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Abstract: Multi-locational trials are critical for establishing stable and adaptable genotypes across different geographic areas 
prior to considering commercial release. The stability and adaptation of 20 tropical maize hybrids in environments infected 
with Northern leaf blight disease were assessed using 12 parametric and 14 nonparametric parameters across five 
environments. The purpose of this research is to estimate the genotype-environment interaction (GEI) for grain yield in 
selected maize genotypes and to identify associated stability factors to aid in the rationalization of stability analysis in Multi-
Environment Trial (MET) data used in breeding programs. Except for De Kroon and Van der Laan (1981), both the combined 
ANOVA and nonparametric tests of GEI showed significant differences across hybrids, as well as significant crossover and 
non-crossover interactions. This suggests differential genotypes responses to the test environments. Spearman correlation 
analysis revealed significant differences between many nonparametric and parametric parameters, indicating that the two may 
be utilized interchangeably. Additionally, the correlation matrix and principal component analysis results from parametric and 
nonparametric parameters demonstrated their potential to assess the responses of maize genotypes to changing environments. 
G13 and G20 appeared most phenotypically stable with associated high mean yield based on the high values expressed by most 
parametric and nonparametric parameters. 
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1. Introduction 

Maize is third most economically important cereal crops 
after wheat and rice, and most widely cultivated cereal crop 
in sub-Saharan Africa. The Food and Agriculture 
Organization [1] reported that maize was cultivated on 
approximately 197 million hectares of land in the 2017 
planting season, with about 1.1 billion tons of maize grain 
produced the same year. Maize performs well in diverse 
environments because of its wide genetic and morphological 
variability due to its cross-pollinated nature. However, maize 
productivity is being disrupted by pest and disease attack. 

Among the major diseases affecting maize productivity is the 
Northern leaf blight (NLB) disease incited by the fungus 
Exserohilum turcicum (Pass.) Leonard and Suggs (syn. 
Helminthosporium turcicum Pass.). NLB disease infection 
can cause up to 100% reduction in grain yield depending on 
the variety and infection stage [2]. 

The phenotypic expression of a trait is a combined 
influence of the genotype and environment. A significant 
genotype-environment interaction (GEI) alters the 
relationship between phenotypic and genotypic values, 
resulting in bias in genetic effects and combining ability 
estimations for characteristics sensitive to environmental 
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variation. Such characteristics have a negligible response to 
selection [3]. Because the impacts of genotypes and 
environments are statistically non-additive, cultivar yield 
variation is environment dependent [3]. Thus, genotype 
selection based on average grain production in a particular 
environment will be less successful. The significance of GEI 
in cultivar evaluation and breeding programs have been 
demonstrated in virtually all major crops, including maize [4, 
5]. Both parametric and nonparametric statistical techniques 
have been employed to identify stable and superior genotypes 
in stability investigations. The three concepts of stability 
(Type 1, 2, 3) analysis was proposed by [6, 7], they later 
introduced the type 4 stability analysis. Type 1 concept, also 
known as the static or biological concept of stability, is used 
to estimate quality traits and disease resistance and stress 
characters. Coefficient of determination (Ri

2), coefficient of 
variability (CVi) and the genotypic variances across 
environments (S2

xi) are reported as parameters used to define 
this kind of stability [8-10]. The Type 2 is called a dynamic 
or agronomic concept of stability [10]. A stable genotype 
does not vary from the general response to environments, 
allowing a predictable response. Stability variance (σi2) and 
regression coefficient (bi) can estimate type 2 stability [11, 
12]. [10] reported Type 3 as part of the dynamic or 
agronomic stability concept. [13, 14] methods are used to 
describe type 3 stability. [13] employed regression coefficient 
(bi) and deviation from regression (S2di), and they reported 
that genotype is more stable if bi = 1. [10] classified the 
stability techniques as dynamic based on GEI effects 
estimate. These include Wricke's ecovalence GEI partitioning 
[15] and Shukla's stability of variance [11] methods utilizing 
[12, 4] regression algorithms. Cultivar performance measure 
(Pi) and the within location variance (MSy/l) was proposed 
as type 4 [7, 16], where Pi of genotype i was defined as the 
mean square of the distance between genotype i and the 
genotype with the maximum response. Stability statistics, 
according to [17], provide an incomplete view of the 
response pattern. This is because responses of genotype to 
diverse environments are multivariate [6], while the stability 
indices are univariate. Cultivars with similar responses can 
be grouped and analysed easily using multivariate analysis 
[18, 19]. Additive Main effect and Multiplicative Interaction 
(AMMI) model is one of the multivariate techniques that 
combines genotype analysis of variance and the 
environment's main effects with principal component 

analysis of the GEI [20, 21]. Besides parametric methods of 
stability analysis, nonparametric procedures have been used 
based on genotype ranking over environment and with 
environmental resistance as a stability estimate. Stable 
genotypes are those genotypes with similar rankings across 
environments. According to [22], stable genotypes are those 
whose position regarding other genotypes is not altered 
across test environments. [22] proposed four nonparametric 
statistics of phenotypic stability (Si

(1), Si
(2), Si

(3), and Si
(6)) 

according to genotypes classification over environment. [23] 
recommended a nonparametric superiority estimate. Fox et 

al. (1990) employed a stratified ranking approach of the 
varieties over environment to estimate the percentage of 
locations where each variety occurred in the top, middle, and 
bottom third of the ranks, establishing the nonparametric 
estimates TOP, MID and LOW, correspondingly. As reported 
by [24, 25], rank-sum and simultaneous selection for yield 
and stability are the other nonparametric stability statistics 
that combine both yield and stability variance of [11] as 
selection criteria. These nonparametric statistics ascribe a 
weight of one to both yield and stability and facilitates the 
identification of high-yielding and stable genotypes. [26] 
suggested nonparametric statistics NPi

(1), NPi 
(2), NPi 

(3), and 
NPi

(4) according to cultivars adjusted means ranking over 
environment. This study aims to (i) estimate genotype × 
environment interaction (GEI) of grain yield in selected 
maize genotypes, and (ii) identify related stability parameters 
to rationalize stability analysis in Multi Environment Trial 
(MET) data in breeding programs. 

