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Abstract: Allometric models are important for quantifying biomass and carbon storage in terrestrial ecosystems. 

Generalized allometry exists for tropical trees but species- and site-specific models are more accurate. This paper is to 

investigate forest inventory data extracted from the Forestry Research Institute of Nigeria (FRIN) repository to compute the 

Above Ground Biomass (AGB) for five tree species namely; Terminalia Superba, Bombax Rhodognaphadon, Gmelina 

Arborea, Mansonia Altissima, Pinus Caribaea, Khaya Senegalensis, Khaya Grandifoliola and Shorea Robusta. Allometric 

models were used with the least squares’ parameter estimates derived from the Marquardt algorithm to compute the above 

ground biomass of the five tree species selected. Descriptive Statistics alongside selected methods in inferential and non-

parametric statistics such as Runs, Normality (KS & SW), and F-tests were done. Model selection criteria such as AIC, BIC, 

R
2
, MSE, MAE and RSE were used to select the most appropriate models for modeling AGB of the selected tree species. 

Chave. Model (2005) fitted best the computed AGB for Bombax Rhodognaphadon and Terminalia Superba while Brown. 

Moist model (1989) fitted best the AGB of Gmelina Arborea, Khaya Senegalensis, Khaya Grandifoliola and Mansonia 

Altissima. 
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1. Introduction 

Accurate and precise information on the rates of change in 

forest resources is needed to ensure sustainable policies 

regarding the management and use of forests and trees. 

Estimates on the state and change of forest biomass must be 

stable in other to obtain valid resource forecasts and 

projections that will be suitable for planning purposes in 

Nigeria and all African countries in other to realize the Africa 

agenda for 2063. This is important to support the innovation 

that birthed the African Union strategy on Climate Change 

[1, 2], Land use [3, 4], and Challenges for a sustainable 

environment [5]. Biomass estimates for Nigeria’s tropical 

forests are essential because of the rates at which the 

estimates are changing [13]. An increase in biomass and 

carbon content influences their role in the global carbon 

cycle thereby making the global tropical forests [10] have the 

greatest potential for mitigation of CO2 through conservation 

and sustainable management of resources [12]. 

Anseeuw WL et al. [14] noted that the increase in 

commercial pressures on land and deepening of forest 

depletion as a result of deforestation has worsened global 

warming. Onoja AO et al. [15] indicated that deforestation in 

Nigeria has created environmental concern which is one of 

the most important issues of the last ten decades. Botkin and 

Keller [16] explained the relationship between deforestation 

and GHG emissions. He noted that when forests are cleared 

and the trees are burnt or rot, carbon is released as carbon 

dioxide which then increases the volume of greenhouse gas 

in the atmosphere that can combine with ozone in the ozone 

layer to deplete the protective layer of the atmosphere thus 

stepping up global warming. It was also established that over 

the past century human activities have been releasing GHGs 

at a rate unprecedented in geologic time. This has increased 



 American Journal of Biological and Environmental Statistics 2022; 8(3): 81-92  82 

 

acceleration in the rate of emissions, the concentration of 

GHGs in the atmosphere by 30 percent, since pre-industrial 

times [22] and the Levels of Green House Gas (GHG) 

emission into the atmosphere which includes Carbon Dioxide 

(CO2) levels have been associated with an increase in climate 

change. It is therefore believed that If humans continue to 

emit CO2 at the current rate, all of these effects will excel and 

pose even greater threats to the present earth. Hence, this 

growing trend needs to be stopped using a step called Carbon 

sequestration [10]. 

Table 1. Relative activity contribution to deforestation (Source: Porter and Brown (1996)). 

S/N Activity Contribution (%) 

1 Commercial logging (selective and destructive) 20 

2 Clearing for subsistence agriculture 50 

3 Cattle ranching (Rangeland + pastoralism) 15 

4 Others (construction of dams, roads, mining, plantations, etc) 5 

5 Bush burning (forest fires) 10 

Source: Porter and Brown (1996). 

 

Figure 1. Carbon Sequestration Process in the Nigeria Context. 

Table 2. Common names and botanical names of some selected tree species. 

