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Abstract: Fluorescence microscopy plays an important role in the classification of cancerous Tissue. The dramatic increase in 
multicolor fluorescence microscopy applications witnessed over the past decade is due, in part, to the significant advances in 
instrument and detector design. A number of advanced microscopy techniques have been applied using multi-color fluorescence 
labeling, including fluorescence recovery after photo bleaching (FRAP), fluorescence correlation spectroscopy (FCS), 
fluorescence  resonance energy transfer (FRET), fluorescence in situ hybridization (FISH), and fluorescence lifetime imaging 
(FLIM). Many of these methods benefit significantly from the ability to use specifically targeted fluorescent proteins in live-cell 
imaging experiments. In addition, live-cell imaging has been revolutionized by the introduction of ever increasingly useful 
genetically encoded fluorescent proteins spanning the entire visible spectral region. However, the problem of fluorescence 
microscopy is the crosstalk between the channels caused by the overlap of the emission spectra of the different fluorophores, The 
crosstalk cannot be solved on the filter level, and not by specialized florophores. To eliminate the crosstalk the hyperspectral 
imaging using the spectra unmixing (algorithmically reduce the overlap of spectra) can be the possible way to reduce the errors in 
the classification of the tissue. Spectral imaging is the combination of commuter vision and spectroscopy. In addition, because 
every object of interest consists of more than one pixels, every pixel is dependent on its neighboring pixels. Thus, the spatial 
context of the image contains useful information for a classification and increase the sensitivity and specificity of a spectral 
classification. 
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1. Introduction 

Breast carcinoma has been the most common form of 
cancer in women since the end of the nineteen seventies. 
Almost 10% of malignancies in women are diagnosed as a 
breast carcinoma, which represents 22% of all cancer cases in 
women [1]. 5% to 10% of the breast carcinoma are genetically 
conditioned. The risk for women, whose mother or sister had a 
breast carcinoma, is twice that of women without a positive 
family anamnesis. This risk increases by a factor between four 
and six if two family members developed cancer [2]. 

Fluorescence in situ hybridization (FISH) is a well 
established molecular cryptogenic method for genetic analysis. 
DNA probes are labeled with fluorescent dyes and hybridized 
to chromosomes in metaphase preparations or interphase 
nuclei. The probe hybridized to a defined target nucleotide 
sequence of DNA in the cell, and the dye emits a fluorescence 
in a particular wavelength, when excited by an excitation light 

source. The emitted fluorescences using different 
flourochromes with different wavelengths can be detected as 
multicolored pixels. Normally, to classify the cell parts, three 
flourchrome are used. The major common problem with these 
multicolored measurements is the overlap of the emission 
spectra of the different flourchrome[4]. The overlap increases 
with the number of the used flourochromes. Other problem is 
the Autoflourescence of the tissue. Auto-fluorescence 
originates from tissue components as elastin and collagen. The 
substances show a unspecific broad banded flourerscence 
emission overlapping the useful signal and thus causing an 
decrease in image quality.  Currently the pathologists use 
RGB color images of (Multi –FISH) samplesto make their 
diagnosis. The quality of these images could be enhanced by 
acquiring hyperspectral data. Moreover, applying spectral 
unmixing (SU) methods, within the hyperspectral imaging 
system measures the spectrum at each pixel in the image. The 
information content of these hyperspectral images is higher 
than in standard traditional color image (RGB- Images) 
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enabling SU method to unmix the overlapping
spectra more effectively and reduce tissue 
by 55% [3]. This allows classification algorithms
characteristic fluorescent signals more reliably
experts in their diagnosis. 

