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Abstract: Gasoline blending is of pertinent importance in refinery operations owing to the fact that gasoline gives about 60 - 

70 % of the refinery profit. The blending process is essential to obtain gasoline in the demanded quantities and ensure property 

specifications are met. Two model equations, multivariable nonlinear and multivariable exponential are proposed in this study 

which are useful in predicting three significant properties of a motor gasoline: research octane number, reid vapour pressure and 

specific gravity. Gasoline blend data obtained from four different streams: straight run gasoline, straight run naphtha, reformate 

and fluidized catalytically cracked gasoline have been subjected to multivariate regression analysis with the aid of a statistical 

software to ascertain the fitness of the proposed equations in predicting the research octane number, reid vapor pressure and the 

specific gravity of the resulting premium motor spirit. The results of the regression analysis showed that the nonlinear 

multivariable models proposed gave a good fit as evidenced by the value of the coefficient of determination R
2
 = 0.988 & 0.994 

for the research octane number, 0.853 & 0.883 for the reid vapor pressure and 0.988 for specific gravity. In conclusion, the 

proposed model equations were fit to the data, found to be adequate, and therefore could be used for prediction of the blend 

gasoline properties. 
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1. Introduction 

Crude petroleum in its natural state has little or no use, 

though it remains an essential source of energy affecting 

nearly every aspect of our modern lifestyle; it has to be refined 

in a refinery to different useful products. The refining process 

aims to maximize the value added by separating the crude oil 

using different physical and chemical processes into both 

intermediate products which can serve as feedstock to other 

downstream processes and finished products, including 

transportation fuels [1]. Some of the products are Liquefied 

Petroleum Gas (LPG), Straight Run Naphtha (SRN), Straight 

Run Gasoline (SRG), Kerosene, Gasoline or Premium Motor 

Spirit (PMS), Light Cycle Oil (LCO), Heavy Gas Oil (HGO), 

Reformates, Alkylates, amongst others. Of these products, 

PMS is the most important as it serves as fuel for most 

automotive engines which has proliferated because of the 

advancement in technology. 

The naphthas are gasoline boiling range materials; they 

usually are sent to upgrading units (for octane improvement, 

sulfur control, etc.) and then to gasoline blending pool. The 

distillates, including kerosene, usually undergo further 

treatment and then are blended to jet fuel, diesel and home 

heating oil. The gas oils go to conversion units, where they are 

broken down into lighter (gasoline, distillate) streams. Finally, 

the residual oil (or bottoms) is routed to other conversion units 

or blended to heavy industrial fuel and/or asphalt. The bottoms 

have relatively little economic value – indeed lower value than 

the crude oil from which they come. Most modern refineries 

convert, or upgrade, the low-value heavy ends into more 

valuable light products (gasoline, jet fuel, diesel fuel, etc.). 

Conversion processes carry out chemical reactions that 

fracture (“crack”) large, high-boiling hydrocarbon molecules 

(of low economic value) into smaller, lighter molecules 

suitable, after further processing, for blending to gasoline, jet 

fuel, diesel fuel, petrochemical feedstocks and other 

high-value light products. Conversion units form the essential 

core of modern refining operations because they enable the 

refinery to achieve high yields of transportation fuels and 
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other valuable light products, provide operating flexibility for 

maintaining light product output in the face of normal 

fluctuations in crude oil quality, and permit the economic use 

of heavy, sour crude oils [1-4]. 

Heavy gas oil from crude distillation is converted to light 

gases, petrochemical feedstock, gasoline blendstock (Fluid 

Catalytic Cracking (FCC) naphtha) and diesel fuel blendstock 

(light cycle oil) in the FCC process which employs zeolite as 

catalyst and operate at high temperature and low pressure. 

Distillates and heavy gas oils from crude distillation is 

converted in the hydrocracking unit to light gases, 

petrochemical feedstocks, gasoline and diesel fuel blendstocks. 

The hydrocracking process is a catalytic process and operates 

at moderate temperature and high pressure. 

Upgrading processes carry out chemical reactions that 

combine or re-structure molecules in low-value streams to 

produce higher-value streams, primarily high-octane, low 

sulphur gasoline blendstock. The upgrading processes of 

primary interest all employ catalysts, involve small 

hydrocarbon molecules, and apply to gasoline production. 

