

American Journal of Computer Science and Technology
2023; 6(1): 1-9

http://www.sciencepublishinggroup.com/j/ajcst

doi: 10.11648/j.ajcst.20230601.11

ISSN: 2640-0111 (Print); ISSN: 2640-012X (Online)

Research on Contemporary Software Development Life
Cycle Models

Liu Yuge, Tuyatsetseg Badarch
*

School of Information Technology and Design, Mongolian National University, Ulaanbaatar, Mongolia

Email address:

*Corresponding author

To cite this article:
Liu Yuge, Tuyatsetseg Badarch. Research on Contemporary Software Development Life Cycle Models. American Journal of Computer

Science and Technology. Special Issue: Advances in Computer Science and Future Technology. Vol. 6, No. 1, 2023, pp. 1-9.

doi: 10.11648/j.ajcst.20230601.11

Received: January 12, 2023; Accepted: February 20, 2023; Published: March 4, 2023

Abstract: The rapid development of computer software and modern technology is perfectly integrated and has a huge

contribution to the development of society. The paper covers the research of software life cycles of contemporary software

systems, especially, we focus on their development stages, and models for their life cycles. We studied there are powerful and

principal software systems such as system software, application software, and support software. Software is mainly divided

into seven categories such as system software, application software, engineering/scientific software, embedded software,

product line software, web applications, and artificial intelligence software depending on their usage. In addition, we analyzed

the models including workflow, data flow, and action flow models. The software process model is expressed as a simplified

abstract representation and a framework of the software development process including the various activities that make up the

software process, software artifacts, and the actors involved in the development. The paper focuses on the life cycle of software

that can be divided into six parts: planning, analysis of requirements, design and coding, testing, and operation and

maintenance. In addition, we describe the relationship between the various parts of the software development process which is

an iterative process with some feedback. We show development methods and tools to improve the efficiency and capability of

software development. This paper presents potential software development life cycles described by the cycles from product

development to end-of-life with phases such as problem definition, requirement analysis, system design, coding, debugging

and testing, acceptance and operation, maintenance and upgrade to disposal. When planning long life cycles, we emphasize

performing a detailed requirement analysis of the various functions that must be implemented in the software development

stages. As a result of studies, we want to emphasize component assembly-based software engineering methods that have

emerged in recent years, and these models have been widely used. Our study emphasizes the waterfall model which has been

playing an important role as one of the earliest software life cycle models. The model describes some basic process activities of

software life. At our study point, one thing became clear the software architecture has become obsolete and should be

discarded to meet the system design requirements of a new software architecture to replace it. This paper presents that the

selection of the software lifecycle model plays a crucial role in the software.

Keywords: Computer, Software, Life, Cycle, Models, Development, Application, Testing

1. Introduction

As computer technology continues to be applied to

various fields, it profoundly affects people's lives and

development and even civilization. Computer software

engineering has adapted to the needs of the times, brought

great convenience to various industries and fields, and

created more conditions for the overall development of the

industry. Computer software and modern technology are

perfectly integrated and have a huge contribution to the

development of society [1]. Analyzed from the point of

view of computer definition, software is the application

software developed through computer software technology,

which can also be described as a computer system, and it is

one of the results of the development of computer software

2 Liu Yuge and Tuyatsetseg Badarch: Research on Contemporary Software Development Life Cycle Models

technology [2]. With the continuous innovation and

development of computer software technology, the practical

application of many software technologies tends to develop

in the direction of high-end, simple and intelligent, which

can provide more convenience to people's lives while

driving, integrating and developing related industrial chains

[3] and development [3]. The development of computers

now tends to be multi-faceted, more modular and functional,

and the steps required to develop a software are divided into

many positions, which also aims to prevent the generation

of software crisis, so there are still many opportunities for

the development of contemporary students, and the

prospects are also very broad [4]. As the needs of users are

becoming clearer, the corresponding software technologies

are keeping up with the contemporary trends and keeping

up with the times, and computer software is constantly

winning and losing. Research and development personnel

are required to actively make strategies to enhance the

technology so that the quality of software use can be

improved more quickly to meet the differentiated needs of

different inches of users. More importantly, it is important

to make timely corrections to improve software

vulnerabilities through continuous feedback from users [5].