Botanical Name Common Name Family 
Known Distribution 

in Africa 
Uses 

Air-Dry Wood 

Density (g/cm3) 

TERMINALIA 

SUPERBA 
Afara (Combretaceae) 

Central African Rep., 

Drc 
Plywood, Interior Use 0.45 

BOMBAX 

RHODOGNAPHALON 

Cotton wood Fleece-Fruit, 

N'ghuza 
(Bombacaceae) Nigeria, Kenya 

Plywood, Blackboard, Boxes 

And Crates, Furniture 
0.36 

GMELINA ARBOREA Yamane (Verbenaceae) 

Ivory Cost, Nigeria, 

Cameroon, Uganda, 

South Africa 

Light Construction, 

Packaging, Furniture 
0.41 

MANSONIA 

ALTISSIMA 
Ofun (Sterculiaceae) 

Nigeria, Central 

Africa Republic 

High Class Joinery And 

Furniture 
0.50-0.58 

PINUS CARIBAEA Pitch Pine (Softwood) (Pinaceae) Tropical Africa General Utility Work 0.48 

KHAYA 

SENEGALENSIS 
Mahogany (Meliacea) 

Senegal, Egypt, 

South Africa 

Utility And Decorative Work, 

Indoors And Outdoors, From 

Boatbuilding To Furniture 

And Joinery. 

0.60 

KHAYA 

GRANDIFOLIOLA 

Broad Leaved Mahogany, 

Benin Mahogany 
(Meliacea) 

Guinea, Sudan, 

Uganda 

Joinery, High Quality 

Furniture, Plywood 
0.60 

SHOREA ROBUSTA    

All Types Of Joinery, 

Framing, Doors And Fittings. 

Also Used In Plywood 

0.72 
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2. Methodology 

Let ��� 	, ���, . . . , ��	
	����
 of n units be the datasets, and that the relationship between the dependent variable yi and the p-

vector of regressors xi is linear. Then, through a disturbance term or error variable εi, this relationship can then be modeled. 

Thus, the model takes the form; �� 
 ������. . . ��	��	 � �� 
 ����	 �	��, � 
 1, . . . , �,                                                     (1) 

where 
T
 denotes the transpose so that xi

T
β is the inner product between vectors xi and β. 

Often these n equations are stacked together and written in vector form as: 

Where 

� 
 �����⋮��� , � 
 �������⋮��� 
 	!
��� … ��	�#� ⋯ �#	⋮ ⋱ ⋮��� ⋯ ��	&	, � 
 '(�(�⋮()*	, � 
 �+�+�⋮+��.                                            (2) 

Some remarks on terminology and general use: 

1) �� is called the regressor and, endogenous variable, 

response variable, measured variable, criterion 

variable, or dependent variable. The decision as to 

which variable in a data set is modelled as the 

dependent variable and which are modelled as the 

independent variables may be based on a presumption 

that the value of one of the variables is caused by, or 

directly influenced by the other variables. Alternatively, 

there may be an operational reason to model one of the 

variables in terms of the others, in which case there 

need be no presumption of causality. 

2) ���, ��#, . . . , ��	 are called regressors, exogenous 

variables, explanatory variables, covariates, input 

variables, predictor variables, or independent 

variables, but not to be confused with independent 

random variables. The matrix X is sometimes called the 

design matrix. 

a) Usually a constant is included as one of the 

regressors. For example we can take xi1 = 1 for i = 

1,... , n. The corresponding element of β is called the 

intercept. Many statistical inference procedures for 

linear models require an intercept to be present, so it 

is often included even if theoretical considerations 

suggest that its value should be zero. 

b) Sometimes one of the regressors can be a non-linear 

function of another regressor or of the data, as in 

polynomial regression and segmented regression. 

The model remains linear as long as it is linear in the 

parameter vector β. 

c) The regressors xij may be viewed either as random 

variables, which we simply observe, or they can be 

considered as predetermined fixed values which we 

can choose. Both interpretations may be appropriate in 

different cases, and they generally lead to the same 

estimation procedures; however different approaches 

to asymptotic analysis are used in these two situations. 

3) β is a p-dimensional parameter vector. Its elements are 

also called effects, or regression coefficients. Statistical 

estimation and inference in linear regression focuses on 

β. The elements of this parameter vector are interpreted 

as the partial derivatives of the dependent variable with 

respect to the various independent variables. 

4) �� is called the error term, disturbance term, or noise. 

This variable captures all other factors which influence 

the dependent variable yi other than the regressors xi. 

The relationship between the error term and the 

regressors, for example whether they are correlated, is a 

crucial step in formulating a linear regression model, as 

it will determine the method to use for estimation. 

In statistics, nonlinear regression is a form of regression 

analysis in which observational data are modelled by a 

function which is a nonlinear combination of the model 

parameters and depends on one or more independent 

variables. The data are fitted by a method of successive 

approximations. The assumption underlying this procedure is 

that the model can be approximated by a linear function. f-x/, β1 2 	 f3 �	∑ J/6	β66                         (3) 

7�8 
 9:-;<,(19(=                               (4) 

Where 

It follows from this that the least squares estimators are 

given by �> 2 -7�71?�7�y. 

