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Abstract: This paper reports a transient state numerical investigation of irreversibility in a saturated porous channel, of an 

aspect ratio A= 5, under vertical thermal and mass gradients. The governing equations, using the Darcy-Brinkman formulation, 

have been solved numerically by using Control Volume Finite Element Method (CVFEM). Only two variables are taken into 

account, the Schmidt number and the floatability ratio. The other parameters values are fixed related to the Poiseuille–Benard 

flow (at zero mass gradients). Results reveal that the flow tends towards the steady state with different regimes, which depends 

on both the Schmidt number and the buoyancy ratio.  
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1. Introduction 

In the last few decades, interest in heat and/or mass 

transfer in mixed convection in a saturated porous media 

have increases significantly due to the divers applications of 

the porous media in the engineers domain such as oil 

reservoir, groundwater, nuclear waste disposal, membranes 

and regenerative heat exchangers.  

Nakayama et al. [1] have studied theoretically the onset of 

instability when both lower and upper plates were subjected 

to uniform temperature gradients. Ostrach and Karrsotani. [2] 
have conducted an experimental investigation of fully 

developed forced convection between two horizontal plates. 

They showed an appreciable heat transfer augmentation 

obtained by superposing a fully developed flow on the 

cellular flow, the first type of vortex rolls create periodic 

spanwise temperature distributions whereas the second type 

of vortex rolls distort the temperature distribution. A 

proposed benchmark solution for open boundary flows has 

been given by Evans and Paolucci. [3]. Hasnaoui et al.
 
[4] 

have been investigated the mixed convective heat transfer in 

a horizontal channel heated periodically from below. They 

observed, for a fixed geometry and a given Rayleigh number, 

a complicated solution structure upon increasing the 

Reynolds number. Recent studies related to the convective 

transport processes in porous media are studied by Nield and 

Bejan. [5, 6] and by Vafai. [7]. 

Despite the various topics investigated about mixed 

convection in porous channel, the effect of mass transfer on 

entropy generation fluctuation in Poiseuille–Benard porous 

channel flow was not yet be encountered. Thus, our 

investigation is principally focalised on the influence of the 

solute buoyancy force on the thermodynamics approach 

towards the steady state of porous mixed convection.  

2. Problem Statement 

The present paper reports a numerical study of entropy 

generation on 2D porous channel flow, filled with a fluid 

(binary mixture of pollutant species and air) considered as 

ideal gas and submitted to vertical thermal and concentration 

gradients as seen in Figure. 1. The considered flow fluid is 

assumed to be laminar, Newtonian and incompressible. The 

bottom wall is kept at constants high temperature (Th) and 

low concentration (Cl) whereas the top wall is kept at 
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constant Low temperature (Tl) and high concentration (Ch). 

The physical properties of the fluid are supposed constants 

except the density, which satisfies the Boussinesq 

approximation:  

( ) ( )[ ]000 1 θθβθθβρρ θ −−−−= c               (1) 

0ρ  is the fluid density at average temperature )( 0θ . θβ  Cβ
are the thermal and solutal expansions coefficients. 

 

Figure 1. Physical model’s schematic view at the dimensionless coordinate system. 

3. Mathematical Formulation 

3.1. Governing Equations 

Under the above assumptions and using the Darcy-Brickman formulation, the set of dimensionless governing equations of 

continuity, momentum conservation and energy in laminar incompressible flow, is given by:  
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The initial and boundary conditions are expressed in dimensionless form as: 

At	τ	 � 	0, U	 � 	V	 � 	P	 � 	C	 � 	0	and	 Y-0.5θ =
At	the	inlet	of	the	channel	�x	 � 	0, 0	 � 	Y	 � 	1�:	U	 � 	6Y	�1 � Y�, V	 � 	0	and	 Y-1θ =

At	Y	 � 	0	and	0	 � 	X	 � 	5:	U	 � 	V	 � 	0, 1θ = , C	 � 	0
At	Y	 � 	1	and	0	 � 	X	 � 	5:	U	 � 	V	 � 	0, 0θ = , C	 � 	1 !

"
"
"
#
                           (7) 

The major difficulty in the numerical study related to the mixed convection in the channel is that the physical domain is 

unlimited, whereas the numerical domain is limited. For this reason, the convective boundary condition (CBC) is imposed at 
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the outflow. It’s given in dimensionless form by:  
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Where φ can be one of the dimensionless parameters: U, V, Ɵ or C. 