This highlights the importance of the software life cycle in

particular. The software lifecycle approach is applicable to

the development of large-scale complex systems and is

relatively widely used [6]. The life cycle of a software can

be divided into six parts, namely, planning, analysis of

requirements, design and coding, testing, and operation and

maintenance. However, the relationship between the

various parts of the software development process is not

fixed, but it is an iterative process with some feedback, and

in software engineering, this complex process can be

specifically described and represented by a software

development model. A software development model is a

model that provides a structural framework for all the work

and tasks related to the development, operation and

maintenance of the system across the entire software life

cycle, and gives the relationship between the various parts

of the specific software development activities. Such as the

waterfall model, transformation model and agile model [7].

The features and advantages of the life cycle can be fully

highlighted in the development of complex industrial

software to improve the global and holistic nature of the

software development system [8]. The selection of the

software lifecycle model plays a crucial role in the

extensibility and plasticity of the software. Therefore, the

problems and advantages of life cycle need to be studied.

2. Classification of Software Systems

Regarding the study, there are still many opportunities for

the development of contemporary software systems, and the

prospects are also very broad [4]. Software is mainly divided

into seven categories such as system software, application

software, engineering/scientific software, embedded

software, product line software, web applications, and

artificial intelligence software depend on their usages. In this

paper, we focus on the main types of software systems of

computers including system software, application software,

and support software.

2.1. System Software

The system software is classified into four types including

operating system software, computer language translation

system software, system support, and service oriented

software.

The operating system software controls and manages the

computer whole system, it can be main interface between the

user and the hardware system to keep two directional access.

The language translation systems are written in various

programming languages, such as assembly language, C, Java

and other high-level languages, however these never directly

executed by the computer as source programs, and they must

be translated, which requires language translation systems.

System support and service programs are named as tool

programs. There are system diagnostic programs, debugging

programs, scheduling programs for error fixing, editing, virus

checking of programs that are configured to maintain the

proper operation of a computer system or to support system

development.

Database management systems are typical system software

for creating and managing databases helping end users to

create, protect, read, update and delete data in a database.

The system software helps to serve as an interface between

databases and end users or application programs. The system

software ensures that data is consistently organized and

remains easily accessible.

2.2. Application Software

The application software is designed to perform specific

functions for a user. According to its service objects, the

software is generally classified into general-purpose

application software and special-purpose application

software. For instance, the sole purpose of general software

is described by the public application programs such as

Microsoft word and excel, as well as popular web browsers

like Firefox and Google Chrome, database, as well as public

aided design and manufacturing CAD & CAM, computer

networking. It also can encompass the mobile apps includes

apps like Whatsapp, Wechat, Facebook, Candy Crush Saga,

so on.

Dedicated application software is designed for a small

number of users with a single objective. These are dedicated

software for automatic control software for a machine tool

equipment, data acquisition and data processing for a certain

experiment, and supplementary teaching software for

learning a certain course etc,. Regarding our research result,

it is identified that principal problems in application software

are mainly described by their maintenance based on user

knowledge, programmer effectiveness, product quality,

programmer time availability, machine requirements, and

system reliability. Among of them, user knowledge

 American Journal of Computer Science and Technology 2023; 6(1): 1-9 3

accociated problems account for huge amount of problems,

as well as problems of programmer effectiveness and product

quality are greater for older and larger systems [4, 5].

2.3. Support Software

Support software updates, upgrades, patches, fixes or

supports new versions to assist software development,

operation, and maintenance. Traditional support software

were tools such as modeling tools, language tools,

development tools, testing tools, and version maintenance

tools, however, with the development of network technology,

the demand for support software has promoted the

development, deployment, operation, integration,

management, security and maintenance of various network

applications.

3. Role of the Software Models

Before defining the software lifecycle, it is important to

define the software model. An abstract expression of a real

system that answers the desired research question can be

called a model. In general, a model is described as an abstract

expression of a real software system and its problems. The

problem is a domain by extracting the main factors and major

conflicts to be understood and solved, However, the problem

of a model can ignore minor factors that do not affect the

basic nature. Models are extracted from real systems and,

conversely, can be applied to other real systems by

understanding them.

Models can be represented mostly in the form of common

mathematical expressions, physical models, or graphical

textual descriptions.

In this paper, it is identified the software life cycle model

determines the sequence of the software development

activities.