2. Material and Methods 

2.1. Fuorophores and Spectral Acquisition

Three phlourophors “Rhodamin 6G, 
Rhodamin B” were applied. For the data 
linear spectral unmixing methods of 
rhodamine 6G and rhodamine B were 
conditions Rh_6G / R_B of 1:3 or 3:1 with 
1 shows the measured multispectral information.
LCTF to generate the spectral image information
Figure 1 (a) shows the Fluoresznezreaktionen
(green circle ), R_B (red circle) and the mixing
R_B of 1:3 (yellow circle) and 3:1 (blue
corresponding emission spectra are shown in

 

(a) 

(b) 

Figure 1. the flourophors “Rhodamin 6G, Flourescian,

and its spectrums acquired with the microscope used LCTF.

This captures individual images of the 
sample over the spectral range of 400-720nm
For the measurements, rhodamine B and rhodamine
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overlapping emission 
 auto fluorescence 

algorithms to count 
reliably and support 

Acquisition 

 Flourescian, and 
 analysis with the 

 the fluorophores 
 mixed with the 
 each other: Figure 

information. Here, a 
information is used. The 

Fluoresznezreaktionen of R_6G 
mixing ratios R_6G / 

(blue circle). The 
in Figure 1(b). 

 

 

Flourescian, and Rhodamin B” 

LCTF. 

 test measurement 
720nm in 10nm steps. 

rhodamine 6G used 

as fluorophores and a green
excitation. 

2.2. Epidemiology of breast Cancer

Breast Carcinoma is caused
cellular mechanisms which
Proto-oncogenes are normal genes
development and differentiation
oncogenes to change their behavior
and even non-physiological.
epidermal growth factor receptor
belong to the family of tyrosine
member of the epidermal
(EGFR/ERBB) family. Amplification
this oncogene is shown to play
development and progression of
breast cancer. In recent years
important biomarker and target 
breast cancer patients Which
HER2/neu, HER3 and Her4[2]
in the growth and differentiation
a few evidence-based features
carcinoma[1]. Normal breast
HER2/new gene copies and 
HER2/new receptors. In the 
carcinoma the HER2/neu is over
amplification [5]. These increases
receptors on the surface relative
cells [8]. 

CEP17 (chromosome 17 centromere
Increased CEP17 signals detected
carcinomas may lead to discordant
amplification in a significant
depending on which criterion
However, increased gene, regardless
is positively correlated with 
Figure 2 illustrates the different
parts in breast normal and Cancer

Figure 2. HER2 and CEP 17 in human

(National Cancer Institute) [15] 

2.3. Spectral imaging 

There are different mythologies
image. The classical approach is
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green laser with 532nm for the 

Cancer 

caused by a malfunction in the 
which regulate growth[1]. 
genes that are responsible for the 

differentiation can cause these proto- 
behavior and become hyperactive 

physiological. HER2/neu (from human 
receptor 2) is proto-oncogenes 

tyrosine kinase receptors. It is a 
epidermal growth factor receptor 

Amplification or overexpression of 
play an important role in the 
of certain aggressive types of 

years the protein has become an 
 of therapy for approx. 30% of 

Which has four subtypes HER1, 
[2]. These receptors are involved 

differentiation of cells. HER2/neu is one of 
features for the diagnosis of breast 

breast epithelial cells have two 
 between 20000 and 40000 
 early stage 20% of breast 

over expressed because of gene 
increases the number of HER2/neu 
relative to normal breast epithelial 

centromere enumeration probe). 
detected in invasive breast 

discordant interpretation of gene 
significant proportion of the cases, 
criterion  is used for interpretation. 

regardless of the evaluation method, 
 HER2 protein expression[9]. 

different between HER2 and CEP 17 
Cancer cells  

 

human normal and cancer cell. From 

mythologies to acquire a hyper-spectral 
is to spatial scan a sample with 
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a single point probe while recording spectral data for each 
point. This approach provides both spectral and spatial 
resolution, but, due to the acquisition time is not applicable 
for real-time application. As it is not generally possible to 
simultaneously record two spatial plus the spectral dimension 
of a spectral image using a 2D detector, i.e. some form of 
camera, either the wavelength information or one spatial 
dimension must be acquired sequentially. Two major spectral 
imaging principles have emerged wavelength scanning 
spectral imaging, in remote sensing better known as “staring 
imager”, and spatial scanning spectral imaging, also known 
as “push-broom scanning”.   

