicknesses, ¿/2, ¿  and 

¾ 	 ��/40, x = 0.6 case II 
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Fig. 40. The back scattering RCS for the concave-up nonlinear 

approximate cloaking for cloaked conducting  sphere for two different 

thicknesses, �� 	 0.15 m, ¾ 	 ��/40,x = 0.6 (case II) 

6. Conclusions 

The scattering properties of cloaked spherical bodies 

(conducting and dielectric) are studied using a combination 

of approximate cloaking, where the conducting sphere is 

transformed into a small sphere rather than to a point, and 

using two types of nonlinear transformations; concave-up 

and concave-down. The radially-dependent spherical 

cloaking shell is approximately discretized into many 

homogeneous anisotropic layers, provided that the thickness 

of each layer is much less than the wavelength, and this 

discretization raises the level of scattering as the number of 

layers decreases. Each anisotropic layer can be replaced by a 

pair of equivalent isotropic sub-layers, where the effective 

medium approximation is used to find the parameters of 

these two equivalent sub-layers. 

This study is concerned with layering structure where a 

smaller value of µ is accompanied with the larger value of ε 

in a layer, and the opposite combination in the second layer, 

which leads to large reduction of forward scattering with 

good reduction of back scattering. It is found that the 

reduced radius c has larger effect on the back scattering than 

on the forward scattering, and that good improvement on 

scattering is obtained for   c Ä  λ/20. The use of reduced 

radius eliminates the zero value of the permittivity and the 

permeability at the radius of the body to be cloaked. Good 

reduction of scattering is achieved with nonlinearity 

exponentX Ä 1, and the concave-down profile given less 

back scattering. 

The scattering performance from cloaked dielectric 

sphere is almost identical to that of a cloaked conducting 

sphere for c = 0, and in this case the scattering is actually a 

result of the interactions between the layers. Smaller 

thickness of the layers w.r.t. the wavelength results less 

scattering. The relative location of the layers with small and 

large values of   ε, µ(cases II, III) has effect mainly on the 

scattering near the forward angles. 
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