An appropriate software life cycle model should be chosen

at the early stage of software development in order to

simplify the software development process and reduce the

difficulty of software development. Software life cycle

models can help developers to improve software

development efficiency, improve software quality, reduce

software development costs, better monitor and control the

software development process, and reduce risks [9]. The

software process model can be divided into the following

three main types:

Workflow model: It describes the sequence of activities,

inputs and outputs in the software process, and the

interdependencies between various activities. It always

covers the organizational control strategy of the activities in

the software process.

Data flow model: This model describes the activities

throughout the process of transforming software requirements

into software products. The activities perform the function of

transforming input artifacts into output artifacts. The model

clearly determines the transformation relationship of artifacts

in the software process. The specific implementation measures

of artifact transformation are not defined.

Role/action model: The model describes the different roles

and actions involved in the software process. Especially, the

actions accomplish the software process. Therefore, actions

define the roles in the software process, the collaborative

relationship between the roles, and the specific determination

of the roles' responsibilities and activities.

These three types of software process models can in turn

be specified in the specific software development process as

software life cycle models. According to the time of

development, in this paper, we focus on software life cycle

models that are divided into traditional software life cycle

models and modern software life cycle models.

4. On Software Development Life Cycle

The Software Development Life Cycle (SDLC) is a

structured process for building high-quality and low-cost

software. The SDLC originally consisted of five stages:

planning, creating, developing, testing, and deploying.

However, with the development of the software technologies,

currently, SDLC is described by seven stages including

planning, requirement analysis, design, development, testing,

operation, and maintenance.

4.1. Planning Stage of Software Life Cycle

This stage describes the general objectives of the software

system to be developed, giving its requirements and technical

limitations in terms of functionality, performance, reliability,

and interfaces. For the planning stage, the system analyst and

the user cooperate with each other to study the feasibility of

completing the task of the software system. In addition, they

also explore possible solutions to the problem and estimate

the available resources including computer hardware,

software, human resources, costs, and benefits to be

achieved. The planning stage includes the development

schedule and planning for completing the development task.

The final approval is determined by review from committee

members. There are three main parts in the planning stage of

the software life cycle including problem identification, the

feasibility of the system development, and resources.

Problem definition: Through research, the team clarifies

the problems to be solved, process objectives, and scale, then

they form a preliminary requirement report for users and get

confirmation from users.

Feasibility demonstration: Based on the preliminary user

requirement, the planning report should be confirmed by the

user and the real environment situations. In this study, we

present that the feasibility of the software system is described

based on requirements from technical, economic, and social

aspects. We also emphasize that the selection of the

requirements determines the right solution and form

feasibility requirements.

Develop a preliminary project development plan: it

includes a selection of resources, a definition of tasks, risk

analysis, cost estimation, cost-benefit analysis, and project

schedule.

4 Liu Yuge and Tuyatsetseg Badarch: Research on Contemporary Software Development Life Cycle Models

4.2. Requirements Stage of Software Life Cycle

After determining that software development is feasible

based on the requirements, a detailed analysis of the various

functions to be implemented in the software is performed.

We say the requirements analysis phase is the most

important stage, then this result influences to the success of

the entire software development project.

In fact, the requirement stage always is determined by a

change throughout the software development process, so a

requirements change plan must be developed to cope with

such changes and to protect the smooth running of the

project. For the appropriate change influencing to the

requirement and quality of the project, the following types of

test help to determine the right solution.

At this stage, the requirements survey should be done. This

survey is a detailed survey of the needs of the software and

its use environment to grasp the requirements of users and to

determine the working conditions of the software life cycle.

According to the situation, we analyze and study the

function, performance, and environmental constraints

analysis including function (i.e., what the system must do),

performance (including software security, reliability,

maintainability, accuracy, error handling, adaptability and

user training) and environmental constraints (meaning that

the software system to be developed must meet the

requirements of the operating environment) of the software

system, and obtain a consistent understanding with the users.

In this stage, one more important thing is that to prepare

software requirement specifications to write the functional

requirements, performance requirements, interface

requirements, design requirements, basic structure, and

development standards.

In addition, based on the validated software development

standards and acceptance principles, the developing software

system validation test requirements and user manual outline

are the documentation to guide/ help users to understand the

software.