2. Materials and Methods 

2.1. Plant Materials 

Twenty maize hybrids were selected based on good 
specific combining ability (SCA) of grain yield and varying 
response to NLB disease were selected for this study. (Table 
2) [27]. The trial evaluation was carried out at the Teaching 
and Research Farms of the Federal University of Technology, 
Akure (FUTA; 7°15’N, 5°15’E, 370m altitude) and Obafemi 
Awolowo University, Ile-Ife (OAU; lat. 04°33’E, long. 
08°28’N, 244m altitude), and an isolated experimental field 
of the National Cereal and Research Institute (NCRI, 
outstation) in the 2016 cropping season. In the 2017 cropping 
season, the evaluation was repeated at FUTA, and OAU. 

Table 1. The ten (10) selected inbred lines used. 

Number Pedigree Response to NLB disease infestation Maturity group Source 

1 TZEEI 82 Susceptible Extra-early IITA 
2 TZEEI 9 Susceptible Extra-early IITA 
3 TZEEI 14 Moderately resistant Extra-early IITA 
4 TZEEI 108 Resistant Extra-early IITA 
5 TZEI 134 Susceptible Early IITA 
6 TZEI 27 Moderately susceptible Early IITA 
7 TZEI 9 Moderately susceptible Early IITA 
8 TZEI 16 Moderately resistant Early IITA 
9 TZEI 14 Resistant Early IITA 
10 TZEI 10 Resistant Early IITA 
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Table 2. Genotype code, hybrid and origin of 20 maize genotypes. 

Genotype code Hybrid Origin Genotype code Hybrid Origin 

G1 TZEEI 9 x TZEEI 108 Akure G11 TZEI 27 x TZEI 16 Akure 
G2 TZEEI 82 x TZEEI 108 Akure G12 TZEI 9 x TZEI 14 Akure 
G2 TZEEI 14 x TZEEI 108 Akure G13 TZEI 16 x TZEI 10 Akure 
G4 TZEEI 82 x TZEEI 14 Akure G14 TZEI 9 x TZEI 10 Akure 
G5 TZEEI 108 x TZEEI 108 Akure G15 TZEEI 14 x TZEI 14 Akure 
G6 TZEEI 14 x TZEI 27 Akure G16 TZEI 134 x TZEI 16 Akure 
G7 TZEEI 14 x TZEI 16 Akure G17 TZEI 14 x TZEI 10 Akure 
G8 TZEEI 14 x TZEI 9 Akure G18 TZEEI 14 x TZEI 14 Akure 
G9 TZEEI 14 x TZEI 134 Akure G19 TZEEI 14 x TZEI 10 Akure 
G10 TZEI 9 x TZEI 16 Akure G20 TZEI 134 x TZEI 10 Akure 

 

2.2. Experimental Design and Field Evaluation 

A Randomized Complete Block Design (RCBD) with 
three replications was adopted in each test environment. A 
single row plot of 5m long with 75cm × 25cm intra-row and 
inter-row planting distance were used. Two seeds were 
planted per hill and thinned to one plant per stand at 21 days 
after planting (DAP) to achieve a plant population density of 
53,333 plants per hectare in each test environment. Three 
border rows of local cultivars were planted on each side of 
the block. At one week after planting (1WAP), 7-day old E. 

turcicum conidia, with a spore concentration of 106 CFU/ml, 
were used to infest the test plants, and each test plant was 
covered with a plastic bag for proper spore infectivity. NPK 
15-15-15 was applied at 60 kg N, 60 kg P, and 60 kg K ha-1 at 
21 DAP, followed by top dressing with 60 kg N ha-1 2 weeks 
later. Gramozone and atrazine were sprayed for weed control 
at low pressure, using a 20L knapsack sprayer. Manual 
weeding was done as necessary. Seed yield data were 
collected from the middle rows of each plot for each 
genotype, across research locations, in each planting year. 
Grain yield was adjusted to 15% seed moisture content based 
on 80% shelling percentage. 

2.3. Statistical Analysis 

Analysis of variance (ANOVA) for Genotype × 
Environment interaction (GEI) was determined using three 
nonparametric statistical methods viz: [28-30], as described 
in the equation below. The parametric combined ANOVAF-
test was carried out using Statistical Analysis System version 
9.4 [31] following the procedure of SAS macro program 
developed by [32] for computing statistical tests for a two-
way table and stability indices of a nonparametric method 
from GEI. The analysis of parametric and nonparametric 
statistical parameters was performed using GEA-R 4.1 [33] 
statistical tools and STABILITYSOFT software [34]. 

����	(���)∑ ∑ ��
�.∗∗���� − �
..∗∗���� − �.�.∗∗���� + �…∗∗��������������  (source: [28]) 

����	(���)∑ ∑ ��
�.���� − �
..���� − �.�.���� + �...�������������  (source: [29]) 

�����	(����) �∑ ∑ ���.��������� − ��∑ ��..����� � (source: [30]) 

Where, 1 = 1,2, ……., l genotypes; j = 1, 1,….., m 

environments; k = 1, 2, …, n replications; Rij = rank of 
original data Xijk; Rij ** = rank of transformed data X* ijk (= 
Xijk – Xi…X.j. + 2X…) and R = mean of ranks. The test 
statistics of non-parametric methods are approximately χ2 - 
distributed with (n-1) (m-1) degrees of freedom, where n = 
number of genotypes and m = number of environments. 

2.3.1. Parametric Stability Statistics 

Superiority index (Pi) 
Superiority index (Pi) was estimated following the 

procedure of [7], as shown in the equation below. 

�� = ∑ �!�� −"���/2%����   

Where Xij is the grain yield of genotype i in environment j, 
Mj is the yield of the genotype with a maximum yield at 

environment j, and E is the number of environments. 
Coefficient of variation (CVi) 
Coefficient of variation (CVi) was estimated following the 

method of [9] as shown in the equation below. 

&'� = (()��/!
*) × 100  

i. Wricke’s Ecovalence (Wi
2) 

Wricke’s ecovalence was estimated for genotype i as 
shown by the equation below. 

