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Abstract: This study is a literature review aiming to give a summary of the effects that the current anthropogenic caused 
climate crisis has on the biogeography and environment, and further give examples of likely future adaptations and needed 
conservation work. This study is based on scientific articles, primary from Web of Science and Google Scholar. The biodiversity 
is under pressure due to climate changes, the average species extinction is currently two to three orders of magnitude higher than 
the normal background extinction, and faster than the rate of origination. This development follows the predictions of The Red 
Queen Hypothesis that every species must constantly evolve due to environmental changes in order to avoid extinction. The 
natural environments are changing due to e.g. increased extreme weather events and ocean acidification. The increased heating is 
causing drought, and adaptations of the biota is needed, like more drought resistant flora and fauna with the ability to undergo 
estivation. The increased oceanic acidity can cause the shells of calcifying organisms to dissolve. These organisms will need to 
either spend energy on increased calcification or develop in a way so they can carry out live with lesser calcification. If organisms 
cannot develop, they are likely to migrate to colder regions. In the ocean this means towards polar areas and to greater depths, and 
in the terrestrial environment it is pole wards and to greater altitudes. Conservation is needed, and there are multiple options. Ex 
situ might be the only option for species whose natural habitat will be forever gone if the development of the climate change 
continues as present. To carry out conservation to infinity is unrealistic, and we are at a point where climate change is threatening 
our food security. It is possible to both slow down the current climate crisis and counteract its consequences. 
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1. Introduction 

This paper provides the current knowledge about how the 
current anthropogenic climate crises is affecting the 
biogeography and our environment. Subjects that this paper is 
touching is: (1) the needed adaptations that species will need 
to undergo in order to avoid extinction, (2) ocean acidification 
and its consequences, for especially calcifying organisms, (3) 
problems with more extreme weather, like desertification in 
some areas while heavier rain will be more frequent in other, 
(4) the needed migration pole wards, to greater altitudes and 
greater oceanic depth in order to stay in the preferred thermal 
conditions, and (5) our food security is threatened by a climate 
changed induced mismatch between pollination and flowering 

season. 

2. A Summary of the Current Climate 

Change Crises and Needed 

Adaptations 

2.1. Extinction and the Need to Evolve 

Extinction is a common phenomenon, and as described by 
The Red Queen Hypothesis, species will constantly have to 
respond to changing environmental conditions in order to 
avoid going extinct [1, 2]. The biodiversity on Earth have 
been shaped by the climatic and environmental conditions 
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throughout evolutionary time [3], and organisms that cannot 
cope with the changing environmental conditions will need 
to either adjust or migrate to more thermal suitable habitats 
[4]. To survive, species need to constantly evolve fast 
enough to be suitable adapted to the environment, and have a 
fitness that can compete with predators, parasites etc., who 
also are continually evolving [5, 6, 7]. Meaning that for 
species to exist, they must minimally be well-designed, and 
if better designed they might be more suited for future 
circumstances [6], maladapted species will be eliminated by 
natural selection [5]. 

2.2. Be Adapted to Avoid Extinction 

Being adapted to the environment in order to avoid 
extinction is essential, both with respect to the present climate 
changes due to anthropogenic activities and in an historical 
context. It is estimated that 95-99% of the four billion species 
that have evolved on- and inhabited the Earth over the last 3.5 
billion years have suffered from extinction [8-10]. Extinction 
has always occurred, but currently the average species 
extinction is 0.72% per year, which is two to three orders of 
magnitude higher than the normal background extinction, and 
faster than the rate of origination [11, 9, 12]. 

The big driver for this extinction is climate changes, which 
is currently more rapid than what have ever occurred during 
recorded history [1, 13]. The expected global mean surface 
temperature for 2100 will be between 3.7°C and 4.8°C above 
the average for the period 1850-1900 if no drastic effort is 
taken to reduce the emission of greenhouse gases [14]. 

Since the industrial revolution, which started in the 19th 
century, the level of atmospheric carbon dioxide has increased 
from about 281 ppm to more than 400 ppm, which is the 
highest in recorded history [15, 16]. There are multiple 
greenhouse gasses contributing to climate change but the 
release of carbon dioxide to the atmosphere is especially 
critical because the worldwide output is so enormous [17, 18]. 

3. Ocean Acidification and Its 

Consequences 

3.1. Oceanic Sink and Problems for Calcifying Species 

The ocean is a major sink for atmospheric carbon dioxide 
[19], and accounts for 48% of the uptake [15], but someday 
the oceans capacity for taking up carbon dioxide might be 
reached, meaning that a further uptake will not be possible [15, 
20]. Ocean acidification will expose many species to 
conditions that they have not been exposed to during their 
evolutionary history, and for this reason is not adapted to, 
which might cause extinction [20]. 