4.3. Design Stage of Software Life Cycle

The design stage designs the overall structure of the

software system based on the functions determined in the

requirements analysis phase divides the functional modules

determines the implementation algorithm of each module and

writes specific code to form a concrete design plan for the

software [11]. The design phase starts with the software

requirements specification. In this phase, the entire software

system is designed based on system framework design and

database design. Software design is generally classified into

the general design and detailed design. A good software

design can express a good software program writing

performance.

In the book "Information Architecture, Beyond Web

Design", Louis Rosenfeld mentions that information

architecture is an essential element of design that allows

information about software applications and websites to be

more easily retrieved and understood by users [12].

For instance, in the design phase, the overall system

structure may be described in this way based on a diagram

expression (Figure 1).

Figure 1. System overall structure diagram.

According to the software requirement specification, to

establish the overall structure of the software system, the

overall functions of the software system are classified into

modules to form the functional structure diagram of the

system.

Defining the interface of functional modules helps to

perform the functions of modules and determine the

relationship between modules, and give the definition of the

interface of each module.

Designing a global database and data structure is one

important part to define the properties of basic data items and

data structures from the application problem domain, and

designing the logical structure of the global database.

However, there are specific design constraints to define the

boundaries of the software system and to give a description

of the constraints on the system design [11].

At the manager level, preparing outline design documents

is always to express the design stages documentation such as

outline design specification, database or data structure

specification, and assembly test plan.

In this study, we emphasize the detailed module design

including the design of module functions, algorithms, data

structures, and interface information between modules, and

the development of module test plans.

Another important process of the stage is about preparing

the detailed specification of the module that is summarized to

form the detailed specification of the module.

4.4. Program Code Stage of Software Life Cycle

This stage is the conversion of the results of software

design into computer-runnable program code.

To perform metrics on the software coding phase, people

basically determine an evaluation baseline of what kind of

code is of good quality and what kind of code is in need of

improvement. It is first determined by the evaluation baseline

by a true estimate of the software generic defect rate [13]. In

this stage, uniform, standard-compliant writing specifications

must be developed in program coding to ensure readability,

and ease of maintenance, and to improve the efficiency of the

program's operation. The programming stage is the

 American Journal of Computer Science and Technology 2023; 6(1): 1-9 5

development main stage, and the management of this stage

includes all organizational and decision-making activities

from the specification phase to design, coding, and testing,

and even the runtime phase, where the development manager

schedules meetings, maintains contact with all participants

and tracks development progress and work standards, gives

guidance and makes decisions [14].

4.5. Software Testing

After the software design is completed, the progress of

software development has to go through a rigorous design

testing process to find out the problems in the whole design

process and correct them.

The whole testing process is classified into three stages:

unit testing, assembly testing (integration testing), and

system testing. The testing methods are mainly white box

testing and black box testing. In the testing process, a

detailed test plan is planned and strictly follows the test plan

in order to reduce the arbitrariness of testing [15].

Unit testing as module testing is to test the correctness of

the smallest unit of the software design specification. The

purpose of unit testing is to verify that the function unit

correctly implements the functional, performance, and other

design constraints in the software's detailed design

documents, and to discover possible defects within the

software unit. The types of tests for unit testing generally

include documentation review, static analysis, code review,

and dynamic testing [15].

After the unit testing is completed, the assembly testing

process should be performed based on the basis of unit

testing results. The assembly testing tests whether all

software units are assembled into modules, subsystems, or

systems in accordance with the requirements of the outline

design specifications. The assembly test also determines

whether each part of the work meets or achieves the

corresponding technical specifications and requirements.

This is very important because, without the assembly test,

we increase significantly the cost of software error

correction.

In addition, we emphasize software system feasibility

testing which actually tests the user's understanding of the

system and its use effect, similar to the system operability

test, which involves the system's function, the system's

release, and the user's interaction effect with the system.

System feasibility testing mainly includes navigation

testing, graphics testing, content testing, interface testing, etc.

[15, 16]. Total testing of the software system is performed

according to all functional and performance requirements

defined in the software requirements specification and

software validation testing guidelines [16].

4.6. Operation and Maintenance Stage of Software Life

Cycle

In general, we can acknowledge that the Operation and

Maintenance (OP) phase is the life cycle phase in which

users operate the software and utilize the finalized solution of

the software and services the product provides. After OM

period, the programmers provide continuous maintenance

and user support until the software is finally accepted by

users, after which a maintenance organization or users

become responsible for it. Because this process is a general

process for all types of software [9].