.�� = ∑ �!�� − !
.��� − !.���� + !..*������   

/
.��� = mean yield of genotype /.����� = mean yield of genotype /… = grand mean 
ii. Stability Variance (σi

2) 
The stability variance (σi

2) was calculated as described by 
[11] as follow: 

0�� = 12/(2 − 2)(3 − 1)4.�� − 1))(5%)/(2 − 1)(2 − 2)(3 − 1)4  
Where, p = number of genotypes, q = number of 

environments. 
iii. Regression Approach 
Evaluation of genotype response to environmental changes 

with both linear regression coefficient (bi) and regression 
deviation variance (S2

di) [13] was adopted for the regression 
technique as follows. 

6� = 1 + ∑ �!�� − !
.��� − !.���� + !..*��!.���� + !..*�/� ∑ �!.���� + !..*���   
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)7�� = �89� :∑ �!�� − !
.��� − !.���� + !..*� − (6� − 1)�∑ ��!.���� + !..* ����� ;  
Where Xij = grain yield of genotype i in environment j, Xi 

= mean yield of genotype i, X.j = mean yield of the 
environment j, X.. = grand mean and, E = the number of 
environments. 

iv. Coefficient of Determination (R2
i) 

The coefficient of determination (R2
i) was propounded by 

[8] as a stability measure to replace the variance of regression 
deviations (S2

di). The most stable genotype displays a 
minimum coefficient of determination (R2

i). 

��� = 6�� ∑ �<.=�����<..�����>�<.=�����<..�����   

v. AMMI Stability Value (ASV) 

This stability parameter (ASV) was proposed by [37] for 
each cultivar and each environment based on the relative 
contribution of IPCA1 to IPCA2 to the interaction SS 
following the equation below. 

?)' = @ABCDE�FGH	IJ	FKGLMNBCED�FGH	IJ	FKGLMN (O�?&1PQRST)U
� + (O�?&1PQRST)�  

vi. Mean-variance Component (θi) 
The variance component of the GEI approach was 

suggested by [38]. This stability procedure for parametric test 
studies the average of the evaluation for all combinations 
with a common genotype as a stability estimate. Hence, 
genotypes with lower θi values are reported to be more 
stable. 

vii. Genotype x Environment Variance Component θ (i) 
In this parametric stability technique, the ith genotype is 

deleted from the complete data set, and the variance of 
genotype × environment interaction from this subset stands 
for the stability index for the ith genotype. So, genotypes 
with higher values for the (i) are said to be more stable. 

2.3.2. Nonparametric Stability Approaches 

Huehn [39, 22] suggested four nonparametric stability 
statistics derived as revealed by the equation below. 

)�(�) = 2∑ ∑ VW�� − W��XV/1Y(Y − 1)4��X�����9��   

)�(�) = ∑ �W�� − W�.��/(Y − 1)�9��   

)�(Z) = ∑ �W�� − W
.*��/�9�� W
.*   

)�([) = ∑ VW�� − W
.*V/�� W
.*   

i. Kang’s Rank-sum (KR) 
Kang’s rank-sum [40] combines yield and stability 

variance of [11] as a selection measure. The KR gives a 
weight of 1 to yield and stability variance to identify stable 
and high-yielding cultivars. A cultivar with the highest 
yield and lower stability variance is allocated a rank of 1. 
So, yield and stability variance ranks are added for each 
cultivar, and the cultivars with the lowest rank-sum are the 

most desirable. 
ii. Thennarasu’s non- parametric Statistics 
Four sets of nonparametric stability statistics were 

suggested by [26]. The parameters are based on the ranks of 
adjusted means of the genotypes in each environment. The 
low values of these statistics reflect high stability. 

\��(�) = ��∑ ]W��∗ −"7�∗ ^��   

\��(�) = �� �∑ ]W��∗ −"7�∗ ^�� /"7��  
\��(Z) = _∑�S̀ >∗9ab`∗ ��/�Sc.���   

\��(d) = ��(�9�) �∑ ∑ eW��∗ − W��X∗ e /W
.*��X�����9���� �  
In the above formulas, * ijr is the rank of * ijx, *.ir and * 

diM are the mean and median ranks for adjusted values, 
where .ir and Mdi are the same parameters computed from 
the original (unadjusted) data. Standard deviation of rank 
(SDR) and rank mean (R) [41] were measured as 

)�(Z) = ∑ :���� − �
.�����; (f − 1)��   

Where Rij is the rank of Xij within the jth environment, Ri 

is the mean rank across all environments for the ith genotype 
and SDR= (S2i) 0.5. Genotypes with minimum R and SDR 
are the most stable. 

Spearman’s coefficient of rank correlation (rs) was 
employed [42] as 

WP = 1 − [∑7�̀(�9�)�(���)  

3. Results 

Table 3 showed the results of the combined analysis of 
variance (ANOVA) for genotype x environment interaction 
(GEI) on the yield of 20 maize genotypes across five 
environments. The GEI effects were highly significant (with 
the lowest χ2) for both parametric and nonparametric 
statistical measurements used except the De Kroon and Van 
der Laan (1981) nonparametric measurement. 

Table 3. Parametric (ANOVA) and nonparametric tests statistics for GEI 

across test environments. 

Statistics χ2 - statistics 

ANOVA (F) 7372.12** 

Bredenkamp (1974) 1689.15** 

Hildebrand (1980) 296.04** 

Kubinger (1986) 269.27** 

De Kroon and Van der Laan (1981) 80.83ns 

3.1. Parametric Statistical Results 

The mean seed yield of the genotypes evaluated across 
research environments ranged from 8.01 tons/hectare to 5.68 
tons/ha with a total grand means of 6.88 tons/ha (Table 4). The 
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highest mean seed yield was recorded for G10 (8.01 tons/ha) 
and G5 (7.93 tons/ ha), with the least mean seed yield revealed 
by G17 (5.68 tons/ha). The stability index (Pi) parameter 
revealed that genotype G10 is the least stable genotype followed 
by G5, G3, and G15 (Table 4), while the most stable genotypes 
were genotypes G13, G19, G8, G7, and G2 (Table 4). 