The nonlinear regression statistics are computed and used 

as in linear regression statistics, but using J in place of X in 

the formulas. The linear approximation introduces bias into 

the statistics. Therefore more caution than usual is required in 

interpreting statistics derived from a nonlinear model. 

Non-linear least squares is the form of least squares analysis 

used to fit a set of m observations with a model that is non-linear 

in n unknown parameters (m > n). It is used in some forms of 

non-linear regression. The basis of the method is to approximate 

the model by a linear one and to refine the parameters by 

successive iterations. There are many similarities to linear least 

squares, but also some significant differences. 

Consider a set of m data points, -��, ��1, -�#, �#1, . . . , -�@ , �@1,	and a curve (model function) y 
 -x, β1, that in addition to the variable x also depends on 

 parameters, β 
 -β�, β#, . . . , βB1, with m D 	n. It is desired 

to find the vector β of parameters such that the curve fits best 

the given data in the least squares sense, that is, the sum of 
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squares. S 
 ∑ r/#H/��                                 (5) 

is minimized, where the residuals (errors) ri are given by I� 
 �� − K-�� , �1� 
 1,2, . . . , M.                   (6) 

The minimum value of S occurs when the gradient is zero. 

Since the model contains n parameters there are n gradient 

equations: 

9N9(= 
 2∑ I�� 9O<9(= 
 0	-Q 
 1, . . . , �1                (7) 

In a non-linear system, the derivatives 
9O<9(= are functions of 

both the independent variable and the parameters, so these 

gradient equations do not have a closed solution. Instead, 

initial values must be chosen for the parameters. Then, the 

parameters are refined iteratively, that is, the values are 

obtained by successive approximation, �8 2 	�8RS� 
 �8R �	∆�8                     (8) 

Here, k is an iteration number and the vector of 

increments, ∆β is known as the shift vector. At each iteration 

the model is linearized by approximation to a first-order 

Taylor series expansion about �U 

fVx/,	βW 2 fVx/,	βXW � ∑ YZV[\,	]^WY]_6 Vβ6 − β6XW 2 fVx/,	βXW �∑ J/6∆β6.6                                  (9) 

The Jacobian, J, is a function of constants, the independent 

variable and the parameters, so it changes from one iteration 

to the next. Thus, in terms of the linearized model, 

9O<9(= 
 −7�8                               (10) 

and the residuals are given by I� 
 ∆�� − ∑ 7�`�̀�� 	∆�`; 	∆�� 
 �� − KVx/,	βXW      (11) 

Substituting these expressions into the gradient equations, 

they become. −2∑ J/6H/�� -∆y/ − ∑ 7�`@̀�� ∆�`1 
 0               (12) 

which, on rearrangement, become n simultaneous linear 

equations, the normal equations. ∑ ∑ 7�8�̀��@��� 7�`	∆�` 
	∑ 7�8@��� 	∆�� 	-Q 
 	1, . . . , �1    (13) 

The normal equations are written in matrix notation as -7�71	∆�	 
 	 7�∆�                         (14) 

When the observations are not equally reliable, a weighted 

sum of squares may be minimized, S 
 ∑ W//r/#H/��                           (15) 

Each element of the diagonal weight matrix W should, 

ideally, be equal to the reciprocal of the error variance of the 

measurement. The normal equations are then. -7�c71	∆�	 
 	 7�c	∆�                       (16) 

These equations form the basis for the Gauss–Newton 

algorithm for a non-linear least squares problem. 

2.1. Allometric Biomass Regression Equations 

The Allometric Equations (AEs) are developed and 

applied to forest inventory data to assess the biomass and 

carbon stocks of forests. This made it the most widely used 

method for estimating biomass of forest. Generalised 

biomass prediction equations have been developed by 

researchers for different types of forest and tree species in 

other to obtain valid resource forecast and predictions [6-8, 

11, 14-16]. AEs for biomass estimation were developed by 

establishing a relationship between the various physical 

parameters of the trees such as the diameter at breast height, 

height of the tree trunk, total height of the tree, crown 

diameter, tree species, etc. since incorporating more variables 

in the equations does not necessarily improve the accuracy of 

the estimate significantly; UNDP [17]. UNDP, Feng et al. and 

Vashum KT et al. [17-19] found that incorporating the height 

did not significantly improve the models based on dbh alone 

[19-21]. 

These equations are species specific, particularly in the 

tropics. The general equation has been developed in modified 

form. It is more general in [18, 22, 23] and applicable in 

field. It is not possible to cut all the trees to estimate their 

biomass. Considering the mathematical terms, the models are 

developed by [21, 28, 9, 20]. The model developed by [23, 

29] to estimate above ground biomass has been used in 

present investigation. The literature revealed that this method 

is nondestructive and is most suitable method [18, 22-25]. 