Figure 2. Incremental model structure.

During this phase, the software may need to be modified

during operation for a variety of reasons. The reasons for this

may include bugs or errors in the software during operation

that needs to be corrected. In addition, these may include

appropriate changes to accommodate changes in the

software's operating, as well as changes to enhance the

software's functionality. In this paper, we focus on the

principal factors that may affect the length of the software

life cycle.

In the operational and maintenance phase, we always need

to consider the use phase, the maintenance phase, and

decommissioning subphases. The use phase describes the

installation time of the software in a user-defined operating

environment for use. Maintenance phase help to make

changes to the software product or respond to changes in

software requirements, and write maintenance reports for all

maintenance [13, 14].

However, when we consider the decommissioning phase,

there are special time frames just started. For this, we studied

the frame: the software has completed its mission, or a new

software life cycle is almost to start, the original software

product is terminated, or the software is discontinued. The

integrated software life cycle process stages can be mapped

out in a software life cycle mode.

6 Liu Yuge and Tuyatsetseg Badarch: Research on Contemporary Software Development Life Cycle Models

5. On Architectural Design of the Life

Cycle Models

In general, we all know that software architecture is

described by the structures of a system that comprise

software elements and the relationships among the elements.

5.1. Non-Formal Description of Software Architecture

Despite the common use of natural language, software

architecture is creative and pioneering [18]. However, when a

software architecture is created, its ideas are usually simple

and often expressed by software designers in a non-formal

natural language of concepts. For instance, client/server

architecture is one type of software architecture that evolved

from master-slave to accommodate the requirements of

distributed systems.

5.2. Specification Description and Analysis of Software

Architecture

The specification description and analysis phase of the

software architecture is defined by applying a suitable formal

mathematical theoretical model to the non-formal description

of the architecture. In order to make the description of the

software architecture accurate and ambiguity-free, we must

analyze the nature of the software architecture, such as

deadlock-free, security, and activity to obtain a perfect formal

specification description. The analysis of the nature of the

software architecture is beneficial for the selection of the

appropriate software architecture at the time of system

design, thus serving as a guide for the selection of the

software architecture and avoiding blind selection [17].

5.3. Refinement of Software Architecture and Its

Verification

The software architecture refinement and its verification

phase to complete the design of the software architecture

have been grabbed. The refinement of the software

architecture of large systems is always through the

abstraction to concrete, progressive refinement, and

achievement, due to the complexity of the system, abstraction

is an essential way of thinking when dealing with complex

problems and objects, software architecture is no exception

[16]. However, we learned that too much abstraction always

makes the software architecture difficult to implement in the

system design.

Hence, if we see that the software architecture abstraction

granularity is too large, it is necessary to refine the

architecture, refinement, until it can be implemented in the

system design.

In each step of the software architecture refinement

process, the need for different levels of abstraction of the

software architecture antelope, to determine whether the

more specific software architecture and the more abstract

software architecture have semantic consistency, and can

implement the abstract software architecture [17].

5.4. Implementation of Software Architecture

The implementation phase of the software architecture

describes the refined software architecture that is penetrated

into the system design. It naturally organizes the components

and connectors of the software architecture to form the

framework of the system design, therefore, the architecture

can be implemented into the software design and

construction.

5.5. Evolution and Extension of Software Architecture

After the implementation of the architecture, the evolution

and extension phase of the software architecture starts.

According to the requirements of the system, which is called

the evolution of the software architecture, when

implementing the software architecture, non-functional

requirements such as performance, fault tolerance, security,

interoperability, adaptivity, and others affect the extension

and modification of the software architecture [18].

Since the evolution of software architecture is often caused

by non-formal requirements description, the evolution and

extension require repeating the first step.

In the case of functional and non-functional natures, the

understanding of the software architecture has to be

designed. Furthermore, reverse engineering and re-

engineering of the software architecture are required.

5.6. Software Architecture Provision, Evaluation, and

Metrics

The provisioning, evaluation, and metrics phase of the

software architecture is carried out through the

implementation of the software architecture in the system

design. It is also performed by the actual operation of the

system, the qualitative evaluation of the software

architecture, the quantitative metrics for the reuse of the

software architecture, and the acquisition of lessons learned.