Genotype G5 had the highest environmental coefficient of 
variance CVi and G10 (Table 4). In contrast, the lowest CVi 

value was recorded for genotype G13 and G14 across the test 
environments. From the ecovalence (Wi

2) values in Table 4, 
G20 is the most stable genotype among the genotypes 
evaluated because it has the least value (0.07), followed by 
G6 (0.11), G16 (0.27) and G17 (0.33). The least stable 
genotypes among the tested genotypes based on Wi

2 stability 
measure are G5 (8.18), G18 (8.01), G10 (6.42), and G15 
(4.42) (Table 4). 

Table 4. Parametric stability statistics and seed yield of 20 maize genotypes evaluated across 5 environments. 

Genotype Pi CVi Wᵢ² σ²ᵢ s²dᵢ bᵢ Ri
2 PCA1 PCA2 ASV θ(i) θᵢ Yield 

G1 2.81 4.79 1.18 0.30 0.04 -0.40 0.18 -0.53 -0.89 6.43 0.59 0.46 6.43 
G2 4.55 14.23 1.52 0.39 0.18 1.81 0.88 -1.53 0.49 5.75 0.58 0.50 7.39 
G3 0.91 9.05 0.56 0.12 0.03 1.88 0.34 0.62 0.64 7.39 0.59 0.37 5.83 
G4 2.86 4.38 0.81 0.19 0.04 -0.06 0.00 -0.58 -0.78 6.40 0.59 0.41 6.40 
G5 3.77 28.05 8.18 2.24 0.34 4.60 0.30 -1.07 2.18 6.17 0.48 1.38 7.93 
G6 1.99 5.13 0.11 0.00 0.01 0.92 0.81 -0.19 -0.06 6.73 0.60 0.32 6.17 
G7 0.57 5.38 1.67 0.43 0.09 -0.54 0.06 1.47 -0.73 8.01 0.58 0.52 6.69 
G8 0.88 14.34 2.41 0.64 0.10 2.97 0.78 0.71 1.37 7.49 0.57 0.62 6.73 
G9 2.18 7.42 1.09 0.27 0.13 0.38 0.85 -0.18 -0.55 6.69 0.59 0.44 7.49 
G10 5.26 25.63 6.42 1.75 0.71 2.81 0.16 -1.71 1.05 5.68 0.51 1.15 8.01 
G11 0.83 12.61 2.20 0.58 0.22 2.19 0.45 0.88 0.84 7.63 0.57 0.59 7.59 
G12 3.03 6.79 0.77 0.18 0.09 0.45 0.54 -0.70 -0.50 6.29 0.59 0.40 5.75 
G13 0.52 2.49 0.59 0.13 0.02 0.00 0.46 1.29 -0.49 7.85 0.59 0.38 7.20 
G14 3.62 3.69 0.98 0.24 0.02 -0.37 0.88 -0.97 -0.90 6.10 0.59 0.43 7.32 
G15 4.76 14.18 4.46 1.21 0.26 -1.45 0.58 -1.24 -1.79 5.83 0.54 0.89 7.63 
G16 1.25 4.18 0.27 0.04 0.03 0.61 0.29 0.42 -0.25 7.20 0.60 0.34 6.10 
G17 1.31 4.12 0.33 0.06 0.03 0.52 0.42 0.37 -0.29 7.14 0.60 0.34 5.68 
G18 1.18 21.34 8.01 2.19 0.81 3.30 0.12 0.94 1.49 7.59 0.49 1.36 6.29 
G19 0.65 5.30 1.77 0.46 0.07 -0.70 0.00 1.40 -0.88 7.93 0.58 0.53 7.85 
G20 1.00 5.15 0.07 -0.01 0.01 1.06 0.34 0.58 0.04 7.32 0.60 0.31 7.14 
Mean 2.20 9.91 2.17 0.57 0.16 1.00 0.42   6.88 0.57 0.59 6.88 

Pi- superiority index; S2di- deviation from regression; CVi- environmental coefficient of variance; W2
i- Wricke´s ecovalence stability index; σ²ᵢ -Shukla’s 

stability variance; bi- regression coefficient; Ri
2- coefficient of determination; IPCA1 and IPCA2- interaction principal components axes 1 and 2, respectively; 

ASV-AMMI stability value; θ(i)- GE variance component; θᵢ- Mean variance component. 

The regression coefficients (bi) for genotypes G1, G4, G7, 
G14, G15, G19, G13, and G9 were significantly less than 1.00, 
expressing specific adaptability to poor environments. All the 
evaluated genotypes across the test environments except 
genotypes G10 and G18 revealed deviation from linear 
regression (s²dᵢ), that is not significantly different from zero 
(Table 4). The results of the mean-variance component (θᵢ) 
showed that G20 had the lowest value for θᵢ followed by G16 
and G17 (Table 4). The highest values for θᵢ were recorded for 
G5 and G18. The results of GE variance component θ(i), 
showed that genotypes G6, G16, G17, and G20 had the highest 
values for θ(i) across the test environments. In contrast, the 
lowest value for θ(i) was revealed by genotype G5 (Table 4). 
Genotypes G2 and G14 had the highest values for the 
coefficient of determination (Ri

2), while G4 and G19 displayed 
the lowest value for Ri

2 (Table 4). Based on the results of 
AMMI stability value (ASV), G7 and G10 had the highest and 
lowest ASV, respectively. 

3.2. Nonparametric Measures of Stability 

The results of nonparametric stability statistics for grain 
yield of 20 maize genotypes evaluated across five test 
environments are presented in Table 5. The Si

(1) and Si
(2) of the 

evaluated genotypes showed that genotypes G2 and G20 had 

the lowest value, while genotype G5 was the highest. For Si
(3) 

nonparametric statistics, genotype G20 had the lowest value, 
followed by genotype G6, while the highest value for Si

(3) was 
by genotype G5 followed by genotype G15. The values for 
Si(6), a nonparametric stability procedure, suggested by [22], 
were highest for G15 and G5 but lowest for G20 and G13 
(Table 5). For each genotype, Zi 

(1) and Zi 
(2) values were 

estimated according to the rank of the corrected data and 
summed over genotypes to generate Z values. Zi

(1) had 30. 29 
summations across genotypes, and 23.95 was recorded for Zi 
(2) (Table 5); both Zi 