Some important upgrading processes are catalytic reforming 

in which catalytic reactions are carried out on straight run 

naphtha from crude distillation to increase the octane number 

of this stream and obtain premium, high-octane blendstock 

called reformate; alkylation which combines light olefins 

(primarily C4 and some C3) with isobutane to produce a high 

octane gasoline blendstock called alkylate; isomerization 

rearranges the low-octane C5 and C6 normal paraffin 

molecules in light straight run naphtha to corresponding 

higher-octane C5 and C6 iso-paraffins thereby significantly 

increasing the octane of the resulting naphtha stream 

(isomerate) and making it a valuable gasoline blendstock and 

Etherification combines C4 and/or C5 olefins produced by 

FCC plants with a purchased alcohol (methanol or ethanol) to 

produce an ether (a class of oxygen-containing organic 

compounds). Ethers are premium gasoline blendstocks, with 

very high octane and other desirable blending properties [1]. 

Gasoline which is a complex mixture of hydrocarbons 

contains paraffins, olefins, napthenes and aromatics was 

originally discarded as a by-product of kerosene production 

but its ability to vaporize at low temperatures makes it useful 

as a fuel for many machines. Gasoline contains hydrocarbons 

having boiling points in the range between 30
o
C to 215

o
C. 

Gasoline was first produced initially by atmospheric 

distillation but the product obtained from this process had low 

qualities like the Research Octane Number (RON); which is 

an indication of the knock resistance of the gasoline in engines, 

and the volume obtained could not meet up with increasing 

demand. This dearth led to increased research into production 

of gasoline from other less commercial refinery products in 

several chemical processes and an attendant improvement in 

refinery complexity. 

The ever increasing demand for gasoline makes it 

imperative to ensure that this product is readily available in the 

demanded volume while ensuring that its quality and 

specifications needed for effective performance in car engines 

is not compromised. The different refinery processes produce 

different products in different volumes and with different 

qualities and these different products have to be mixed 

optimally in the right volumes to obtain a product with desired 

properties in a blending process. Gasoline blending is the 

mechanical mixing of gasoline blending components streams 

to obtain various grades of gasoline and its very important to 

refinery economics as blending reduces property giveaway 

[5-8]. PMS blending is a very important part of refinery 

operations. Due to a large volume of the product, it is of 

pertinent importance to blend gasoline at the lowest possible 

cost, while satisfying quality constraints [9-11]. 

Seven most commonly employed refinery streams (cuts) in 

the gasoline production are: fluidized catalytic cracking 

(FCC), reforming (REF), isomerization (ISO), alkylation 

(ALK) and dimersol (DIM), together with the butane's 

fraction (C4) and oxygenate additives such as MTBE or 

ethanol. These components as well as the ranges of their 

volumetric content in the blends and of their RON values are 

presented in Table 1 [9,10]. 

Table 1. Gasoline components employed for the blends preparation 

Fraction 
Min 

Vol % 

Max 

Vol % 

Min 

RON 

Max 

RON 

Typical 

RON 

FCC 6.6 100.0 92.5 94.0 93.4 

REF 0.0 54.4 98.2 103.6 101.4 

ISO 0.0 32.0 77.5 86.2 84.5 

ALK 0.0 20.7 93.3 94.7 94.0 

DIM 0.0 14.8 93.8 97.6 95.0 

C4 0.0 7.4 - - 92.0 

Ethanol 0.0 10.0 - - 116.0 

Gasoline revenues accounts for a good share of the 

profitability of refineries. Mendez et al. [12] reported that 

gasoline production often yields 60-70% of a typical refinery’s 

total revenue. The octane number of gasoline is an indication 

of its quality and a higher octane rating gasoline is more 

desirable and more expensive than a lower octane rating 

gasoline. It is therefore economically desirable to blend to get 

a desired optimum gasoline with favorable good price and also 

to improve the quality of the gasoline. 

PMS blending could be tedious and time consuming. Lots 

of experiments are needed to determine the individual 

properties of the blend components and that of the final PMS 

and these components could be as over 100 in some cases 

[13,14]. Given a set of existing data, the blend behavior of the 

gasoline components can be predicted by representing the 

process via a mathematical model [15]. Mathematical model 

for gasoline blending is the mathematical presentation of 

gasoline blend components to allow investigation of key 

properties of the system and prediction of future outcomes to 

be carried out [16]. Without accurate blending correlations, 

any attempt to blend different gasoline cuts can be expected to 

achieve non-optimum results [17]. Hence, there is need to 

obtain a mathematical model to effectively predict these 

properties of the PMS from various blendstocks in order to 

� improve refinery profitability 
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� reduce property giveaway  

� reduce the cost of performing several experiments to 

determine PMS components and product properties 

thereby saving costs 

� reduce the time needed to blend a batch and ensure 

continual availability of gasoline [18]. 