Carbon dioxide can enter some organisms and changes the 
pH of their body fluids. When organisms use energy on 
regulating pH, it can have consequences for growth rate and 
reproductive capacity [21-24]. The effect of ocean 
acidification is severe on calcifying organisms, because it can 
decrease their carbonate ion concentration to levels where 

shells dissolve [25, 26]. This have consequences for many 
ecosystems since reef-building corals and calcified pteropods 
are affected. Pteropods have essential roles in food webs of 
various marine ecosystems [27]. The coral reefs provide 
breeding grounds for multiple fish, protect sea grasses from 
wave stress, and protect shorelines from erosion and flooding 
[28, 20, 29]. 

3.2. Problems with the Stress from Heat 

The heat is also a problem for corals, because they cannot 
make their own photosynthesis, they are dependent on their 
photosynthetic algal endosymbionts (zooxanthellae) in order 
to survive. But the thermal tolerance of zooxanthellae has 
been exceeded in many reefs, which have led to widespread 
coral bleaching [17, 30]. If the carbon dioxide emission 
continues as present, 70% of all known tropical reef locations 
will be gone at the end of this century [20]. 

3.3. Possible Adaptation the Acidic Environment 

A species which have successfully undergone evolutionary 
adaptations to live in an acidified aquatic environment is 
paedocypris (Paedocypris progenetica), which is a miniature 
fish from Southeast Asia. They are native to caves with a 
naturally highly acidic environment and is adapted to these 
environments in the way that they are capable to live and 
function with a poorly mineralized skeleton [31]. 

4. Problems with Extreme Weather 

4.1. Desertification 

The global warming is causing an increase in the frequency, 
duration, and severity of drought in some regions [32]. A 
Drought climate will often result in increased wildfires, and 
thus vegetation will be lost [33-35]. Since plants remove 
atmospheric carbon dioxide, the terrestrial carbon sink will 
decrease due to increased wildfire [18, 36]. It is estimated that 
the global terrestrial carbon sink absorbs a range of 2.0 to 3.4 
Pg. carbon per year [36]. If these pools of carbon become 
released back into the atmosphere it will contribute to 
acceleration of further global warming [32]. 

4.2. Not a New Phenomenon, and Some Species Are Already 

Adapted 

Drought and wildfires are not new phenomena and has 
influenced the atmosphere and biosphere for millions of 
years [37]. In climate zone ecosystems like the 
Mediterranean-type, the native flora is particularly adapted 
to drought. These habitats are dominated by woody species, 
and plants that have a large amount of underground reserves 
to re-sprout and soil seed-banks [38, 39, 34, 40]. Lungfish, 
many insects, and desert snails, can escape periods with 
drought by using estivation, which is a state where the 
metabolic rate is substantially reduced and the body is at rest, 
despite the high environmental temperatures [41, 42]. They 
can survive estivation without any excretion of nitrogenous 
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waste products [42]. The abilities for osmoregulation seem 
to be adaptive within a species at the population level, and 
there have been shown significant anatomical differences in 
the relative medullary thickness between kangaroo rats 
living under drought conditions, compared with more 
moisture conditions [43]. Species of mammals that live 
under constant drought stress have long loop of Henle in 
proportion to their body size, which makes them able to 
produce hyperosmotic urine. This is a favorable adaptation 
in where they lose very little water when excreting excess 
salts [42]. 

4.3. The Extreme Weather also Comes with the Problems of 

Flooding 

The global warming is also associated with increased 
flooding in warmer maritime regions because the higher 
temperatures is increasing the evaporation from water 
surfaces [44, 45, 35]. The hazards that follows are likely to 
increase in the future with the predicted climate change [46]. 
The reason why the flooding increases in some areas, while 
drought is a severe problem in other, is because areas with 
closer proximity to aquatic areas will experience more 
rainfalls caused by evaporation, which will not happen in 
regions distant to aquatic areas [47, 48]. 

5. Migration 

5.1. Some Species Need to Follow Their Thermocline 

Gradient 

Many taxonomic groups worldwide have migrated pole 
ward and upslope to escape the heat [49, 50]. When migrating 
to high-altitude areas the adaptations to hypoxia is the main 
physiological challenge that threatens survival [51], and 
animals adapted to high altitudes in general have hemoglobin 
with a higher oxygen affinity, and larger heart and lungs [52, 
53]. 

5.2. In the Ocean There Are Migration to Greater Depths 

Due to increased ocean temperature multiple marine 
species are migrating pole wards or to greater depths [54, 55], 
and a globally large-scale invasion into colder marine waters 
is expected in the future [56]. This migration might cause 
conflicts between migrants and native species in receiving 
areas [57]. 