(1) and Zi 
(2) values were lower than the 

critical value of the chi-square, χ2 (31.41). 
Based on stability parameter, genotype G6 had the lowest 

value for NPi
(1), NPi

(2), NPi
(4), while genotype G20 was lowest 

for NPi
(3). G15 showed the highest value for the same 

parameter recorded followed by genotype G10. The highest 
value for NPi

(1) and NPi
(4) parameters was for genotype G5, 

while the highest value for NPi
(3) parameter was for genotype 

G15 (Table 5). From the result of Kang’s rank-sum, genotypes 
G13 and G20 had the lowest rank-sum, while the highest rank-
sum was revealed by genotype G10 followed by G5 (Table 5). 
Based on the result of the stability index (Ysi) parameter, 
genotype G10 had the lowest index value, whereas, G7 had the 
highest value among the genotypes evaluated across the test 
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environments (Table 5). As shown in table 5, genotype G6 had 
the highest standard deviation rank (SDR) value followed by 

genotype G11, while the lowest SDR value was recorded by 
genotype G19 followed by genotype G16. 

Table 5. Nonparametric stability statistics for grain yield for the 20 evaluated maize genotypes across test environments. 

Genotype Si
(1) Zi

(1) Si
(2) Zi

(2) Si
(3) Si

(6) NPi
(1) NPi

(2) NPi
(3) NPi

(4) g	R R SDR Ysi 

G1 3.40 0.04 8.30 0.01 4.37 1.26 2.80 0.33 0.60 0.45 24.00 11.0 0.31 6.43 

G2 0.80 0.16 0.80 0.04 0.70 0.70 3.80 2.28 1.11 0.17 31.00 10.2 0.67 5.75 

G3 4.40 2.46 17.80 2.93 4.94 1.03 4.00 0.14 0.26 0.31 12.00 11.8 0.83 7.39 

G4 3.80 5.34 9.80 9.47* 5.16 1.63 4.00 0.60 0.60 0.50 22.00 9.6 0.28 6.41 

G5 9.80 1.30 74.30 1.76 39.11 4.95 10.40 0.71 1.13 1.29 36.00 9.2 0.42 6.13 

G6 1.20 2.46 1.20 3.35 0.52 0.52 2.20 0.08 0.32 0.13 13.00 10.2 1.70 6.73 

G7 4.40 1.30 13.20 0.89 3.14 0.90 7.00 0.16 0.41 0.26 14.00 10.2 0.49 8.00 

G8 6.80 0.02 33.20 0.03 9.62 1.51 8.00 0.26 0.47 0.49 22.00 11.8 0.35 7.49 

G9 3.60 1.30 9.70 0.92 4.41 1.23 4.60 0.38 0.66 0.41 22.00 10.0 1.07 6.69 

G10 4.20 5.59 14.30 3.14 12.43 2.78 5.60 3.85 1.53 0.91 38.00 12.4 0.43 5.68 

G11 6.00 0.20 37.20 0.39 10.05 1.46 3.80 0.19 0.38 0.41 19.00 9.8 1.62 7.63 

G12 3.60 0.86 8.70 1.48 6.00 1.93 4.40 0.89 0.81 0.62 22.00 12.4 0.82 6.29 

G13 2.00 1.56 2.80 1.55 0.67 0.39 2.40 0.33 0.18 0.12 9.00 9.6 0.30 7.85 

G14 3.20 0.68 7.20 0.63 6.00 2.33 3.80 1.53 0.96 0.67 26.00 9.8 0.38 6.10 

G15 6.20 0.51 42.30 0.23 38.45 5.27 4.80 3.10 1.54 1.41 35.00 9.6 0.96 5.83 

G16 3.60 0.44 8.80 0.59 2.84 1.00 3.00 0.17 0.23 0.29 12.00 10.8 0.22 7.19 

G17 3.00 2.13 7.30 2.32 2.35 0.74 3.20 0.13 0.24 0.24 14.00 10.0 1.45 7.14 

G18 8.60 1.98 49.30 1.84 14.50 2.09 9.60 0.31 0.61 0.63 24.00 10.4 0.43 7.59 

G19 4.00 1.19 12.20 0.85 2.90 0.90 6.20 0.16 0.42 0.24 16.00 10.8 0.19 7.93 

G20 1.00 0.77 0.80 1.00 0.24 0.27 2.80 0.10 0.21 0.07 9.00 10.4 0.29 7.33 

Mean 4.18 30.29 17.96 23.95 8.42 1.64 4.82 0.79 0.63 0.48 21.00 10.5 0.66 6.88 

Test Statistics 
 

E(Si
(1)) = 6.65  E(Si

(2)) = 33.25 

V(Si
(1)) = 3.54  V(Si

(2)) = 286.12 

χ2 Sum = 31.41  χ2 Z1Z2 = 9.14 

Yield Mean: 6.88 tons/ha 
 

Si
(1)- mean of absolute rank difference of a genotype over environments; Si

(2) - sum of square deviations of the rank; Z-statistics- measures of stability; Z1, Z2- 
chi- square for Zi

(1) and Zi
(2); χ - sum chi-square for sum of Zi

(1) and Zi
(2); Si

(3) - variance among the ranks over environments; Si⁽6⁾- sum of absolute deviation; 
NPi

(1), NPi
(2), NPi

(3) and NPi
(4) - Thennarasu’s nonparametric stability statistics; KR- Kang’s rank-sum; Ysi- simultaneous selection for yield and stability; SDR- 

standard deviation of rank, R = mean of rank. 