For high quality detection and classification of florescent 
images, the spectral imaging coupled with image analysis 
using linear immixing can be employed to segregate mixed 
fuorescent signals and more clearly resolve the spatial 
contribution of each fuorophore. Microscopes are now 
available that have been specifically designed to 
accommodate spectral imaging and, although the technique 
bestows significant advantages, it increases the complexity 
and purchase price of the instrument. Spectral imaging 
merges the two well-established technologies of spectroscopy 
and imaging to produce a tool that has proven useful in a 
variety of disciplines that rely on various forms of optical 
microscopy.  

 

Figure 3. The spectral imaging Lambda stack. (a) data cube, (b) confocal 

image (c)lambda sock. 

2.4. Spectral Unmixing 

Linear spectral mixing. This methods is sometimes also 
called: Spectral Mixture Analysis (SMA: [10] ) Or Mixture 
Modeling (MM: [11] ). Each surface component within a pixel 
is sufficiently large enough such that no multiple scattering 
exists between the components (Singer and McCord, 1979). 
Each surface component within a pixel is sufficiently large 
enough such that no multiple scattering exists between the 
components. The linear scattering approximation is valid 
when the size of the pixel is smaller than the typical ‘patch’ or 
component being sensed - i.e. linear mixing   occurs at the 
macroscopic scale.  

2.5. Linear Unmixing Model 

For an image with: “N” bands, “C” different cover types,  
Xi = {x1, x2, …, xN}T

 are the observed image values in the ith
 band, 

and fi = {f1, f2, …, fc}T
  the proportions of each pixel within 

each cover type “c”.  

 

Figure 4. Florescent shifting of avelength 

The Linear Unmixing Model is defined as: x = Mf + e, 
where, M is an {n x c} matrix.  

The columns of this matrix represent the spectra of the 
different end members. 

Spectral unmixing is a common way to resolve crosstalk in 
the emission spectra and reduce tissue auto fluorescence of 
fluorescence measurements. The method assumes that every 
pixel consist of a linear combination of overlapping emission 
spectra. In the last years there have been several 
implementation of spectral unmixing methods. Each 
fuorophore or absorbing dye, regardless of the degree of 
spectral overlap with other probes, has a unique spectral 
signature or emission fingerprint that can be determined 
independently and used to assign the proper contribution from 
that probe to individual pixels in a wavelength (lambda) stack. 
The result of the linear unmixing technique is the generation 
of distinct emission fngerprints for each fuorophore used in 
the specimen. To optimize the classification of the cell parts 
signals (nuclide) and the CEP17 signal spectral unmixing was 
used to reduce the effects of noise and auto fluorescence.  
Assuming that X is a (n x c) matrix with n rows containing the 
spectra and c columns related with the number of wavelengths. 

The rows of X are denoted by and represent the spectra refx

is the reference spectrum of the kth class. Y is a matrix that 

contains the number of normalized reference spectrum refx . 

),...,,(
,2,1, xxx ciii

T

ix =                          (1) 

,1

,2

,

.

.

.

T

ref

T

ref

T

ref l

x

x

x

x

 
 
 
 
 

=  
 
 
 
 

 

                 (2) 

The dispersion matrix  
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Contains all the spectra of Y and the ith spectrum xi in the 
last row. 
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The pure spectra are the linear compensation of all spectra 
from the data set. The value si called “simplicity” can be 
used to estimate how close the eigenvectors to the pure 
spectrum  
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In order to use a linear mixture model there is a need to 
measure the spectral reflectance of the ‘pure’ end 
members[17-19]. Ideally ground-based spectra would be 
acquired to produce accurate end-members, since end 
members taken from even very high spatial-resolution 
imagery may contain multiple surface components. However, 
such errors can be minimized through sampling the image   
from within the center of known features or from known 
locations during prediagnosis. 