Research and Motor Octane numbers (RON, MON), Reid 

Vapor Pressure (RVP) and Specific Gravity (SG) are the main 

quality characteristic of the gasoline, as they provide a 

sensitive indication of the anti-knocking behavior of the fuel. 

The higher the octane number the better the gasoline resists 

detonation and the smoother the engine runs. Other important 

technological properties of the commercial gasoline are 

ASTM distillation points, and sulfur content. These 

properties are monitored during production to ensure the 

required technological and environmental quality level of the 

final gasoline is gained. Although the final gasoline has to 

meet all the product specification, RON and MON are 

considered to be the most important. The Reid Vapour 

Pressure is an indication of the volatility of gasoline in internal 

combustion engines while the Specific Gravity gives an 

indication of how heavy the product is. RON and MON values, 

as well as most of the gasoline properties, blend in non-ideal 

fashion, i.e. they depend non-linearly on the mixture 

composition. Therefore algorithms more complex than linear 

combination are necessary for the reliable prediction. There is 

a marked interest in refineries to utilize algorithms for the 

prediction of the octane rating of the gasoline blends [19]. 

Numerous studies in the past have attempted to 

mathematically describe the octane number as a function of 

the gasoline composition. Schoen and Mrstik [20] developed a 

graphical correlation for predicting octane numbers of blends 

as a series of binary systems based on the octane rating and 

volumetric olefin contents of the two components being 

blended. The blended octane number yields different values 

depending upon the order of calculation. Stewart [21] refined 

this method to be applicable to multicomponent blends 

yielding more self-consistent results. Stewart’s correlation 

also required the octane rating and volume percent olefins of 

the components being blended. Auckland and Charnock [4] 

developed a blending index to blend octane number linearly. 

The blending index is a hypothetical value obtained by 

extrapolating from the octane rating at a given concentration 

to an octane rating at 100% concentration of component. 

However, obtaining blend values by blending the blending 

indices linearly is analogous to obtaining the molar property 

of a real solution by a linear combination of the partial molar 

properties of its components. Since the partial molar property 

depends on the composition, so does the blending index. 

Therefore, the usage of this approach is limited. The index 

method can only be used to find the blending value of a 

component at a particular composition and cannot be used to 

predict its blending values in other mixtures. 

Rusin et al. [22] presented a rather complicated 

transformation method for estimating the octane number of 

gasoline blends from the octane ratings of the components, 

their concentrations, and contents of olefins, aromatics and 

paraffins. The method consists of three steps: (a) 

transformation of component properties (b) linear blending of 

these transformed properties, and (c) inverse transformation of 

the results. This method is similar to the blending index 

method. Due to the back and forth transformation, this method 

may also cause inconsistency in data transformation between 

these three steps. Healy et al [10] correlated gasoline 

component blending with differences in octane level and 

hydrocarbon type among components. However, if the 

equation of Healy et al. is used to predict the blending 

behavior of new components, unreasonable blending values 

may be obtained, especially if the hydrocarbon type or octane 

number of the new component is outside the range of the 

component previously tested [23]. 

An interesting equation was proposed by Morris et al. [23] 

for describing nonlinear gasoline blending behavior as 

follows: 

������ ��	
�� = 
��� +  
��� +  
��
�
�  (1) 

where ai and xi are the octane number and the volume fraction 

of component i, respectively and b12 is the interaction 

coefficient for components 1 and 2. 

Equation (1), which represents a simple excess octane 

number function, is quite effective in correlating the octane 

numbers of gasoline blends. However, there are some 

disadvantages of using this model to describe gasoline 

blending behavior. First, the parameter b12 is an empirical 

constant, which depends on the characteristics of components 

1 and 2. The interaction parameter b12 not only depends on the 

component types, but it also depends on the octane levels and 

octane differences. The values of b12 can vary from large 

negative to large positive ones and the interaction parameter 

b12 must be changed if the component characteristics change. 