The Brown [23] models require only dbh (cm) to predict 

total aboveground biomass (kg dry weight). However, the 

Chave [26] models require species-specific information on 

wood-specific gravity and provide a set of equations for each 

climatic zone that requires either dbh alone or both dbh and 

total tree height to predict total aboveground biomass. We 

used the wood densities of tropical tree species by [22, 27] 

when estimating aboveground biomass with the Alves [23] 

and Chave [26] generalized models. The generalized 

allometric models used in predicting total aboveground 

biomass (kg dry weight) of individual trees are listed below; 

Y = exp. {-2.4090 + 0.9522 ln (D
2
 x H x ρ)}                                                              (17) 

Brown Moist: 

Y = exp. {-2.134 + 2.530 × ln(D)}                                                                     (18) 
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Brown Wet: 

Y = 21.297 − 6.953 × D + 0.740 × D
2
                                                                   (19) 

Chave Moist: 

Y = ρ × exp. {(−1.499 + 2.148 × ln(D) + 0.207 × (ln(D))
 2
 − 0.0281 × (ln(D))

3
}                               (20) 

Chave Wet: 

Y = ρ × exp. {−1.239 + 1.980 × ln(D) + 0.207 × (ln(D))
 2
 − 0.0281 × (ln(D))

3
}                                (21) 

Where, 

Exp. {....} means the “raised to the power of {....}”. 

Y = is the above-ground biomass (kg), 

H = is the height of the trees (meter), 

D = is the diameter at breast height (cm), and 

ρ = is the wood density (gm/cm
3
). 

Wood densities were taken from the wood densities of 

tropical tree species [27]. 

2.2. Statistical Analyses 

The Levenberg–Marquardt algorithm method of nonlinear 

regression techniques in SPSS was used to estimate the 

coefficient for the power function model in predicting the 

total aboveground biomass for the 8 selected tree species 

using the untransformed data and power function of the form: 

Y = a X
b
                                 (22) 

Where; 

Y = the dependent variable (e.g., aboveground biomass; kg 

dry weight), 

X = the independent variable (dbh [cm]), and 

a and b = are respectively, the scaling coefficient (or 

allometric constant) and scaling exponent derived from the 

regression fit to the empirical data. 

Also, the coefficient of the combined allometric variable 

were estimated by the Levenberg–Marquardt algorithm 

method of nonlinear regression techniques in SPSS using the 

untransformed data and an exponential rise to a maximum 

function of the form: 

Y = exp. {-a+ b ln(Xi
2
 x Xj x c)}               (23) 

Y = exp. {-a + b × ln(Xi)}                   (24) 

Y = a − b × (Xi) + c × (Xi
2
)                 (25) 

Y = a × exp. {(−b+ c × ln (Xi) + d × (ln(Xi))
 2 − e × (ln(Xi))

3}   (26) 

Where; 

Y = the dependent variable (tree height (m)), 

Xi and Xj = the independent variable dbh [cm] and h [m] 

respectively, 

a, b, c, d and e = are respectively, the scaling coefficient 

and scaling exponent derived from the regression fit to the 

empirical data. 

The weighing was necessary to remove heteroscedasticity 

in biomass data and to develop a biomass regression model 

of higher precision. Theoretically, weight should be inversely 

proportional to the variance of the residuals [28]. So, the 

residual errors were computed via the non-linear regression 

techniques in SPSS and the test for normality and 

randomness was carried out. 

A number of statistics have been mentioned by [29] for 

evaluating goodness-of-fit and for use in comparing 

alternative biomass models. Among them the common ones 

are coefficient of determination (R
2
), standard error of 

estimate (Se), mean square error (MSE), coefficient of 

variation (CV), Akaike information criterion (AIC), Bayesian 

information criterion (BIC), mean absolute error (MAE), and 

residual standard error (RSE). 

Table 3. Statistics used to compare the models. 