Like PCA (principal Component analysis) the optimization 
procedure iteratively performers planar rotations of the 
loading matrix to maximize simplicity. The algorithm does 
not guarantee a global maximum and thus has to be repeated 
several times. There are relative and absolute stopping 
criterion for the iteration. The absolute value which is 
optimized until the difference vi-vi+1/vi<ε [12] 

Assumed that spectra values and abundances are positive 
and that there is a set of candidate spectra that could be 
obtained (e.g.  by orthogonal projection analysis). If they 
were definitely pure spectra then the abundance can be found 
by solving the least square problem [,20-24]. 
Zi is the pure concentration of aq component and can be 
calculated by: 

( ) ( )1 0 0 0

T
T T TXZ Y Y Y=        (5) 

However, in practice one has to deal with imperfect 
candidates what lead to situation that some abundances 
obtained by the least squares algorithm are negative, Simple 
factors are orthogonal and usually contain positive values, so 
some abundances will be almost for sure negative. In 
Alterating least square they are clipped to zero Z1,c and used 
again to recomputed spectra candidates with the help pf least 
square approach. Another problem are negative values. With 

YZX c 1,1=                      (6) 

And 

( ) ( )1

1 1, 1, 1,

T T

c c cY Z Z Z X
−

= (7) 

They are clipped to zero resulting in Yi,c. The algorithm is 
iterated until reaches the convergence criterion: 
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Where tr is the trace of a matrix. It is the sum of the 
elements on the main diagonal of the determinat. 

If the algorithm converged or the number of defined 
iterations is reached then Y=Y1,c, Z+ Z1,c. Otherwise Y0 is 
set to Y1,c and iteration go on.  

2.6. Segmentation of CEP 17 signal and HER2-neu 

After spectral unmixing the image containing the 
HER-2-neu signals and the image containing the CEP 17 
signal are converted to binary images by the application of 
Otsu’s method,  which is an automated thresholding 
procedure based on automatically histogram shape. The 
Algorithm assumes that the image to be thresholded contains 
two classes of pixels. Then calculates the optimum threshold 
separating those two classes so that their combined spread is 
minimum[12]. The core point in Otsu’s is the searching for 
the threshold value that minimizes the  

 

 

Figure 5. shows a ample of female breast cancer tissue dyed with three 

different fluorescent. 

within-class variance, defined as the weighted sum of 
variances of the two classes.  
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2
2
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2
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1
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2

ttttt
w ww σσσ +=          (9) 

Where wi are weights, or the probability of two classes, t 

is the threshold and σ 2
i

 are variance of the class i. The 

threshold and the variance used to separate the classes. Otso 
shows that minimizing the within-class variance is the same as 
maximizing of the between class variance 

Figure 5. Segmented HER-2/new signals, Segmented CEP 
17 signals and cell nuclei. A the acquired image; B Intensity 
image of HER-2/neu signals; C Intensity image of CEP  
signals and D the Intensity image of HER-2/neu signals, CEP 
signals and  cell nuclei. The boarders of the cell nuclei are 
shown in yellow..  
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Figure 6. (A) the acquired image of breast cancer, (B) Distance images of the 

HER-2/new; (C) CEP17 and (D) cell nucleiWhich is expressed in term 
of class probabilities wi and class means , which in turn can 
be updated iteratively. 

After the reduction of the unmixing result into binary 
image, morphological operations were applied to fit holes 
inside the areas of the HER-2/neu signals and CEP17 signals 
and to remove single pixels from the borders of the signals. 

