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Abstract: A cast in drilled hole (CIDH) piles are to be used as a bridge foundation. The geotechnical data of the site indicate 

that the soil profile consist of 10m normally consolidated soft clay underlined by a thick layer of over consolidated stiff clay. 

Three different pile diameters of 1.6m, 1.8m and 2m are selected from the analysis to be used for a depth of 30m below ground 

level and an average height of 5m above ground level. To investigate behavior of these (CIDH) piles under lateral loads, an 

analytical parametric study is performed to evaluate the ultimate lateral load capacity of the piles (which is assumed to cause a 

pile head displacement of 10% of the pile diameter) and the distribution of shear force and bending moment along the depth of 

the piles. The soil is represented by two ways, linear and nonlinear material. For the linear case, a linear brick finite element is 

used to represent the soil with either a linearly variable modulus of elasticity from ground level to the bottom of the pile or a 

constant modulus of elasticity for the top 10 meters (the soft clay) while linearly varying for the next 20m. For the nonlinear 

case, the P-Y curves method is used to represent the soil by nonlinear springs at intervals of 1 meter. In both cases (linear and 

nonlinear soil), the piles are assumed to behave linearly. Results obtained indicate that the ultimate lateral load capacity of the 

piles from the nonlinear case is in the range of 50% to 60% of the linear case. 
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1. Introduction 

Pile foundations are used to support structures (high rise 

buildings, bridge abutments and piers, earth retaining 

structures, offshore structures, etc.) and can act in a dual role 

of carrying the applied loads to deeper strong layers and also 

for reinforcing the soil. These piles are frequently subjected 

to lateral loads in addition to the vertical loads transmitted to 

them from the super structures due to wind, wave, traffic and 

seismic events. Since the stability of the structure and its 

safety depends to a large extent on its foundation, and 

considering the deep foundations are so expensive, therefore 

optimum design of piles are of main importance and in many 

cases, the lateral displacements of the piles are assumed a 

controlling factor in the design. The variety in soils and piles 

properties, the interaction between the pile and the soil 

complicated the problem of predicting the piles behavior 

under lateral loads. Much works has been done by many 

researchers and several methods have been proposed for 

analyzing load deformation behavior of laterally loaded piles. 

Although these methods make slightly different assumptions, 

they can generally be classified into three main groups: (1) 

empirical methods (Brinch Hansen, 1961; Broms, 1964) [6, 

7]. (2) load transfer curves methods (Matlock, 1970; Reese, 

1983; O'Neill and Gazioglu, 1984; Jeong Seo, 2004) [19, 32, 

21, 14] and (3) a continuum based numerical methods such 

as the finite element methods, the finite difference methods 

and the boundary element methods (Poulos, 1971; Banerjee 

and Davis, 1978; Randolph, 1981; Verruijt and Kooijman, 

1989; Brown and Shie, 1991; Trochanies et al., 1991; Jermic 

and Yang, 2002) [23, 2, 26, 38, 9, 36, 15]. In practice analysis 

of laterally loaded piles is done mostly by using the load 

transfer curve methods which is often referred to as the P-Y 

curve method as it is of intermediate complexity between the 

first and third methods (Jeong and Seo, 2004 and Won et al., 

2005) [14, 40]. In this method the mechanical behavior of the 

soil is represented by a series of nonlinear springs that offer 
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resistance when laterally loaded pile is pressed against them. 

The nonlinear load-displacement P-Y characteristics of these 

soil springs are given as input to the analysis, and numerical 

methods are used to obtain the pile load-deflection response 

(Reese and Cox, 1969; Matlock, 1970; Reese et al., 1974, 

1975; Reese and Van Impe, 2001) [28, 19, 30, 31, 29]. 

Standard P-Y curves are available for a variety of soil types, 

these curves are mostly developed using a trial and error 

procedure by matching the results of field-pile load tests with 

those of the P-Y analysis. Because these P-Y curves do not 

capture the actual mechanics of soil resistance developed as a 

three-dimensional (3D) pile soil interaction, they are strictly 

applicable only to the pile and soil conditions for which they 

were developed. There is evidence in the literature that the 

predictions made by the P-Y curve method are not always 

accurate (Yan and Byrne, 1992; Anderson et al., 2003; Tak 

Kim et al., 2004) [41, 1, 35]. A continuum based analysis of 

laterally loaded piles is conceptually more accurate than the 

P-Y curves method as it explicitly account for the mechanics 

of the (3D) pile-soil interaction. However, the complexity of 

a three-dimensional (3D) continuum often requires the use of 

numerical methods like the boundary integral/element 

method, the finite element method and the finite difference 

method and usually require significant effort in setting up the 

model for analysis (Poulos, 1971a, b; Desai and Appel, 1976; 

Banarjee and Davies, 1978; Randolph, 1981; Lee et al., 1987; 

Budhu and Davies, 1988; Brown et al., 1989; Trochanis et 

al., 1991; Ng and Zang, 2001; Klar and Frydman, 2002) [23, 

24, 11, 2, 26, 18, 10, 8, 36, 20, 16]. A few continuum based 

analytical and semi analytical methods have been developed 

which can give quick solutions without requiring elaborate 

input variables (Pyke and Beikae, 1984; Sun, 1994; Guo and 

Lee, 2001; Basu and Salgado, 2007, 2008) [25, 34, 13, 3, 4]. 