S.N. Criteria Formula Remarks 

1 R2 

1 – 
dNN�NN 

RSS = residual sum of squares 

TSS = total sum of square 

RSS 
 	∑ Vf� − fgW#����   hii	=	∑ -f� − fj1#����  

2 MSE ∑ Vf� −	fgW# � − k⁄����   
n= number of sample size 

k= number of parameter 

3 MAE ∑ mf� − fgm �⁄����   f	n= is the estimated value of biomass by the model 

4 Se √piq MSE = mean square error 

5 CV -ir fj⁄ 1 fj is the arithmetic mean of observed biomass value 

6 RSE s∑ -t<?tg1��<u��?#   
RSE = Residual standard error 
Yi = observe value of biomass 

7 AIC � ln wNNx� y � 2k  SSE = Sum of square error 

8 BIC � ln wNNx� y � k ln-�1   

 

Goodness of fit for all regression equations was 

determined by examining P-values, the mean square of the 

error (MSE), the coefficient of determination (R
2
), the 

coefficient of variation (CV), and by plotting the residuals 



 American Journal of Biological and Environmental Statistics 2022; 8(3): 81-92  86 

 

(observed minus predicted values) against dbh. R
2
 was 

calculated as 1 minus the sum of squares of the residuals 

(SSR) divided by the total sum of squares of deviations from 

the overall mean (Corrected SST). The best-fit models were 

selected as having the highest R
2
; the lowest P-value, MSE, 

and CV; and the least amount of bias for under or over 

prediction of biomass across the entire range of sizes. 

2.3. Some Generalizations 

a) 35% of the green mass of a tree is water so 65% is solid 

dry mass; 

b) 50% of the dry mass of a tree is carbon; 

c) 20% of tree biomass is below ground level in roots so a 

multiplication factor of 120% is used; and 

d) To determine the equivalent amount of carbon dioxide, 

the carbon figure is multiplied by a factor of 3.67. 
The root system weighs about 20% as much as the above-

ground biomass of the tree. 

Therefore, to determine the total green weight of a tree, 

multiply the above-ground biomass of the tree by 120%. 

Amount of carbon per tree (kg) = Tree mass (kg of AGB) x 50% (carbon%) 

CO2 sequestered per tree (kg) = Tree mass (kg of AGB) x 65% (dry mass) x 50% (carbon%) x 3.67 x 120% 

Example: For a 12 year old spotted gum tree weighing 

600kg green, then the amount of CO2 sequestered by the 

entire tree = 600kg x 65% x 50% x 3.67 x 120% = 859 kg 

CO2 or 72 kg CO2 /yr. Finally if you would like to know the 

CO2 sequestered per tree per year you need to look at the 

CO2 and divide it by the age of the tree. 

CO2 sequestered per tree per year (kg) = X / age of the tree (yrs) 

3. Discussion of Results 

A forest inventory data was collected from the forestry 

research institute of Nigeria (FRIN). The data collected were 

given in Table 8 different tree species and the sample sizes of 

each tree were of different sizes. The individual trees 

measurement variable was in Height (H) and Diameter at 

Breast Height (DBH). Also, the common names and 

botanical names of the tree species were validated by 

literature analysis. 

Table 4. Secondary data of trees by species, diameter and height range. 

S.N. SPECIES DBH range (cm) Height range (m) Sample Size 

1 TERMINALIA SUPERBA 12 – 70 3.5 – 17.5 31 

2 BOMBAX RHODOGNAPHALON 5.2 – 40 3.5 – 15.5 56 

3 GMELINA ARBOREA 5 – 49.3 6 – 24 31 

4 MANSONIA ALTISSIMA 4.5 – 17.5 4.5 – 14 14 

5 PINUS CARIBAEA 10 – 22.8 9 – 20 31 

6 KHAYA SENEGALENSIS 23 – 62 10 – 24 31 

7 KHAYA GRANDIFOLIOLA 8.5 – 25 7.5 – 17 17 

8 SHOREA ROBUSTA 5.5 – 17 5.5 – 14 27 

Table 5. Scientific names, use and specific wood density of the [8] selected tree species. 

Botanical Name Common Name Family 
Known Distribution in 

Africa 
Uses 

Air-Dry Wood 

Density (g/cm3) 

TERMINALIA 

SUPERBA 
Afara (Combretaceae) 

Central African Rep., 

Drc 
Plywood, Interior Use 0.45 

BOMBAX 

RHODOGNAPHALON 

Cotton wood Fleece-Fruit, 

N'ghuza 
(Bombacaceae) Nigeria, Kenya 

Plywood, Blackboard, Boxes 

And Crates, Furniture 
0.36 

GMELINA ARBOREA Yamane (Verbenaceae) 

Ivory Cost, Nigeria, 

Cameroon, Uganda, 

South Africa 

Light Construction, Packaging, 

Furniture 
0.41 

MANSONIA 

ALTISSIMA 
Ofun (Sterculiaceae) 

Nigeria, Central Africa 

Republic 

High Class Joinery And 

Furniture 
0.50-0.58 

PINUS CARIBAEA Pitch Pine (Softwood) (Pinaceae) Tropical Africa General Utility Work 0.48 

KHAYA 

SENEGALENSIS 
Mahogany (Meliacea) 

Senegal, Egypt, South 

Africa 

Utility And Decorative Work, 

Indoors And Outdoors, From 

Boatbuilding To Furniture And 

Joinery. 