6. Pollination 

6.1. Climate Change Is Threatening Our Food Security 

The interactions between plants and pollinators are among 
the most ecologically important mutualistic relationships in 
nature, and fundamental for the global biodiversity, and 
further an important selective force during evolution [5-60]. 
But unfortunately, global warming is disturbing this 
relationship [61, 60].  

6.2. Climate Change Induced Mismatches Gives Problems 

for the Pollination 

For multiple species of plants there is a strong and complex 
relation between air temperature and pollen release [62]. The 
global warming leads to an earlier onset of the pollen season in 
some species [62], which can result in temporal mismatches 
between plant and pollinator [63-65]. In some places, like 
Arctic Greenland, this have led to a decline in the overlap 
between the pollen transfer season and the flowering season 
[60]. Shifted flowering seasons have made some pollinators 
incapable to track all their ancestral hosts flowers [63, 66]. 
These mismatches contribute to decreased pollination 
efficiency and have led to measurable impacts on the plant’s 
reproductive success [67, 64, 60]. In some cases, the 
mismatches lead to extinctions of both plant and pollinator 
[68]. It is likely that specialized pollinators will end up with no 
food plants, while pollinators that are more generalist will just 
experience diet reductions following phenological shifts [63]. 
Animals pollination is fundamental for the food security, 
because one-third of agricultural production depends on it [69]. 
A decline will lead to an increased demand for agricultural 
land [70]. Further is the pollination also essential for species 
that feeds on flowering plant [71, 72]. 

7. Conservation and Sustainability 

7.1. Conservation Is a Huge Task 

Conservationary work has through times resulted in both 
victories and failure, and currently the rapid climate change is 
placing the future of the conservation legacy in a vulnerable 
position [73, 74]. Conservation is currently a huge task 
because the distribution of many species and ecological 
processes are changing much faster than in the past [75]. The 
rate of climate change is likely to be so fast that the genetic 
adaptation of many species will not be able to cope [76, 77], 
nor is it likely for many species that their migration will be fast 
enough [78]. Unfortunately, along with that every endemic 
species is irreplaceable, the funding for conservation action is 
limited while the resources needed is increasing due to climate 
change [79, 80, 76, 81].  

7.2. Consequences of Changed Ecosystems due to 

Anthropogenic Activities 

Over the past five decades the anthropogenic activities have 
changed multiple ecosystems more rapidly than have ever 
before been recorded, which have caused irreversible loss of 
biodiversity [82]. Deforestation and agricultural expansion 
have resulted in destruction and fragmentation of many 
habitats, which have resulted in endangerment of many 
species [83, 84]. This fragmentation causes island conditions 
where many of the inhabiting species have smaller population 
size, and are geological limited in their options for dispersal, 
which is likely to cause extinctions [85, 80, 86]. Mainly due to 
habitat fragmentations 80% of vertebrate taxa have become 
globally endangered [87], and between 1 and 2 million km2 of 
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tropical forests are destroy by anthropogenic actions every 
decade [82, 84]. Destruction of the tropical forest is 
detrimental because it stores around 46% of the world’s living 
terrestrial carbon pool, and the tropical soils about 11.55% [88, 
89]. If the land-use change and deforestation activities were 
limited, the global greenhouse gas emission and pressure on 
the biodiversity will be reduced [18, 90]. 

7.3. Sustainability Is Likely to Be the Solution  

Decreasing the greenhouse gas emission through a more 
sustainable anthropogenic consumption and way of living is 
possible. A more plant-based diet is more sustainable than a 
meat-based diet, partly because meat-production consumes a 
large portion of the crops and increases the problem of water 
shortages. It takes around 1,000 tons of water to produce 1 ton 
of grain, and it can take up to 8 kg of grain to produce just 1, 2, 
or 4 kg of beef, poultry or pork, respectively [91-93]. Resources 
like paper and fibers can be recycled [94], and the use of solar 
energy decreases the use of other energy sources [95-97].  

7.3.1. The Need to Relocate Species and Establish Protected 

Areas 

By establishing protected areas, the habitat will be 
maintained, which is a sufficient method to prevent losing 
habitat while protecting endangered species [79, 84, 98, 11]. 
Under rapidly changing climatic conditions the challenge of 
maintaining and restoring habitats can be very difficult [99, 
100], and conservation workers must often use more proactive 
methods, such as removing invasive competitors or relocating 
populations to new habitat [79]. Relocation of species to areas 
outside their present or historical range, where their survival is 
expected to be favored, is a tool that can be used to conserve 
biodiversity under the future climatic changes. By using this 
method, the problem of dispersal barriers is solved, meaning 
that it is letting species survive climate change by altering 
their geographic distributions [101-104]. This method can also 
be used to relocate some species of turtles into cooler regions 
in order to counteract the climate change induced 
female-biased sex ratio of their offspring [105]. Relocation of 
species it not exclusively success, relocated species are in 
general likely to have a higher mortality rate than what is 
found naturally in the wild [106]. 