5.7. Evolution and Modification of Software Architecture

If the software architecture has evolved and modified

several times, the software architecture has become more

difficult to understand. In this phase, maybe the software

architecture can not meet the requirements of the system

design, and can not adapt to the development of the system.

At this point, the software architecture of the re-engineering

project is neither necessary nor feasible.

Hence, it indicates the software architecture has become

out of date when many modifications occurred without

proper requirements.

6. Software Life Cycle Model

The software life cycle is the cycle from product

development to end-of-life with phases such as problem

definition, feasibility analysis, general description, system

design, coding, debugging and testing, acceptance and

operation, maintenance and upgrade to disposal [10].

 American Journal of Computer Science and Technology 2023; 6(1): 1-9 7

These phases can be categorized into 3 periods, namely the

software definition period, the software development period,

and the software operation and maintenance period. Dividing

the software life cycle into several phases, each phase will

have a clear task, and then the software gradually completes

the tasks in each phase. The process helps software

development to manage and control complex processes

easily.

6.1. Waterfall Model

Historically, the waterfall model has played an important

role. The waterfall model is one of the earliest software life

cycle models. The model describes some basic process

activities of software life. The basic activities include

planning, requirements analysis, software design, program

writing, software testing, and operation and maintenance, and

stipulates that they are from top to bottom [18, 20]. The fixed

sequence of mutual convergence, like a waterfall, falls step

by step as the waterfall model.

In the waterfall model, various software development

activities are carried out in a linear manner. The current

activity accepts the work results of the previous activity and

implements the required work content. The work result of the

current activity needs to be verified. If the verification is

passed, the result is used as the input for the next activity, and

the next activity is continued; otherwise, the revision is

returned. The characteristics of the waterfall model are as

follows sequence and dependence among the various stages,

the dependence of the quality assurance mechanism as well

as the principle of postponing realization [19, 20].

Hence, it is clear that the process of the waterfall model

depends on the result of the work of the previous stage as an

input of the work of the next stage. In other words, each stage

is built on the correct result of the previous stage, and the

mistakes and omissions of the previous stage will be hidden

to the next stage. This kind of error can sometimes even be

catastrophic [20]. Therefore, after each stage of work is

completed, it must be reviewed and confirmed, which is very

important. The waterfall model uses stage review and

document control to ensure the progress and quality of the

software project, but the model lacks the flexibility to adapt

to changing needs, freezing of requirements, no backtracking

and feedback loops, and is not suitable for object oriented

projects.

6.2. The Incremental Model

The incremental model combines the basic components of

the waterfall model and it has the iterative features of the

prototype implementation. The model uses linear sequences

that are staggered with the progress of the schedule. Each

linear sequence produces a releasable "increment" of the

software " [21]. When using an incremental model, the first

one increment is often the core of the product. This process is

repeated after each increment release until the final perfect

product is produced. We studied that the incremental model

combines the advantages of the waterfall model.

The incremental model does not deliver a complete

runnable product at each stage, however, the entire product is

broken down into several components, hence developers

deliver the product component by component.

6.3. The Fountain Model

The model supports object-oriented development methods.

The model provides support for software reuse and

integration of multiple development activities in the software

life cycle. When we use this model, the various stages of the

software development process are overlapped and are

repeated many times. Compared to the Waterfall model, The

fountain model is suitable for developing Object Oriented

projects [20].

The functional modules are not completed at one time but

are like fountains. There can be a fallback into the previous

phase providing an iterative fashion. The water can be

sprayed up and down, either in the middle or to the bottom.

There is no specific sequence requirement for each

development stage, the phases and sequence order remains

the same for both Waterfall and Fountain model [20].

The fountain model allows for the overlap of activities

between development stages including portfolio,

maintenance, practice, design, and analysis stages which

shows the activities cannot start before others (Figure 3).

The model has high reliability, reusability of code,

maintainability, understandability, and robustness. In

addition, we emphasize that the model has no freezing of

requirements, a possibility of changes, and iterations. As a

result of iterations, the model often repeats work many times,

and related functions are added to the evolved system in each

iteration.

Figure 3. Fountain model.