0.60 

KHAYA 

GRANDIFOLIOLA 

Broad Leaved Mahogany, 

Benin Mahogany 
(Meliacea) Guinea, Sudan, Uganda 

Joinery, High Quality Furniture, 

Plywood 
0.60 

SHOREA ROBUSTA    

All Types Of Joinery, Framing, 

Doors And Fittings. Also Used 

In Plywood 

0.72 

Source: Wikipedia (2014), Gisel Reyes. - Wood Densities of Tropical Tree Species. 
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Table 6. Scientific names, use and specific wood density of the [8] selected tree species. 

Botanical Name Common Name Family 
Known Distribution 

in Africa 
Uses 

Air-Dry Wood 

Density (g/cm3) 

TERMINALIA 

SUPERBA 
Afara (Combretaceae) 

Central African Rep., 

Drc 
Plywood, Interior Use 0.45 

BOMBAX 

RHODOGNAPHALON 

Cotton wood Fleece-

Fruit, N'ghuza 
(Bombacaceae) Nigeria, Kenya 

Plywood, Blackboard, Boxes 

And Crates, Furniture 
0.36 

GMELINA ARBOREA Yamane (Verbenaceae) 

Ivory Cost, Nigeria, 

Cameroon, Uganda, 

South Africa 

Light Construction, Packaging, 

Furniture 
0.41 

MANSONIA 

ALTISSIMA 
Ofun (Sterculiaceae) 

Nigeria, Central Africa 

Republic 

High Class Joinery And 

Furniture 
0.50-0.58 

PINUS CARIBAEA Pitch Pine (Softwood) (Pinaceae) Tropical Africa General Utility Work 0.48 

KHAYA 

SENEGALENSIS 
Mahogany (Meliacea) 

Senegal, Egypt, South 

Africa 

Utility And Decorative Work, 

Indoors And Outdoors, From 

Boatbuilding To Furniture And 

Joinery. 

0.60 

KHAYA 

GRANDIFOLIOLA 

Broad Leaved 

Mahogany, Benin 

Mahogany 

(Meliacea) 
Guinea, Sudan, 

Uganda 

Joinery, High Quality 

Furniture, Plywood 
0.60 

SHOREA ROBUSTA    

All Types Of Joinery, Framing, 

Doors And Fittings. Also Used 

In Plywood 

0.72 

Source: Wikipedia (2014), Gisel Reyes. - Wood Densities of Tropical Tree Species. 

Table 7. Descriptive data of showing the average diameter at breast height (DBH) and height. 

S.N SPECIES Average Height (m) Average DBH (cm) Sample Size 

1 BOMBAX R. 8.8 16.5 56 

2 GMELINA A. 14.0 30.5 31 

3 KHAYA G. 14.3 16.8 17 

4 KHAYA S. 15.3 40.0 31 

5 MANSONIA A. 10.7 11.7 14 

6 PINUS C. 14.8 15.8 31 

7 SHOREA R. 9.9 15.8 27 

8 TERMINALIA S. 12.8 40.8 31 

 TOTAL 100.7199452 188.047723 238 

 

Figure 2. Graph of descriptive analysis showing the average diameter at breast height (DBH) and height (H) including the sample sizes of the individual tree 

species. 

The chart in Figure 2 shows that the tree species 

‘‘Bombax’’ has the highest number of individual trees and 

the tree species ‘‘Terminalia Superba’’ is having the highest 

average DBH (cm) and lastly the tree species ‘‘Khaya 

Senegalensis’’ is having the highest average height H (m). 

Also, Table 6 shows that a total number of 238 trees was 

used in this study and the total average (H) and (DBH) was 

100.7199452, 188.047723 respectively. 
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Figure 3. Graph of descriptive analysis showing the mean, variance and standard deviation of the average observed AGB of the 8 selected tree species. 

The chart in Figure 3 shows the trend or movement of the 

mean, std. deviation and variance of each of the tree species. 

It also reflects the tree species having the best average value 

to be GMELINA ARBOREA with value 566.51787. In 

Figure 3 above, the tree species with the lowest variance was 

‘‘MANSONIA ALTISSIMA’’, ‘‘PINUS CARIBAEA’’ followed 

by ‘‘SHOREA ROBUSTA’’. Also from the figure above, 

‘‘TERMINALIA SUPERBA’’ and ‘‘KHAYA SENEGALENSIS’’ 

have a larger std. deviation reflecting that the values of their 

data set are far away from the mean, on average. 