7.3.2. Ex Situ Conservation Might Be the only Solution for 

Some Species 

Ex situ conservation is another important tool, which 
basically is when species are moved into artificial ecosystems 
like zoos, gardens, or aquariums. This way of conservation is 
less risky than relocation of species in the nature. Ex situ 
conservation might be the only option for saving species that 
live near the geographic end of climatic gradients, like polar 
and alpine species [107]. 

8. Discussion and Conclusion 

The current climate crisis is caused by anthropogenic 
activities and have led to disruptions of multiple ecosystems. 

Among greenhouse gasses the main driver is the emissions of 
carbon dioxide [22]. The atmospheric carbon dioxide can be 
absorbed by carbon sinks, like the ocean and vegetations. Due 
to deforestation and urbanization, the terrestrial carbon sink is 
decreasing, and the capacity for oceanic uptake might reach its 
limit [15, 20, 32]. For these reasons actions like reforestation 
and limiting the output of atmospheric carbon dioxide is of 
importance. 

Species might face extinction if they cannot develop fast 
enough to cope with the changing environment [7]. What 
differs between historical mass-extinctions and the current, is 
that the current is anthropogenic caused. Currently the average 
species extinction is 0.72% per year, which is two to three 
orders of magnitude higher than the normal background 
extinction [12], since this is faster than the rate of origination 
the biodiversity on Earth is declining. 

Due to the acidification of the oceans many marine organisms 
will be exposed to conditions that they are not adapted to, which 
might be detrimental for their existence [20]. Under acidification 
some organisms reduce their metabolic rate, which have the 
drawback of reduced reproduction [21]. Especially calcifying 
organisms will need adaptations to a more acidic environment, 
either they will have to increase their rate of calcification to 
compensate for the acidification or they will have to manage life 
in a way similar to Paedocypris progenetica. 

Many terrestrial ecosystems will become more drought [32]. 
Adaptations that likely will be more common in the future as a 
result of drought includes a flora dominated by woody species, 
and plants that have a large amount of underground reserves to 
re-sprout and soil seed-banks [38), [39]. Species like lungfish 
can escape periods with drought by using estivation, and many 
desert animals have evolved long loop of Henle in proportion 
to their body size [42]. These adaptations will likely be more 
common in the future due to the increased heat stress and more 
frequent occurrence of extreme weather events. 

Some species migrate to escape the heating. Oceanic 
species can migrate pole wards or to greater depths [54, 55]. 
While terrestrial species can migrate pole wards and to greater 
altitudes [49, 50]. When migrating to greater heights, 
adaptations such as hemoglobin with a higher oxygen affinity, 
larger heart, and lungs are needed [52, 53]. It might be 
questionable is all the needed adaptations for migrating to 
greater heights can occur as fast as needed, and also when new 
species invades an already occupied arear in the heights it will 
undoubtedly lead to conflicts between established and 
invading species. 

The climatic changes have also disturbed the pollination. In 
some areas it has shifted the flowering season and made 
pollinators incapable to track all their ancestral hosts flowers 
[63, 66]. In some cases, the climate induced mismatches have 
led to extinctions of both plant and pollinator [68]. The decline 
in the function of pollination is catastrophic for the future 
because a big part of our food security will be threatened. 

Conservation actions are needed, and there are multiple 
options, like establishment of protected areas, relocation of 
species, and ex situ conservation [101, 107, 84, 98, 108]. 
Relocation of species might not be possible to infinity, since at 
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some point it will be impossible to find a climatic suitable 
habitat in a changing world. In extreme cases like when the 
natural habitat is forever gone, e.g. polar and alpine habitats, 
ex situ conservation will be the only possibly option in order 
to avoid extinction. It is not possible to conserve to infinity, 
and at a point we will need to take action to change the reason 
why we have all the problems with global warming that leads 
to loss of habitats and biodiversity and even threatens our food 
security due to decreased efficiency of pollination. It is 
possible to slow down the crises and even counteract it. We 
can increase the carbon sink by actions like reforestation and 
we can decrease the anthropogenic emission by changing our 
way of living and consuming. 

Concluding Remarks 

The core problem is the emission of greenhouse gasses, but 
we keep trying to fix its consequences instead of stopping the 
problem. We need to be proactive, like stop to drill up fossil 
fuel and burn it to have energy, and we need to stop the 
continuing deforestation, we need the vegetation to suck out 
the carbon dioxide from the atmosphere so we can counteract 
the global warming. There are solutions on how to carry out 
life in a more sustainable way, but for it to work it requires 
actions. If we keep misusing the globe and its resources which 
we depend on the next candidate for extinction might be 
humans. 
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