The set of binary parameters obtained from equation (1) can 

only be used for the specific set of components where the 

parameters were derived. Therefore it would be very difficult 

to generalize these interaction parameters as a function of 

these properties for the purpose of prediction. A second 

disadvantage is that when new components are added to the 

gasoline pool, new interaction parameters are required to 

describe the behavior of the new component with the present 

components. Because it is non-trivial to run a blending study, 

it is very costly to run additional blending studies whenever 

there are new components to be blended into the gasoline 

pool. 

Pasadakis et al. [24] used Artificial Neural Network (ANN) 

models have to determine the RON of gasoline blends 

produced in a Greek refinery. The developed ANN models use 

as input variables the volumetric content of seven most 

commonly used fractions in the gasoline production and their 

respective RON values. The predicting ability of the models, 

in the multi-dimensional space determined by the input 

variables, was thoroughly examined in order to assess their 

robustness. Based on the developed ANN models, the effect of 

each gasoline constituent on the formation of the blend RON 

value was revealed. 

Zahed et al. [25] proposed a model with five independent 
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variables for predicting the octane number of gasoline blends. 

The variables of the model can be regressed so that the model 

works well for the blends used in the regression but it will still 

perform poorly for other blends. The five variables derived 

from this model are internally inconsistent. The octane 

number of n-heptane predicted from this model is 108.77 

versus the defined value of zero. Similarly, the octane number 

of iso-octane predicted from this model is -108.95 versus the 

defined value of 100. The set of variables obtained from this 

model can only be used for this specific set of components 

within the same range of compositions where the variables 

were derived. The use of this model to predict the octane 

number of blends at other conditions will therefore be very 

unreliable. 

Prasenjeet et al. [26] presented a model that predicts the 

octane numbers of a wide variety of gasoline process streams 

and their blends including oxygenates based on detailed 

composition. The octane number is correlated to a total of 57 

hydrocarbon lumps measured by gas chromatography. The 

model is applicable to any gasoline fuel regardless of the 

refining process it originates from. It is based on the analysis 

of 1471 gasoline fuels from different naphtha process streams 

such as reformates, cat-naphthas, alkylates, isomerates, 

straight runs, and various hydroprocessed naphthas. The 

model predicts the octane number within a standard error of 1 

number for both the research and motor octane numbers. 

This study has been carried out with the objective to 

develop a mathematical model for blending gasoline and 

employ the model to predict predicting the research octane 

number, reid vapour pressure and the specific gravity of 

gasoline blends. This work attempts to develop a model for 

predicting the blend properties of various gasoline cuts 

obtained from the Port Harcourt Refinery Company Limited, 

Nigeria. 

2. Methodology  

Figure 1 represents a typical industrial blending process 

employed to produce a quality gasoline from various product 

streams. Five PMS blending data (Table 2) for gasoline 

produced from four different blend cuts: Straight Run 

Gasoline (SRN), Straight Run Naphtha (SRN), Reformate 

(REF) and Fluidized Catalytically Cracked Gasoline (FCCG) 

were obtained by the Production Programming and Quality 

Control (PPQC) department of the Port Harcourt Refining 

Company (PHRC), Nigeria. The raw gasoline cut qualities 

(RON, RVP and SG) were determined by the Quality Control 

department prior to blending using standard ASTM analytical 

methods. 

The Production Programming Unit of the PPQC in PHRC 

utilizes linear volumetric blending formula in formulating 

gasoline blendstocks. The formula is presented below 

������ =  ∑ 
�  × ����
�
���            (2) 

where ������ represents the final RON of the PMS 


� represents the volumetric ratio of the blend components 

 ���� represents the RON of the blend components 


� =  
���� ! �" #� $�%!%& �

'�&(� )��� ! �" ���  �*&�+!
         (3) 

For the modeling equation, the volume fraction of each cut 

(FCCG, SRN, SRG and REF) in the resulting PMS blend were 

taken as the dependent variables and represented by 
�, 
�, 


� , and 
�  respectively, while the dependent variable , 

represents the resulting particular PMS properties being 

modeled (RON, RVP or SG). A DataFit regression package 

from Oakdale Engineering Software was used to fit the data 

obtained [27]. 