3.2. Entropy Generation Formulation 

According to the local thermodynamic equilibrium and using the equation of Woods (1975), the dimensionless local entropy 

generation ( lS ) in the porous medium is given by: 
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The third first terms in the right hand side of Eq. (9) 

represents respectively the heat transfer irreversibility, 

Darcy-Brinkman viscous fluid irreversibility, clear viscous 

fluid irreversibility. The fourth and fifth terms are linked to 

the mass transfer irreversibility. The dimensionless total 

entropy generation (S) is obtained by integrating the 

dimensionless local irreversibility over the entire volume of 

the channel: 

∫=
Ω

ldΩSS                                    (10) 

3.3. Numerical Scheme and Accuracy Tests 

The present study is based on a modified version of the 

Control Volume Finite Element Method (CVFEM) of 

Patankar. [8] and Saabas and Baliga. [9], adapted to the 

standard-staggered grids in which pressure and velocity 

components are stored at different nodal points. SIMPLER 

algorithm was applied to resolve the pressure-velocity 

coupling in conjunction with an alternating direction implicit 

scheme, for performing the time evolution
8
. From the known 

velocity and temperature fields, at any given time τ, by solving 

Eqs. (2) - (6), the local entropy generation $%	 is therefore 

evaluated at any nodal point of the porous channel by using 

Eq. (9). More details related to the numerical code used in this 

study are available in Abbassi et al. [10, 11] for further details 

about CVFEM method, see Parakash. [12] and Hookey. [13]. 

In this study, imposed global and local convergence 

criteria are used, and should verify the following conditions 
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χ  is the dependent variable ),,( CVU θχ = . The continuity 

equation should verify the first convergence criterion at each 

time step of the calculation, and the dependent variable χ
should verify the second criterion at each point of the space 

channel, and at each time step. The use of a time step 
410τ −∆ = for all Darcy number is found to be sufficient to 

achieve the imposed convergence criteria.  

The space-averaged Nusselt number at the bottom wall is 

used for the grid independence analysis. Grid refinement 

tests have been performed for the case where: Re=10, Pr=0.7, 

ε=0.85 using three uniform grids of sizes: 1 70 20F = × , 

2 101 26F = ×
 
and 3 132 31F = ×  nodal points. An imposed 

relative error should satisfy the following criterion: 
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(i+31) represents the number of the nodal point through 

the X-axis. 

Results reveals that, when passing from grid F1to grid 

F2the relative error is close to 4, 24%. Whereas when we pass 

from F2 to F3, the error (Er) is about 1, 74%. Thus, the grid F2 

is sufficient enough to carry out the calculations related to the 

present problem. 

To validate the numerical simulation, results concerning 

maximum horizontal velocity component in laminar flow 

through a horizontal porous channel, Umax have been 

compared to those published by Shohel and Fraser. [14] and 

Abdulhassan et al. [15] related to the laminar flow in a 

porous channel. A good agreement (Table 1) is seen between 

the present results and the results of the previous work.  

Another accuracy test has been performed by comparing 

values of the space average Nusselt number given by the 

present numerical study with those obtained by Shohel and 

Fraser. 14 as indicated in Table 2. A good agreement is also 

shown between the two works. 

Table 1. Variation of maximum horizontal velocity component versus Darcy 

number. 

Da 10-3 10-2 10-1 1 

Present study 1.06 1.23 1.44 1.53 

Shohel et al. 1.06 1.11 1.33 1.48 

Abdulhassan et al. 1.09 1.30 1.55 1.59 

Table 2. Variation of Average Nusselt number versus Darcy number. 

Da 10-2 10-1 1 10 

Present study 100.324 10.785 1.4759 0.5293 

Shohel et al. 99.936 11.098 1.5849 0.5828 
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4. Results and Discussion 

The medium porosity is fixed at 0.85. The Rayleigh, 

Reynolds and Prandtl numbers are fixed to 10
4
, 10 and 0.7 

respectively. The Darcy and Brinkman numbers are fixed at 

5.10
-2 

and 10
-4 

respectively.  

This investigation is focalised on the effect of both the 

buoyancy ratio and the Schmidt number on entropy 

generation fluctuation in mixed convection on a saturated 

porous channel under the Darcy-Brinkman formulation. For 

this reason the buoyancy ratio and the Schmidt number are 

considered varying from10
-2

 to 2 and from10
-1

 to 10 

respectively. The irreversibility ratios are chosen small and 

equal to 10
-4

 in the goal to eliminate the intrinsic effect of 

mass transfer irreversibility on total entropy generation. 

Then, the contribution of the mass transfer irreversibility to 

the total entropy generation is extrinsic through the Navier 

Stokes and energy equations. Additionally, the clear and 

Darcy viscous fluid irreversibilities are unimportant because 

of the insignificant value of Darcy and Brinkman numbers. 

Finally, the total irreversibility is only reduced to the thermal 

contribution.  

 

(a) 

 

(b) 

 

(c) 

Figure 2. Thermal entropy generation variation in transient mixed convection: a) Sc=0.1; b) Sc=1.5, c) Sc=6. 
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Figure. 2 illustrates the transient entropy generation in 

double diffusive mixed convection for different Schmidt 

numbers and buoyancy ratios. In general case, Figure. 2 

shows that the total irreversibility takes important value at 

the very beginning of mixed convection due to the important 

initial values of the thermal gradients, and then it decreases 

to reach the steady state of mixed convection with a behavior 

that depends on both the Schmidt number and the buoyancy 

ratio values. As seen from this figure, the system approaches 

the steady state with three behaviors. The first corresponds to 

a periodic one, the second is pseudo-periodic and the third is 

practically asymptotic. Remark that, these observations are 

similar to the results found by Tayari et al. [16], related to the 

study of the influence of Darcy number on the entropy 

generation fluctuation in mixed convective heat transfer in a 

porous channel. 