2.7. Spot Counting 

The term spot counting refers to the determination of the 
number of HER-2/neu and CEP 17 signals and the calculation 
of HER-2/neu to CEP 17 ratio per cell nucleus. The final 
HER-2/neu to CEP 17 ratio is determined by dividing the 
HER-2/neu to CEP 17 ratio of all cell nuclei by the number of 
cell nuclei[3]. The results in a mean HER-2/neu to CEP 17 
ratio Ṝ. 

_

1 17

( )1

( )

N
HER

n CEP

n

N n
S

R S=

= ∑            (11) 

Where N is the number of nuclei, SHER(n) is the number of 
HER-2/neu signals and SCEP 17(n) the number of CEP 17 
signals in nucleus number n. 

The number of nuclei, which have to be counted, is 
dependent on the HER-2/neu to CEP 17 ratio Ṝ.  

( ) ( )yyxxD yx 2121
22

, −−=             (12) 

In case where the ratio is below 1.8 or above 2.2 it is 
recommended to count the signals of 20 nuclei (dependent on 
the role of Vysis, the company which manufactures the FISH 
staining kit)[13]. And if the ratio beyond 2.0 will receive 
Trastuzumab or “Hercepting” therapy, it is a humanized 
monoclonal antibody that acts on the HER-2-neu (erB2) 
receptors[14] After the calculation of distance images of the 
spots a median filter was used to avoid over segmentation of 
the different areas as it shown in figure 6. 

The final segmentation was done using the watershed 
algorithm to separate the nuclei from the background and from  
each other. The resulting image is shown in figure 5 (D). 

3. Results and conclusion 

To determinate the HER-2/new to CEP n17 ratio, it was 
calculated by calculating the mean HER-2/neu to CEP 17 ratio 
for the founded nuclei in the sample data set. To calculate the 
number of signals for each nuclei, the classification results 
were the basic. Due to the fact that the CEP 17 signals do not 
form spatial cluster, because the spot size is small (less than 30 
pixels) , the counting of CEP 17 signal was directly performed 
on the classification result shown in figure 5(c). For the 
determination of HER-2/neu signal per nuleus the mean size 
of signals of HER-2/neu was defined (at least 100 pixel in 
each HER-2/neu cluster). 

 

Figure 7. HER-2 to CEP 17 Ratue 

 

Figure 8. the group’s results of the classification methods of the HER-2/CEP17 ratio 
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This was necessary to divide the spatial clusters of 

HER-2/neu signals into a number of single signals The single 
signals of  HER-2/neu and CEP 17 were counting to 
determine the ratio of  HER-2/neu and CEP 17 by dividing 
the number of HER-2/neu to the number of CEP17 per cel 
nucleus. The final HER-2/neu and CEP 17 ratio is then 
determined by  

HER-2/neu to CEP 17 ratios of all nuclei in the sample by 
the number of cell nuclei. The images of the cancer samples 
were converted to binary images by the application of Otso 
method. to improve 

The results, using the linear spectral unmixing for  spot 
counting of HER-2/neu, CEP 17 and nuclei of 15 stained 
breast cancer samples (3-phlorophor) are shown , in the  

Table 1 as statistical values on nuclei numbers, CEP 17 and 
HER-2/new in each sample (different nucleus number) and the 
calculated ratio HER-2/neu to CEP 17 of each sample. 

Table 1. The counted HER.2/new, CEP 17 and the calculated ratio 

HER-2/neu to CEP 17 of each sample  

Sample Nucleus nr. CEP 17 HER-2/neu 
HER-2/neu to 

CEP17 ratio 

1 8 16 200 12.5 
2 4 6 112 18.7 
3 6 9 125 13.9 
4 8 18 210 11.7 
5 6 17 115 6.8 
6 9 16 201 12.6 
7 4 6 102 17.0 
8 5 9 115 12.8 
9 4 9 90 10 
10 6 20 105 5.3 
11 7 14 210 15.0 
12 7 12 102 8.5 
13 8 25 105 4.2 
14 5 10 213 21.3 
15 6 15 115 7.7 
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