The chart in Figure 4 measures the skewness of the 

observed AGB (i.e. how symmetric the values are) and also 

the kurtosis for the observed AGB. On the basis of skewness, 

all the 8 selected tree species were positively skewed i.e. they 

are skewed to the right but the best tree species with the 

highest skewness was BOMBAX RHODOGNAPHALON with 

value 3.232. Also, on the basis of kurtosis, the tree with a 

negative kurtosis were GMELINA ARBOREA, KHAYA 

GRANDIFOLIA and followed by PINUS CARIBEAN. This 

means that these 3 trees have a flatter distribution and the 

tree with the highest peaked kurtosis was BOMBAX 

RHODOGNAPHALON with value 14.091. 

 

Figure 4. Graph of descriptive analysis showing the skewness and kurtosis of the average observed AGB of the 8 selected tree species. 
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Table 8. Summary of the mean, std. deviation, variance, skewness, and kurtosis of the predicted AGB(s) for the eight tree species. 

Species 
Descriptive 

Model Mean Std. Deviation Variance Skewness Kurtosis 

BOMBAX 

ALVES 122.0446 137.672855 18953.815 3.313 14.742 

CHAVE (moist & wet) 121.84679 139.719087 19521.423 3.233 14.102 

BROWN (moist) 122.28321 139.326423 19411.852 3.28 14.483 

BROWN (wet) 121.85393 139.672856 19508.507 3.146 13.231 

BASUKI 122.28321 139.326423 19411.852 3.28 14.483 

GMELINA A. 

ALVES 564.88677 377.724729 142675.971 0.732 0.072 

CHAVE (moist & wet) 566.26516 400.133027 160106.44 0.85 -0.157 

BROWN (moist) 567.19516 398.985792 159189.662 0.873 -0.126 

BROWN (wet) 566.51806 399.977266 159981.814 0.836 -0.223 

BASUKI 567.19516 398.985792 159189.662 0.873 -0.126 

KHAYA G. 

ALVES 160.51353 105.552325 11141.293 0.255 -1.019 

CHAVE (moist & wet) 161.86 104.706868 10963.528 0.472 -0.568 

BROWN (moist) 162.32824 103.911826 10797.668 0.54 -0.437 

BROWN (wet) 161.84824 104.726439 10967.627 0.472 -0.554 

BASUKI 162.32824 103.911826 10797.668 0.54 -0.437 

KHAYA S. 

ALVES 1253.3171 733.030407 537333.577 1.261 0.872 

CHAVE (moist & wet) 1249.64806 755.034732 570077.447 1.158 0.821 

BROWN (moist) 1249.46 755.342504 570542.298 1.156 0.85 

BROWN (wet) 1249.62387 755.055098 570108.201 1.152 0.796 

BASUKI 1249.46 755.342504 570542.298 1.156 0.85 

MANISONIA 

ALVES 61.78969 40.227211 1618.229 0.529 -0.359 

CHAVE (moist & wet) 61.99947 40.416661 1633.506 0.638 0.122 

BROWN (moist) 62.00802 40.401075 1632.247 0.649 0.199 

BROWN (wet) 61.99456 40.422154 1633.951 0.623 0.071 

BASUKI 62.00802 40.401075 1632.247 0.649 0.199 

PINUS C. 

ALVES 115.0771 56.16937 3154.998 0.743 -0.003 

CHAVE (moist & wet) 115.10871 58.627561 3437.191 0.686 -0.251 

BROWN (moist) 115.07742 58.710921 3446.972 0.664 -0.329 

BROWN (wet) 115.11323 58.63294 3437.822 0.67 -0.343 

BASUKI 115.07742 58.710921 3446.972 0.664 -0.329 

SHOREA R. 

ALVES 51.45222 42.554855 1810.916 0.842 -0.019 

CHAVE (moist & wet) 52.31296 41.637296 1733.664 1.034 -0.4 

BROWN (moist) 52.51222 41.365926 1711.14 1.093 0.573 

BROWN (wet) 52.32148 41.625893 1732.715 1.032 0.373 

BASUKI 52.51222 41.365926 1711.14 1.093 0.573 

TERMINALIA S. 