Let’s start with the case of relative small buoyancy ratio (N 

= 0.01), which corresponds to a weak effect of solutal 

buoyancy force induced by small mass gradients. In this case, 

which is not far from the case of simple heat transfer in 

porous channel, the entropy generation oscillates with a 

periodic behavior. This situation which persists for all 

selected Schmidt numbers proves the existence of thermo-

convective cells in the porous channel. [16]. 

From a point of view of thermodynamics for irreversible 

processes (TIP), this configuration maintained by the energy 

dissipation is known as dissipative structure. [17]. The case 

of periodic fluctuations of entropy generation corresponds to 

a rotation of the system around the steady state that is in this 

case far from the equilibrium one. The theorem of minimum 

entropy generation of Prigogine
17

 is therefore unproven and 

the system evolves in the nonlinear branch of the TIP, for 

which relations between thermodynamic forces and fluxes 

loss their linearity. This periodic behavior remains until the 

buoyancy ratio reaches a critical value (Nc) which depends 

on the Schmidt number. Beyond this critical buoyancy ratio 

and according to the Schmidt number value, the entropy 

generation exhibits a pseudo-periodic or an asymptotic 

approach towards the steady state. From the TIP view point, 

the pseudo-periodic regime of the irreversibility shows that 

the system develops a spiral approach towards the steady 

state, for which the entropy generation takes a constant value. 

The short time of fluctuations of the irreversibility (pseudo-

periodic oscillations) may be the result of the birth of thermo-

convective cells in the double diffusive porous channel, 

which rapidly vanish as time proceeds, under the increasingly 

effect of mass transfer. This pseudo-periodic behavior, 

characterized by an irreversibility constant value at steady 

state, implies that the system is in the frontier between the 

nonlinear and the linear domains of TIP. The asymptotic 

profile of the total entropy generation, at critical buoyancy 

ratio and for given Schmidt number, implies that the system 

progress directly towards the steady state, which is in this 

case a new equilibrium one. The Prigogine’s theorem of 

minimum entropy generation is verified and therefore the 

system evolves, in this case, in the linear branch of TIP.  

 

Figure 3. Frontier between linear and non-linear domain of TIP with different approaches towards the steady state (Re=10, Ra=104, Pr=0.7). 

The frontier between the non linear and the linear domains 

of TIP, which depends on both the buoyancy ratio and the 

Schmidt number is plotted in Figure 3. The domain (I) 

corresponds to the non linear branch of TIP, which is 

characterized by a periodic fluctuation of the entropy 

generation and consequently by a rotation of the system 

around the steady state in the phase space. Whereas the 

domain (II) is related to the linear domain of TIP which 

illustrates the pseudo-periodic and the asymptotic behaviors 

and which corresponds, in the phase space, to a spiral 

approach near the frontier and a direct approach towards the 

steady state respectively. 

5. Conclusion 

A numerical model was employed to analyse the entropy 

generation fluctuations in transient state of mixed convective 

heat and mass transfer in a Darcy-Brinkman porous channel. 
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The following conclusions are drawn: It was observed that 

the total entropy generation takes important value at the very 

beginning of mixed convection and then it decreases to reach 

the steady state, with a behavior that depends on both the 

Schmidt number and the buoyancy ratio. At fixed Schmidt 

number, the entropy generation fluctuations are periodic until 

the buoyancy ratio reaches a critical value. This case 

corresponds to a rotation of the system around the steady 

state and the system evolves in the nonlinear branch of TIP. 

It was found that beyond the critical buoyancy ratio the 

entropy generation behavior can be pseudo-periodic or 

asymptotic depending on the Schmidt number. For the 

pseudo-periodic approach, the system develops a spiral 

approach towards the steady state and for the asymptotic 

approach the system progress directly towards the steady 

state and evolves in the linear branch of TIP. 

Nomenclature: 

Br: Brinkman number 
T

U
Br

e∆
=

λ
µ 2

0  (T) 

Br
*
: modified Brikmann number 

Ω
= Br

Br *  

g gravitational acceleration  

Da: Darcy number  

H: Height of the channel  

L: length of the channel  

P: dimensionless pressure  

Pe Peclet number  

Pr: Prandtl number  

Ra: Rayleigh number 3( ) /h cRa g Hθβ θ θ να= −
 

Re: Reynolds number ν/Re 0HU=  
Ri: Richardson number Re/ PeRaRi =  
U, V: dimensionless velocity components  

X, Y: dimensionless Cartesian coordinates  
 

 Greek letters  
 ϕ  irreversibility distribution ratio  

α thermal diffusivity  

β thermal expansion coefficient  

ν kinematic viscosity  
ε :

 Porosity of the media 10 ≺≺ ε   

Θ: dimensionless temperature 
ch

c

TT

TT

−
−=θ

 

Ω: 
dimensionless temperature ratio 

0T

T∆=Ω  
(∆T/T) 

 

 Subscripts  

H: high  

l: Low, local  
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