In this paper, two methods (P-Y curve method and elastic 

finite element method) are employed to analyze a laterally 

loaded circular (CIDH) piles. The piles are embedded 

30meters in clayey soil and extended to an average of 5m 

above ground level. The clay deposit consists of two layers; 

the top 10m is normally consolidated soft clay while the 

underlined layer which has a depth of 30m is over 

consolidated stiff clay. Comparison between the results of the 

two methods has been done. 

2. Problem Definition and Objective 

A cast in drilled hole piles are intended to be used as a 

bridge foundation. The geotechnical data of the site show 

that the soil profile consists of a top layer of normally 

consolidated soft clay up to a depth of 10meters below 

ground level. This layer is underlined by a thick layer of 

over consolidated stiff clay which extends to a depth of 

40m below ground level. Soil properties are given in table 1. 

A preliminary design data resulted in selecting 3 different 

piles diameters to be used 1.6m, 1.8m and 2m according to 

the load transferred from the deck to the pile. It is required 

to investigate: (1)- The ultimate lateral load capacity of the 

piles. (2)- The shear force and bending moment distribution 

along the length of the piles. The piles length selected to be 

30m below ground level and an average of 5m above 

ground level. 

Table 1. Site soil properties. 

Layer Depth (m) Modulus of elasticity –E MPa Poisson's ratio Bulk density KN/m3 Unconfined shear strength KPa 

1 0 - 10 6 in average 0.4 17 20 

2 10 – 40 Linearly varying from 14 to 36 0.4 18 50 - 110 

 

3. Numerical Modeling 

Two methods are employed to model and analyze the piles, 

namely the P-Y curve method and the elastic continuum 

finite element method. 

3.1. The P-Y Curve Method 

In this method, the piles are modeled as linear elastic two 

nodes frame element with circular section and six degrees of 

freedom at each node. The Young's modulus, Poisson's ratio 

and unit weight for all the piles are equal 25.75MPa, 0.25 and 

24KN/m
3
 respectively. The soil is modeled as nonlinear 

springs spacing at 1 meter interval. The stiffness of the 

springs are evaluated from P-Y curves for soft clay (Matlock, 

1970) [19] for the first 10 meters and from the P-Y curves for 

stiff clay (Reese et al., 1975) [31] for the lower 20 meter of 

the piles. The lateral load is applied at the pile head (5m 

above ground) and the pile head assumed to undergo only 

translational displacements (no rotation allowed). ANSYS 

12.1 program is used to solve the problem. 

3.2. The Elastic Continuum Finite Element Method 

In this method, the piles are modeled as before with the 

same type of element and properties. The soil domain is 

modeled by 8 node linear brick element with only 

translational degrees of freedom. The elastic modulus of soil 

and Poisson's ratio are the only factors required for the 

analysis. The Poisson's ratio is assumed constant and equal 

0.4 while the elastic modulus of soil is represented in two 

different ways: 

(a) – It is assumed to vary linearly with the depth from 5 

MPa at the ground level to 36 MPa at 40 meter below ground 

level then remain constant (36 MPa) for the remaining depth. 

(b)- The top 10 meters of the soil is assumed to have a 

constant elastic modulus of 6 MPa (as suggested by Reese 

and Matlock, 1956; Poulos and Davis, 1980) [27, 22], while 

the elastic modulus for the second layer is varying linearly 

from 14 MPa at 10 meter below ground level to 36 MPa at a 

depth of 40 meter below ground level. The remaining depth 

of soil is assumed to have constant modulus of 36 MPa. 

The soil domain used to model the problem is extended to 
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10 pile diameter on each side and below the pile (Robert 

Cook, 1995) [33]. The boundary conditions applied at the 

ends of soil domain is pinned (no translation) in all directions 

except the top surface of the soil is kept free. The connection 

between the pile and soil is taken as perfect bond. 

In both methods (the P-Y curve method and the finite 

element method) the control factor in evaluating the ultimate 

lateral load capacity of the piles is the yield of the maximum 

allowed lateral displacement at the pile head which is taken 

to be 10% of the pile diameter as it is more compliant with 

the design criterion (ASTM STP-835, 1983 and USACE, 

1998) [17, 37]. 