Correlation between mean yield and stability parameters 
Spearman’s rank correlation coefficient results for mean 

yield, and the parametric and nonparametric stability 
parameters are shown in Table 6. A significant positive 
association exists between mean seed yield and some 
parametric and non-parameter statistical parameters across 
test environments. Parameters such as θ(i), θᵢ, CVi, Wᵢ², σ²ᵢ, 
and s²dᵢ showed no significant correlation with Pi, Ri

2, bᵢ, 
and ASV. However, no significant correlation was recorded 
between mean seed yield and Si

(1), Si
(2), Si

(3), Si
(6), NPi

(1), 
and NPi

(4). A significant positive correlation exists for mean 
seed yield and NPi

(2), NPi
(3), and Ysi (Table 6). A similar 

relationship existed between Kang’s rank-sum (KR) and 
mean seed yield; mean seed yield had no significant 
correlation with SDR (Table 6). A highly significant 
positive correlation was recorded between Si

(1) and Si
(2), Si

(3), 
Si

(6), and NPi
(1) and NPi

(4), but the relationship was not 
significant with NPi

(2), NPi
(3), KR, SDR, and Ysi. However, 

a highly significant positive correlation was recorded 
between Si

(1) and θᵢ, CVi, Wᵢ², σ²ᵢ, and s²dᵢ, but not with θ(i). 
The relationship was not significant with Pi, Ri

2, bᵢ, and 
ASV (Table 6). A highly significant positive correlation 

was recorded between Si
(2) and Si

(3), Si
(6), NPi

(1), NPi
(4), θᵢ, 

CVi, Wᵢ², σ²ᵢ, and s²dᵢ, but not with θ(i) and other stability 
measure parameters evaluated in this study (Table 6). Si

(3) 
and Si

(6) parameters had a significant positive correlation 
with NPi

(1), NPi
(2), NPi

(3), NPi
(4), KR, θᵢ, CVi, Wᵢ², σ²ᵢ, and 

s²dᵢ. KR was positively correlated with the parametric 
stability parameters evaluated except with ASV and θ(i). 
Spearman’s rank correlation between Kang’s rank-sum 
measure with Si

(3), Si
(6), NPi

(1), NPi
(2), NPi

(3), and NPi
(4) was 

positive and significant (Table 6). However, the Standard 
deviation of rank (SDR) and Kang’s rank-sum parameter 
are not correlated (Table 6), neither was the simultaneous 
selection for yield and stability (Ysi) with all parametric 
stability parameters measured. 

To better understand the relationships among the 
parametric and nonparametric measures, a principal 
component analysis (PCA) based on the rank correlation 
matrix (Table 6) was carried out. The rank loadings of the 
first two principal components (PC) of ranks of different 
parametric and nonparametric stability measures are shown 
in Table 7. The first two PC explained 96.27% (85.42 and 
10.85% by PC1 and PC2) of the variance of the original 
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variables. Based on the genotype ranking results (Table 8), 
G2 is the most stable genotype following the nonparametric 
statistics procedure of Nassar and Huhn’s (Si

(1) and Si
(2)) and 

Huhn’s statistics (Si
(3) and Si

(6)); and genotype G5 appeared 
most unstable. However, G20 appeared the most stable 
genotype under Si(3) and Si

(6) measure (Table 8). Genotype 
G20 had the highest mean yield ranking, with G7 recording 
the lowest mean yield ranking (Table 8). As shown in Table 
8, G20 was the most stable genotype according to the Wricke 

ecovalence (Wi
2) parametric measure, and G5 appeared the 

least stable. 
Based on the GE variance component (θ(i)) and the mean-

variance component (θ), genotype G5, being the highest-
ranking genotype, was to be the most stable, while genotype 
G20 was the least stable (Table 8). According to Kang’s 
rank-sum nonparametric measure, genotype G20 appeared 
the most desirable, while genotype G15 appeared most 
undesirable among the evaluated genotypes (Table 8). 

Table 6. Spearman rank correlation between mean yield, parametric, and nonparametric stability measures of 20 hybrid genotypes evaluated across five test 

environments. 

Parameter Si
(1) Si

(2) Si
(3) Si

(6) NPi
(1) NPi

(2) NPi
(3) NPi

(4) KR SDR Ysi 

Si
(2) 0.99**           

Si
(3) 0.84** 0.85**          

Si
(6) 0.69** 0.70** 0.95**         

NPi
(1) 0.82** 0.80** 0.72** 0.62**        

NPi
(2) 0.16ns 0.18ns 0.57** 0.68** 0.32ns       

NPi
(3) 0.35ns 0.36ns 0.69** 0.78** 0.57** 0.85**      

NPi
(4) 0.67** 0.67** 0.94** 1.00** 0.61** 0.69** 0.78**     KR 0.37 ns 0.39 ns 0.72** 0.79** 0.53* 0.82** 0.96** 0.79**    

SDR 0.04 ns 0.10 ns 0.14ns 0.06ns -0.03 ns -0.04ns 0.16ns 0.06ns 0.11ns   

Ysi 0.17 ns 0.13 ns -0.29ns -0.49** 0.01 ns -0.73** -0.73** -0.51* -0.71** -0.16ns  

θ(i) -0.77** -0.77** -0.78** -0.65** -0.80** -0.52* -0.65** -0.62** -0.69** -0.05 ns 0.09 ns 

θᵢ 0.76** 0.76** 0.79** 0.68** 0.80** 0.54* 0.69** 0.67** 0.76** 0.01 ns -0.13 ns 

Pi -0.06 ns -0.02 ns 0.38 ns 0.57** 0.09 ns 0.73** 0.80** 0.59** 0.78** 0.18 ns -0.98** 

CVi 0.65** 0.67** 0.65** 0.50* 0.72** 0.34 ns 0.59** 0.48* 0.58** 0.28 ns -0.21 ns 

Wᵢ² 0.75** 0.76** 0.79** 0.68** 0.80** 0.54* 0.69** 0.66** 0.76** 0.02 ns -0.13 ns 

σ²ᵢ 0.75** 0.76** 0.79** 0.68** 0.80** 0.54* 0.69** 0.66** 0.76** 0.02 ns -0.13 ns 

s²dᵢ 0.69** 0.73** 0.76** 0.65** 0.76** 0.56** 0.70** 0.63** 0.73** 0.22 ns -0.23 ns 

bᵢ 0.28 ns 0.29 ns 0.27 ns 0.13 ns 0.22 ns -0.06 ns 0.02ns 0.11ns 0.12ns 0.18 ns -0.04 ns 

Ri
2 -0.37 ns -0.37 ns -0.11 ns -0.07 ns -0.30 ns 0.21 ns 0.16 ns -0.07 ns 0.09ns 0.49 ns -0.35 ns 

ASV 0.17 ns 0.13 ns -0.29 ns -0.49* 0.01 ns -0.73** -0.73** -0.51* -0.71** -0.16 ns 1.00** 

Yield 0.25 ns 0.29 ns 0.35 ns 0.31 ns 0.36 ns 0.49** 0.50* 0.28 ns 0.51* -0.11 ns -0.22 ns 

Table 6. Continued. 