 

Figure 1. Diagrammatic representation of the gasoline blender 

Table 2. PMS Blend data 

Content Tank S/ 

No 

Volume, 

L 

SG RVP RON 

Fluid 

Catalytic 

Cracking 

Gasoline 

(FCCG) 

52TK03 1 7800 0.7604 0.46 95.00 

 2 7700 0.7601 0.56 95.10 

 3 7700 0.7584 0.61 94.7 

 4 8000 0.7589 0.47 94.8 

 5 7500 0.7594 0.48 94.70 

Straight 

Run 

Naphta 

(SRN) 

51TK01 1 2200 0.7697 0.15 60.00 

 2 3100 0.7703 0.15 61.00 

 3 3500 0.7708 0.14 61.0 

 4 3000 0.7708 0.14 61.0 

 5 3800 0.7682 0.06 64.60 

Straight 

Run 

Gasoline 

(SRG) 

52TK01 1 2300 0.6519 1.17 73.50 

 2 1200 0.6599 1.05 76.00 

 3 500 0.6585 1.11 75.0 

 4 1000 0.6549 1.11 74.0 

 5 1200 0.6658 0.99 88.50 

Reformate 

(REF) 

52TK02 1 7700 0.7534 0.29 95.90 

 2 8000 0.7512 0.28 96.30 

 3 8300 0.7568 0.40 97.0 

 4 8000 0.7579 0.36 95.6 

 5 7500 0.7560 0.32 96.00 

TOTAL VOLUME 20000       
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3. Results and Discussion 

In this study, we employ the regression model technique for 

the situation where we have measured five responses y1, y2, ... 

y5 and the same set of 4 predictors x1 ... x4 on each sample unit. 

Each response follows its own regression model, as an 

example, for the nonlinear multivariable model we have the 

following equations: 

y1 = a01 + a11x1 + ... + a41x4 + ε1 

y2 = a02 + a12x1 + ... + a42x4 + ε2 

... 

... 

y5 = a05 + a15x1 + ... + a45x4 + ε5          (4) 

where ε  = (ε1, ...., ε5) are the errors associated with different 

responses on the same sample unit, which have different 

variances and may be correlated.  

Knowing from the basis of definition that x4 could be 

expressed as a function of other independent variables, (4) 

could be simplified further to yield (5). The dependent 

variables were obtained from the given blend data (Table 2) 

using (3). The five sets of dependent variables corresponding 

to the values of the blend properties given in the data. Similar 

procedure have been observed for the three parameters being 

modeled, the RON, RVP and SG. Table 3 shows the typical 

data employed for regression analysis based on the RON 

blend data. 

Table 3. Regression analysis data for RON blend data 

Y x1 x2 x3 x4 

89.0965 0.375 0.19 0.06 0.375 

89.01 0.4 0.15 0.05 0.4 

89.2645 0.385 0.175 0.025 0.415 

89.1485 0.385 0.155 0.06 0.4 

89.024 0.39 0.11 0.115 0.385 

Amongst several mathematical models worked upon, 

particularly noteworthy and hereby reported are the following 

model equations: 

Model 1 

, = � + 
 
� + � 
� + - 
.          (5) 

and  Model 2 

, =  �/  + ���
0(
�)  +  ���
0(
�)  + �.�
0(
.)     (6) 

The key results of the regression analysis obtained with the 

aid of the Datafit Regression Package for all the blend 

properties considered in this study are summarized in Table 4. 

The regression coefficients corresponding to each model 

equation are shown together with the values of the coefficient 

of determination (R
2
), and the standard error of estimate (ε). 

Table 4. Regression analysis values for Models 1 and 2  

Blend property Model equation 
Regression coefficients* 

R2 Standard  error, εεεε 
3 , 35 6, 37 8, 39 :, 3; 

RON Model 1 80.33 90.33 90.47 97.01 0.994 0.016 

 
Model 2 119.2 -11.5 -5.79 -6.06 0.987 0.024 

RVP Model 1 -1.35 -0.44 0.50 2.47 0.883 0.022 

 
Model 2 9.03 -2.59 -2.48 -1.79 0.853 0.025 

SG Model 1 0.82 0.77 0.62 0.70 0.988 0.0009 

 
Model 2 0.64 0.084 0.06 -0.07 0.988 0.0009 

* a, b, c, d correspond to Model 1, while �/, ��, ��, �. Model 2 

As can be seen from Table 4, the coefficient of 

determination R
2
 for the RON data using Model 1 has a value 

of 0.994 with a standard error of estimate of 0.016. This 

implies that the data obtained from PHRC closely fitted to that 

obtained from the model generated and that 99.4 percent of the 

data set is accounted for by Model 1. Similar results obtained 

with the aid of Model 2 (R
2 
= 0.988, ε = 0.024) confirmed the 

applicability of this exponential model in describing the given 

set of data. It follows that both the nonlinear multivariate 

model equation and the exponential equation are very suitable 

for predicting the behavior of RON of gasoline blends. 