4. Results and Discussions 

4.1. Load-Displacement Relations at the Piles Head 

 
Figure 1. Variation of Pile Head Displacement with the Applied Load. 

The variation of the piles head displacement due to the loads 

applied at the piles head are drawn in figure 1. It can be seen 

from the figure that the variation of the pile head displacement 

with the applied loads are nonlinear for the case of P-Y curve 

method, while it is linear for both cases of the finite element 

method. This result is expected as the soil is assumed 

completely linear material in the finite element cases. 

4.2. Ultimate Lateral Load Capacity of Piles 

In all the cases studied, the load required to displace the 

pile head (5m above ground level) a horizontal distance equal 

to 10% of the pile diameter is assumed as the ultimate load 

capacity of the pile. These ultimate loads are listed in table 2. 

It can be seen that the ultimate load capacity of the piles from 

the linear finite element analysis in general is greater than 

that of the P-Y curve method (from 70% to 75% greater for 

the case of a constant top soil properties and from 95% to 

100% grater for the case of linearly varying soil properties). 

This difference is because of the P-Y curve method is usually 

underestimate the soil resistance and do not consider the 

effect of the fixity conditions at the pile head (Dewaikar et 

al., 2009; Wallace et al., 2014) [12, 39]. In contrast the linear 

finite element method is over estimate the soil resistance due 

to the assumption of a linear soil behavior which is actually 

not correct especially at the top soil layer, and also the 

assumption of a perfect bond between the soil and the pile 

makes the soil respond equally to the displacement of the pile 

in tension and compression which is actually different. 

Table 2. Lateral ultimate load capacity of piles. 

 Ultimate load capacity of the piles in KN 

Pile diameter in m 
Finite element method with linearly 

varying modulus 

Finite element method with a constant modulus for the 

top 10 meters 
P-Y curve method 

1.6 4285 3812 2200 

1.8 6017 5333 3050 

2 8441 7166 4220 

 

Due to the above discussion, the actual ultimate lateral 

load capacity of the piles is expected to be in between the 

two results (the P-Y curve method result and the finite 

element method result). However due to the high 

uncertainties in predicting the soil properties in the site, the 

results of the P-Y curve method are assumed acceptable 

however they are conservative. 

4.3. The Deformed Shape of the Piles Under the Ultimate 

Loads 

The deformed shapes of the piles under ultimate lateral 

loads are shown in figure 2. A good matching of the 

deformed shapes from the three cases is obtained. However it 

is evident that the deformation is higher from the case of P-Y 
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curve method. Also it is clearly visible from figure 2 that the 

extension of the deformation to the bottom of the pile is 

directly proportional to the pile rigidity (represented by pile 

diameter since all the piles have the same material). The 

effect of pile rigidity is more visible from the toe 

displacement as shown in figure 2c. 

 

 

 

Figure 2. The deformed shapes of the piles under ultimate loads. (a- 1.6m 

diameter piles, b- 1.8m diameter piles and c- 2m diameter piles). 

4.4. The Variation of Shear Force and Bending Moment 

Along the Length of the Piles 

The variations of the shear force along the length of the 

pile are given in figure 3. It is clearly visible the difference of 

the shear force values (due to different loads applied) and 

shear force distribution (due to different simulation of the 

soil) between the P-Y curve method and the finite element 

method. Again the effect of the pile rigidity is reflected on 

the location of the zero shear and maximum positive shear. 

The variations of the bending moment along the length of 

the pile are given in figure 4. The difference in bending 

moment values and distribution between the P-Y curve 

method and the finite element method is clearly visible, and 

the location of maximum bending moment (zero shear force) 

is moving down word in direct proportion with the pile 

rigidity. 
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Figure 3. The variation of shear force along the pile depth. (a- 1.6m 

diameter piles, b- 1.8m diameter piles and c- 2m diameter piles). 

 

 

 

Figure 4. The variation of bending moment along the depth of pile. (a- 1.6m 

diameter piles, b- 1.8m diameter piles and c- 2m diameter piles). 

5. Conclusions and Recommendations 

The following conclusions can be drawn from the cases 

studied: 

(a). Minimum ultimate lateral load capacity of piles is 

obtained from the P-Y curve method, and it is about 

half the values from the finite element methods. 

(b). There is a difference in shear force and bending 

moment distribution along the depth of the pile 

between the P-Y curve method and the finite element 

method which requires a good judgment in the 

evaluation and distribution of the steel reinforcement 

in the piles. 

(c). Increasing the rigidity of the piles lowers the location 

of the maximum shear force and bending moment in 

the piles in direct proportion to the rigidity. 

To get better understanding of the behavior of the piles to 

the lateral loads, it is recommended to represent the soil by 

elsto-plastic nonlinear finite elements with the inclusion of a 

gap element to represent the bond between the pile and the 

soil. 
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