Parameter Θ(i) θᵢ Pi CVi Wᵢ² σ²ᵢ s²dᵢ bᵢ Ri
2 ASV 

Si
(2)           

Si
(3)           

Si
(6)           

NPi
(1)           

NPi
(2)           

NPi
(3)           

NPi
(4)           KR           

SDR           
Ysi           
θ(i)           
θᵢ -0.97**          
Pi -0.18 ns 0.22 ns         
CVi -0.81** 0.76** 0.28 ns        
Wᵢ² -0.97** 1.00** 0.23 ns 0.75**       
σ²ᵢ -0.97** 1.00** 0.23 ns 0.75** 1.00**      
s²dᵢ -0.89** 0.90** 0.34 ns 0.85** 0.90** 0.90**     
bᵢ -0.31 ns 0.22 ns 0.05 ns 0.60** 0.22 ns 0.22 ns 0.34 ns    
Ri

2 0.18 ns -0.20 ns 0.26 ns -0.02 ns -0.19 ns -0.19 ns -0.14 ns 0.07 ns   
ASV 0.09 ns -0.13 ns -0.98** -0.21 ns -0.13 ns -0.13 ns -0.23 ns -0.04 ns -0.35 ns  
Yield -0.63** 0.64** 0.23 ns 0.44* 0.64** 0.64** 0.49* 0.01 ns 0.04 ns -0.22 ns 

ns – non significant, * - significant at 0.05 probability level, ** - significant at 0.01 probability level. 
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Table 7. First two principal components loadings of ranks obtained from both parametric and nonparametric measurements used for estimating GEI of 20 

maize genotype yields. 

Stability Parameters PC 1 PC 2 

Si
(1) 0.095 -0.062 

Si
(2) 0.838 -0.410 

Si
(3) 0.454 0.299 

Si
(6) 0.051 0.068 

NPi
(1) 0.079 -0.038 

NPi
(2) 0.011 0.116 

NPi
(3) 0.009 0.044 

NPi
(4) 0.013 0.020 KR 0.247 0.816 

SDR 0.000 -0.005 
Ysi -0.007 -0.085 
θ(i) -0.001 -0.001 
θᵢ 0.013 0.007 
Pi 0.020 0.176 
Wᵢ² 0.095 0.052 
σ²ᵢ 0.027 0.014 
s²dᵢ 0.006 0.006 
bᵢ 0.037 -0.034 
Ri

2 -0.002 0.009 
ASV -0.006 -0.085 
Yield 0.012 0.036 
Eigenvalue 518.101 65.826 
% variance 85.416 10.852 

Table 8. Ranks of 20 maize genotypes across five environments using some of the parametric and nonparametric statistical procedures. 

Genotype Yield S(1) S(2) S(3) S(6) NP(1) NP(2) NP(3) NP(4) Wᵢ² σ²ᵢ s²dᵢ CVi g	R θ(i) θᵢ 

G1 13 7 7 9 11 3 11 11 12 11 11 8 6 14 11 10 
G2 19 1 1 4 4 7 18 17 4 12 12 15 16 17 12 9 
G3 7 14 15 11 9 10 4 5 9 5 5 6 13 3 5 16 
G4 14 11 11 12 14 10 14 11 14 8 8 9 5 10 8 13 
G5 16 20 20 20 19 20 15 18 19 20 20 18 20 19 20 1 
G6 11 3 3 2 3 1 1 6 3 2 2 2 7 5 2 19 
G7 1 14 13 8 6 17 6 8 7 13 13 11 10 6 13 8 
G8 6 18 16 15 13 18 9 10 13 16 16 13 17 10 16 5 
G9 12 8 10 10 10 13 13 14 11 10 10 14 12 10 10 11 
G10 20 13 14 17 18 15 20 19 18 18 18 19 19 20 18 3 
G11 4 16 17 16 12 7 8 7 10 15 15 16 14 9 15 6 
G12 15 8 8 13 15 12 16 15 15 7 7 12 11 10 7 14 
G13 3 4 4 3 2 2 12 1 2 6 6 4 1 1 6 15 
G14 17 6 5 13 17 7 17 16 17 9 9 3 2 16 9 12 
G15 18 17 18 19 20 14 19 20 20 17 17 17 15 18 17 4 
G16 9 8 9 6 8 5 7 3 8 3 3 5 4 3 3 18 
G17 10 5 6 5 5 6 3 4 6 4 4 7 3 6 4 17 
G18 5 19 19 18 16 19 10 13 16 19 19 20 18 14 19 2 
G19 2 12 12 7 6 16 5 9 5 14 14 10 9 8 14 7 
G20 8 2 2 1 1 3 2 2 1 1 1 1 8 1 1 20 

 

4. Discussion 

Stability statistical procedures are employed by plant 
breeders to identify genotypes with expected potential and 
ability to respond positively to improvements in diverse 
environments. Crop breeders utilize different methods to 
estimate stability and adaptability of crop yield for the 
identification of superior genotypes in the presence of 
significant GEI [43]. Although breeders often encounter 
challenges in selecting appropriate stability procedures for 
use in diverse situations, the choice of the best procedure 
relies on many factors, including the number of genotypes 
and experimental location and variation, mathematical model 

fit to the data set, stability concept adopted, and the 
capability to apply and interpret the results. 

GE interactions are important sources of variation in any 
crop, and breeders use the term stability to occasionally 
describe a genotype that exhibits comparatively persistent 
yield, independent of environmental fluctuations. Therefore, 
genotypes that exhibit minimum variance for yield through 
diverse environments are said to be stable. This knowledge of 
stability could be a biological or static [44]. Plant breeders 
and agronomists prefer an agronomic or dynamic concept of 
stability because they are more interested in genotypes with 
high mean yields and with potential to respond to better 
environmental conditions [45-47]. GEI becomes more 
relevant when there are changes in the ranking of genotypes 
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across diverse environments. The changes in the ranking 
have been defined as crossover genotype × environment 
interaction [48]. 