6.4. The Spiral Model

Spiral Model using a cyclical approach used for large

projects which involve continuous enhancements. systems

8 Liu Yuge and Tuyatsetseg Badarch: Research on Contemporary Software Development Life Cycle Models

development. The main activities such as planning, risk

analysis, engineering, and evaluation activity are performed

in each iteration. Therefore, the main feature is that the spiral

model has specific activities that are done in one spiral where

the output is a small prototype of the software system. The

types of processes are then repeated for all the spirals until

the entire software system is built.

When we use the model, typically, project managers can

demonstrate certain concepts to clients at an early stage. The

model is centered on an evolutionary development method,

using the waterfall model method at each project stage.

We say this model has a high performance to use for

complex software systems where we can develop and deliver

smaller prototypes and can enhance them to make complex

software systems.

6.5. The V-shaped Model

The waterfall model treats testing as an independent stage

after software implementation, making potential errors in the

analysis and design stages [20].

The V-model is a type of SDLC model where the process

executes in a sequential manner in V-shape that is also

known as Verification and Validation model (Figure 4). The

model has two main design and testing phases.

The design phase starts with the requirement analysis to

communicate with the customer to understand their

requirements and expectations. After this requirement, the

system design, and the infrastructure setup are done for the

developing purpose of the software project.

Within the design phase, the detailed architectural design

is performed further into modules taking up different

functionalities for the model design. The final stage of the

design phase is building modules. The detailed design of

modules is named as Low-Level Design. The figure shows

this principle of the model. Once completing the design

phase, in this model, we start the testing phases for all types

of testing such as unit testing, integration testing, system

testing, and user acceptance testing (Figure 4).

This model emphasizes the importance of testing. It

closely links development activities with testing activities.

Each step will be more complete than the previous stage.

Figure 4. V-shaped model.

6.6. The Component Based Assembly Model

In general, we know there is some reused software in

many software projects. When reused software is used then

the design or code in one project is repeated in another

project, and reuse occurs naturally. Similar to this reusable

idea, we describe the component-based assembly model. In

this model, classes work as reusable components.

The component-based assembly model always uses object-

oriented technologies. In the technologies, classes are main

the entities that encapsulate data and algorithms to build the

application. Classes are reusable components.

As a result of the model, the reuse of components

improves the reliability and ease of maintenance of the

software, and the program has fewer effects when it is

modified.

During a system development process, once candidate

components are identified, they can be retrieved in the

component library to confirm whether these components exist.

If the component already exists, it can be retrieved from the

component library for reuse. If a candidate component does

not exist in the component library, then a new component must

be developed. After the new component is successfully

developed, it can be used to construct the target system on the

one hand, and it can be stored in the component library on the

other hand [17, 21]. In recent years, component-based software

engineering methods have emerged, and software process

models based on the component assembly have also emerged,

and have gradually been widely used. The model has 6 stages

to enhance the use of object-oriented technology, encapsulate

both data and algorithms, and reuse components/classes by

assembling the correct components.

6.7. The Prototype Model

The prototyping model is the most popular SDLC model.

Prototyping is identified as the process of developing a

working replication of software that has to be engineered.

This process is an iterative process, which can avoid the

invisible product during the development process of the

waterfall model [17]. When the customers do not know the

exact project requirements beforehand, this model is used.

The feature is that a prototype of the end product is first

developed, then the prototype is tested and refined as per

customer feedback repeatedly till a final acceptable prototype

is achieved for the final product. The prototype model is

proposed in response to the difficulty of determining the

software system requirements at the initial stage of software

development. It draws on the architect’s experience in

designing and building prototypes, enabling software

developers to quickly develop a prototype based on the initial

needs of customers [22].

The prototype model uses the prototype realization

technique and gradual refinement techniques. Using prototype

realization techniques can quickly realize a practical system

preliminary model, for developers and users to communicate

and review, in order to more accurately obtain user needs. The

gradual refinement technique is to gradually improve the

prototype for its modification. It runs each time after user

review and is repeatedly recognized by both parties.

 American Journal of Computer Science and Technology 2023; 6(1): 1-9 9

7. Conclusion

The software life cycle model is more expressive, more in

line with human thinking patterns, belongs to the human

level of abstraction, and is a logical entity rather than a

physical entity. The special nature of software products and

the limitations of human intelligence lead to the inability to

deal with "complex problems". The concept of "complex

problems" is relative, and once people adopt advanced

organizational forms, development methods, and tools to

improve the efficiency and capability of software

development, new, larger, and more complex problems are

presented to them. Our study shows to promote the

development of the software technology industry, and the

technology gradually matures. During the operation and use

of software, it does not have aging problems as hardware.