Increasing research into the motor and research octane number 

of gasoline has been caused ever since the use of Lead as an 

additive to motor fuel in the  form of tetraethyl lead had been 

progressively phased-out worldwide due to emission problem. 

The anti knock index (AKI) is an average value of RON and 

MON. 

A graphical representation comparing the industry data 

from PHRC and that predicted from Model 1 is shown in Fig. 

2. Here, data and model plots are made on one graph; the trend 

line of data obtained from PHRC is shown in dotted lines 

while that predicted by the model is shown in thickened line. A 

visual inspection shows that there is a close correlation 

between the raw data and the model predicted data. 

Similar trends were observed upon analysis of the 

regression data for the other parameters, reid vapor pressure 

and specific gravity, as can be seen from Table 4 and Figs 3 

and 4. Sufficiently high R
2
 values (0.883 and 0.853 for RVP 

using Models 1 and 2 respectively) with still higher values of 

this statistical parameter (0.988 and 0.988 for SG models 1 

and 2) further buttressed the fact that the proposed models can 

adequately be employed for the target purpose. 
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Figure 2. Plot of RON fit curve for model 1 upward and model 2 downward.  

 

Figure 3. Plot of RVP fit curve for model 1 left and model 2 right. 

 

 

Figure 4. Plot of SG fit curve for model 1 upward and model 2 downward. 
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4. Conclusion 

Model equations have been put forward to predict final 

properties, in particular the research octane number, reid vapor 

pressure and specific gravity of the gasoline resulting from 

blending of various gasoline cuts. The results of the regression 

analysis showed that the nonlinear multivariable models 

proposed gave a good fit as evidenced by the value of the 

coefficient of determination R
2
 = 0.988 & 0.994 for the 

research octane number RON, 0.853 & 0.883 for the reid 

vapor pressure RVP and 0.988 for SG. The scope of the study 

could be expanded to include other refinery gasoline blend 

components like butane, alkylate, dimate, as well as "octane 

booster" gasoline additives including ethyl tert-butyl ether 

(ETBE) and methyl tert-butyl ether (MTBE), isooctane,  

toluene, and oxygenates where they are being utilized. 
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Appendix 

RON Fit Information for Model 1 

Model Definition:   y = ax1+bx2+cx3+dx4                                                      
   

Number of observations = 5 Average Residual = -8.5265128291212E-15 

Number of missing observations = 0 Residual Sum of Squares (Absolute) = 2.56784042317984E-04 

Solver type: Nonlinear Residual Sum of Squares (Relative) = 2.56784042317984E-04 

Nonlinear iteration limit = 250 Standard Error of the Estimate = 1.60244825912721E-02 

Diverging nonlinear iteration limit =10 Coefficient of Multiple Determination (R^2) = 0.9940174678 

Number of nonlinear iterations performed = 11 Proportion of Variance Explained = 99.40174678% 

Residual tolerance = 0.0000000001 Adjusted coefficient of multiple determination (Ra^2) = 0.9760698712 

Sum of Residuals = -4.2632564145606E-14 Durbin-Watson statistic = 3.18736483829897 

Regression Variable Results 
    

Variable Value Standard Error t-ratio Prob(t) 
 

A 80.3334859739025 0.932619716219116 86.13745193 0.00739 
 

B 90.3313258441462 0.354588591414152 254.7496677 0.0025 
 

C 90.4714651835739 0.463398896931756 195.2345286 0.00326 
 

D 97.0094259621047 0.825670550622306 117.4916871 0.00542 
 

99% Confidence Intervals 
    

Variable Value 99% (+/-) Lower Limit Upper Limit 
 

A 80.3334859739025 59.3682395852184 20.9652463886841 139.701725559121 
 

B 90.3313258441462 22.5722232579464 67.7591025861998 112.903549102093 
 

C 90.4714651835739 29.4988152814333 60.9726499021406 119.970280465007 
 

D 97.0094259621047 52.5601230762394 44.4493028858653 149.569549038344 
 

Variance Analysis 
    

Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 3 0.04266551595768 0.01422183865256 55.38443325 0.09838 