As established in the results of parametric and 
nonparametric measurements adopted in this study (Table 3), 
the presence of significant differences for the parametric and 
nonparametric, except [30], indicated the absence of additive 
Genotype × Environment interaction among the evaluated 
maize genotypes. A non-significant GEI displayed by [30] 
nonparametric measurements suggested a non-crossover GEI. 
The results conform to the conventional ANOVA but gave 
more precise information about the additive or crossover 
nature of the GE interactions (GEI) [47]. 

From the results of the parametric parameters, the highest 
value for superiority index (Pi) displayed by G10 (TZEI 9 x 
TZEI 16) indicated that the genotype appeared least stable 
genotype among the evaluated maize genotypes, while G13 
(TZEI 16 × TZEI 10) appeared most stable genotype. For the 
environmental coefficient of variance (CVi) method, 
genotype G13 (TZEI 16 × TZEI 10) appeared the most 
desirable genotype because of its ability to display low CVi 
and high mean seed yield among the genotypes evaluated. 
The Wricke ecovalence [15] parametric stability parameter 
defines the influence of individually evaluated genotype on 
GEI by partitioning it into variance components allocated to 
each genotype. Wricke proposed that genotype with least 
ecovalence (Wi

2) value was reported most stable. Therefore, 
G20 (TZEI 134 × TZEI 10), with the least Wi

2 value, 
appeared the most stable among the evaluated genotypes. As 
shown in table 4, mean-variance component (θ(i)) and GE 
variance component (θᵢ) indicated G20 to be more stable 
across test environments. 

Generally, breeders prefer to apply nonparametric tests to 
stability studies because i. they reduce biases introduced by 
outliers; ii. they do not require assumptions in distributing 
observed values; iii. they are easy to apply and interpret; and 
iv. additions or deletions of one or a few genotypes rarely 
cause variations in results [48-50]. The most debated stability 
parameters have a relationship with either of two divergent 
stability concepts: static/biological concept or dynamic 
concept [42, 50]. In dynamic stability concepts, equality of 
the responses of genotypes to environmental conditions is 
unnecessary [10]. Estimation of dynamic stability relies on 
the specific set of evaluated genotypes, unlike static stability 
measurement [6]. 

The nonparametric stability measurements of [22] 
similarly classified the genotypes. Our results conform to 
those of [51, 47, 52]. [37] reported that Si

(1) and Si
(2) are 

functions of stability measurements only, while numerical 
values of Si

(3) and Si
(6) is the combination of yield and 

stability according to genotypes yield ranks per environment. 
Also, the positive significant (P<0.05) correlation among 
these parameters in our study aligns with the results of [22], 
who reported a significant positive relationship between Si

(1) 
and Si

(2), and [54], and a highly positive significant 
correlation amongst Si 

(1), Si
(2) and Si

(3). Our result indicates 
that any of the four methods of [22] nonparametric statistical 

parameter could be adopted in assessing genotype stability. 
[22] noted that Si

(1) and Si
(2) have a close relationship with the 

static biological concept of stability, as they describe stability 
in homeostatic sense. Also, [49] reported that Si

(1) and Si
(2) 

represent the static concept of stability. Therefore, Si
(1) and 

Si
(2) can be employed as a concession method that select 

genotypes with moderate yield and yield stability. 
The highly significant positive relationship between Si(3) 

and Si
(6) and nonparametric measurements of Thennarasu in 

our study is supported by [49] and [50], who reported a 
significant, positive correlation between Si

(3) and NPi
(1), Si

(6) 

and NPi
(2), NPi

(3) and NPi
(4). According to Thennarasu’s 

nonparametric stability methods, stable genotypes are the 
genotypes whose adjusted ranks are not altered regarding the 
others across test environments. Since NPi

(3) and NPi
(4) define 

stability in units of mean ranks, this method shares a 
similarity with Si

(3) and Si
(6). Therefore, the highly significant 

positive relationship between Si
(6), NPi

(1), NPi
(2), NPi

(3) and 
NPi

(4) indicates that stability procedure of Thennarasu’s 
contributes little information to the statistics obtained by 
[22]. Therefore, using the [39] stability parameters could be 
better since there is a statistical procedure to determine the 
significance of Si

(1) and Si
(2). Nevertheless, the nonparametric 

procedure of [26] stability estimates will be a better option 
for parametric models. The nonparametric procedures 
adopted for this study did not appear to represent each 
genotype’s reaction to the environment. Some genotypes 
expressed stability according to some parameters but 
unstable for other parameters, making it challenging to 
reconcile the statistical parameters into a unified inference. 
[6] identified this limitation in a Genotype × Environment 
Interaction study. The challenge was because parametric 
techniques transform the responses of genotypes to 
environments from its multivariate to a univariate state. To 
overcome this challenge, genotypes are partitioned into 
qualitatively homogeneous stability subsets using principal 
component analysis. Given the unanimity of most of the 
stability estimates, the genotype G13 was the most stable 
with the highest yield. 

5. Conclusions 

The major challenge with stability statistics is that they 
hardly give a precise picture of the whole response pattern 
because of the multivariate response of genotypes to diverse 
environments. This study demonstrated that ASV has the 
advantage of a small increase of repeatability in comparison 
with other measures such as multivariate response and 
dynamic/agronomic concept of stability; hence it is 
recommended as the most suitable stability procedure. Most 
of the stability methods indicated that genotype G13 (TZEI 
16 × TZEI 10) and G20 (TZEI 134 × TZEI 10) appeared 
most phenotypically stable with a high mean yield. Most of 
the stability procedures employed in this study measured 
genotypes stability based on yield, stability, or both. Hence, 
both yield and stability have to be simultaneously considered 
for more effective use of GEI, and to enhance genotypes 
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selection. Arguably, the procedures producing highly 
correlated ranks with yield do not necessarily produce the 
same ranks for stability or simultaneously for stability and 
yield. Therefore, the mean yield was also incorporated as a 
comparison. The results of the correlation matrix and the 
PCA from parametric and nonparametric measures revealed 
that these parameters could evaluate the responses of maize 
genotypes to fluctuating environments. Therefore, either of 
them is useful for genotype assessment. Based on this, the 
repeatability, similarity, and power of parametric and 
nonparametric procedures for selecting the best genotypes in 
different crops have to be further studied. 
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