But it has the problem of degradation and must be modified

and maintained several times. We conclude it is especially

important to choose a suitable software life cycle model to

extend the life of software according to the specific

conditions of different software. The selection of the software

life cycle directly affects the project’s lifetime. We hope that

we can use its principles wisely in software development and

take advantage of them.

Acknowledgements

I am very grateful to my advisors and professors for their

encouragement and guidance. I would like to thank my

family for their support of my studies. I would also like to

thank my friends and classmates for giving me a warm

friendship.

References

[1] Zhang Dian. Research on the development status and
countermeasures of modernization technology of computer
software engineering, Popular standardization, 2020 (16): 47-
48.

[2] Wang Q. The application and development trend of computer
software development technology, Science and technology
innovation and application, 2021, 11 (28): 176-178.

[3] Bai Baoqi. The application of computer software development
and its future development trend, Computer Knowledge and
Technology, 2021, 17 (17): 53 54. DOI:
10.14004/j.cnki.ckt.2021.1552.

[4] Zhou C, Li GH, Chen H, Sun XJ. Interpreting the
development status and countermeasures of modern
technology of computer software engineering, Computer
Knowledge and Technology, 2021, 17 (07): 242-243. DOI:
10.14004/j.cnki.ckt.2021.0804.

[5] Yang, Shuhui. The application and development situation of
computer software development technology in the new era,
Network security technology and application, 2020 (06): 68-
69.

[6] Zhong Kun. The application and development trend of
computer software development technology in the new era,
Network security and information technology, 2022 (02): 28-
30.

[7] Chen Q. Models and their applications in Web development,
Information and Computer (Theory Edition), 2014 (12): 176.

[8] Wei Anruo. Analysis of the development trend and application
of computer software development technology, Information
Record Materials, 2021, 22 (11): 167-168. DOI:
10.16009/j.cnki.cn13-1295/tq.2021.11.078.

[9] Kong Xiao. Common software life cycle models in software
engineering, Electronic Technology and Software
Engineering, 2017 (14): 58.

[10] Wang Yumei. Software product life cycle planning and
implementation process, Electronic Technology and Software
Engineering, 2018 (21): 37.

[11] Li HX, Wang L, Li Z, Wang YB. Research on software life
cycle quality evaluation methods, Computer Measurement and
Control, 2022, 30 (08): 264-268+295. DOI:
10.16526/j.cnki.11-4762/tp.2022.08.041.

[12] Peter Morville, Louis Rosenfeld. Web Information
Architecture: Designing Large-Scale Web Sites, Chen
Jianxun, Translation. Beijing: Electronic Industry Press, 2008,
53-191.

[13] Wang Highest. Research on the quality metrics system of the
whole life cycle of software projects in banking industry,
Shandong University, 2014.

[14] Hu ZQ, Shang YJ. Analysis of software lifecycle reliability
factors, Computers and Networks, 2017, 43 (10): 70-72+75.

[15] Research on Software Unit Testing and Test Case Design
Methodology, Proceedings of the 17th Annual China Aviation
Measurement and Control Technology Conference, 2020: 246-
248. doi: 10.26914/c.cnkihy.2020.027598.

[16] Wang Wendong. Analysis of web software system testing
application based on B/S architecture, Software Guide, 2016,
15 (08): 137-139.

[17] Yang Yang, Liu Quan. Software system analysis and
architecture design, Nanjing: Southeast University Press,
2017.

[18] Zhou Su, et al. Modern software engineering, Beijing:
Machinery Industry Press, 2016.

[19] Wang Xuemei, Zhang Chunhai. An improved software
development model-combination model research, Software
Guide, 2018, 17 (11): 52-55.

[20] Guo, Lian-Ming. Talking about waterfall model and its
limitations, Science and Technology Outlook, 2016, 26 (06):
172.

[21] Sun Xiufang, Jiang Kai. Localization practice based on
GJB5000A Level 2 software lifecycle model, Standards
Science, 2020 (10): 72-76.

[22] Zhao Shujun. A life-cycle model for software development on
bombs, Modern Defense Technology, 2020, 48 (06): 48-
52+66.