Error 1 2.56784042317984E-04 2.56784042317984E-04 
  

Total 4 0.042922299999998 
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RVP Fit Information Model 1 

Equation ID: Model 1 
   

Model Definition: y = ax1+bx2+cx3+dx4 
    

Number of observations = 5 Average Residual = -1.88737914186277E-16 

Number of missing observations = 0 Residual Sum of Squares (Absolute) = 4.84349755480196E-04 

Solver type: Nonlinear Residual Sum of Squares (Relative) = 4.84349755480196E-04 

Nonlinear iteration limit = 250 Standard Error of the Estimate = 2.20079475526501E-02 

Diverging nonlinear iteration limit =10 Coefficient of Multiple Determination (R^2) = 0.883210643 

Number of nonlinear iterations performed = 11 Proportion of Variance Explained = 88.3210643% 

Residual tolerance = 0.0000000001 Adjusted coefficient of multiple determination (Ra^2) = 0.5328425722 

Sum of Residuals = -9.43689570931383E-16  Durbin-Watson statistic = 3.18736483829746 

Regression Variable Results 
    

Variable Value Standard Error t-ratio Prob(t) 
 

A -1.34885700506242 1.28085544629671 -1.053090736 0.48354 
 

B -0.437995410645829 0.486990271178 -0.899392527 0.53369 
 

C 0.503133312444704 0.636429823024969 0.790555839 0.57413 
 

D 2.47296374594515 1.1339719750927 2.180797939 0.27371 
 

99% Confidence Intervals 
    

Variable Value 99% (+/-) Lower Limit Upper Limit 
 

A -1.34885700506242 81.536055572633 -82.8849125776954 80.1871985675705 
 

B -0.437995410645829 31.0005831875135 -31.4385785981594 30.5625877768677 
 

C 0.503133312444704 40.5135314592119 -40.0103981467672 41.0166647716566 
 

D 2.47296374594515 72.1858210044637 -69.7128572585185 74.6587847504088 
 

Variance Analysis 
    

Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 3 3.6628582445198E-03 1.22095274817327E-03 2.52080802 0.4265 

Error 1 4.84349755480196E-04 4.84349755480196E-04 
  

Total 4 0.004147208 
   

SG Fit Information for Model 2 

Equation ID: Model 2     

Model Definition:                   y = a0+a1exp(x1)+a2exp(x2)+a3exp(x3) 

Number of observations = 5 Average Residual = 7.99360577730113E-16 

Number of missing observations = 0 Residual Sum of Squares (Absolute) = -1.88737914186277E-16 

Solver type: Nonlinear Residual Sum of Squares (Relative) = 8.77507022601528E-07 

Nonlinear iteration limit = 250 Standard Error of the Estimate = 9.36753448139652E-04 

Diverging nonlinear iteration limit =10 Coefficient of Multiple Determination (R^2) = 0.9876247106 

Number of nonlinear iterations performed = 10 Proportion of Variance Explained = 98.76247106% 

Residual tolerance = 0.0000000001 Adjusted  (Ra^2) = 0.9504988423 

Sum of Residuals = 3.99680288865056E-15 Durbin-Watson statistic = 3.24519825698429 

Regression Variable Results     

Variable Value Standard Error t-ratio Prob(t)  

a0 0.636780770242741 0.180899312307499 3.520083974 0.17621  

a1 8.39111049388251E-02 7.02630414986109E-02 1.194242423 0.44379  

a2 6.00086191331493E-02 0.042902232857076 1.39872951 0.39514  

a3 -7.28034857759079E-02 3.40478454804993E-02 -2.138269977 0.27849  

99% Confidence Intervals     

Variable Value 99% (+/-) Lower Limit Upper Limit  

a0 0.636780770242741 11.5155979732146 -10.8788172029719 12.1523787434574  

a1 8.39111049388251E-02 4.47276956419783 -4.388858459259 4.55668066913665  

a2 6.00086191331493E-02 2.73104888809931 -2.67104026896616 2.79105750723246  

a3 -7.28034857759079E-02 2.16740072367489 -2.24020420945079 2.09459723789898  

Variance Analysis     

Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 3 7.00304929773986E-05 2.33434976591329E-05 26.60206364 0.14135 

Error 1 8.77507022601528E-07 8.77507022601528E-07   

Total 4 7.09080000000001E-05    
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