ALVES 1174.47742 928.339327 861813.905 0.842 0.289 

CHAVE (moist & wet) 1191.95935 915.346281 837858.815 0.986 0.499 

BROWN (moist) 1195.09258 911.117451 830135.009 1.025 0.607 

BROWN (wet) 1192.14645 915.136943 837475.625 0.972 0.425 

BASUKI 1195.09258 911.117451 830135.009 1.025 0.607 

 

Table 8 gives a summary of the measure of central tendency 

and measure of shape carried out on the five predicted models 

of AGB for each of the tree species. It was seen that for 

BOMBAX RHODOGNAPHALON tree species, the mean of the 

five predicted models were unbiased as they gave similar mean 

value result and their variances and std. deviation gave a large 

value which signifies a large variation and deviation from the 

mean. Hence it was also observed that the five models were 

positively skewed to the right for the Bombax tree and the 

kurtosis value were very positively peaked. 

On the basis of the mean, it was observed that the five 

predicted models were unbiased all through for all the 8 

selected tree species but their std. deviation and variances 

were very large all through for all the 8 selected tree species. 

On the basis of the skewness and kurtosis, the five predicted 

models for the 8 selected tree species were moderately positively 

skewed and peaked to the right except the kurtosis of 

‘‘GMELINA ARBORE, KHAYA GRANDIFOLIA AND PINUS 

CARIBEAN’’ that was negatively peaked. The parameter 

estimate based on the 5 allometric models used in this study was 

computed. The Levenberg–Marquardt algorithm method of 

nonlinear regression techniques in SPSS was used on the forest 

inventory data given. The equations considered were Alves. 

(1997) Chave. (2005), Brown. (1989) and Basuki. The models 

and their various characteristics are shown in Table 9 while the 

estimated parameters are tabulated in the Table 10 below. 

Table 9. Summary of the allometric models and their various characteristics. 

Name of models Equations 

Alves (1977) Y = exp. {-a+ b ln(D2 x H x c)} 

Brown (moist) Y = exp. {-a + b × ln(D)} 

Brown (wet) Y = a − b × (D) + c × (D2) 
Chave (moist & 

wet) 

Y = a × exp. {(−b+ c × ln(D) + d × (ln(D)) 2 − e × 

(ln(D))3} 

Basuki Y = a D b 

Where, Exp. {....} means the “raised to the power of {....}”. 

Y = is the above ground biomass (kg), 

H = is the height of the trees (meter), 

D = is the diameter at breast height (cm), and 

a, b, c, d and e = are respectively, the scaling parameters. 
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The estimated parameters of Table 10 below are species 

specific and these were the parameters used by the allometric 

biomass models to compute the Predicted AGB for all the 8 

selected tree species. 

Table 10. Summary of the estimated parameter computed by the allometric model. 

Species Parameters ALVES CHAVE (moist & wet) BROWN (moist) BROWN (wet) BASUKI 

Estimates 

BOMBAX 

a 4.935 0.2668 2.456 45.822 0.086 

b 0.944 2.911 2.5 9.34 2.5 

c 9.623 4.02  0.738  

d  -0.428    

e  -0.04    

GMELINA A. 

a 7.302 0.01 1.899 39.141 0.15 

b 1.081 5.366 2.362 9.189 2.362 

c 19.929 8.99  0.779  

d  -1.8    

e  -0.162    

KHAYA G. 

a 10.293 0.63 1.852 13.118 0.157 

b 1.187 2.075 2.412 5.436 2.412 

c 88.106 2.354  0.783  

d  0.279    

e  0.061    

KHAYA S. 

a 2.979 2.18 2.068 414.055 0.126 

b 0.822 -10.177 2.466 34.805 2.466 

c 8.175 -7.93  1.316  

d  2.759    

e  0.243    

MANISONIA 

a 5.302 2.584 2.321 14.923 0.098 

b 0.983 0.7 2.561 5.477 2.561 

c 8.433 -0.813  0.75  

d  1.448    

e  0.204    

PINUS C. 

a 6.568 0.031 2.107 40.086 0.122 

b 1.066 4.71 2.453 2.453 2.453 

c 10.432 9.245  0.786  

d  -2.513    

e  -0.308    

SHOREA R. 

a 7.164 0.286 2.207 13.907 0.11 

b 1.007 3.71 2.574 5.6156 2.574 

c 46.466 5.457  0.835  

d  -0.974    

e  -0.105    

TERMINALIA S. 

a 6.62 0.013 1.967 145.294 0.14 

b 0.986 4.783 2.392 18.504 2.392 

c 39.116 7.595  0.967  

d  -1.248    

e  -0.099    

 

4. Conclusion and Recommendations 

In this study, the data covered a total number of 238 

individual trees with a total average (height) and (Dbh) of 

100.7199452 and 188.047723 respectively. The tree species 

with the highest number of trees (sample size) was BOMBAX 

RHODOGNAPHALON with 56 trees. Based on the average 

observed AGB, KHAYA SENEGALENSIS’ has the highest 

mean value of 1249.62323 followed by TERMINALIA 

SUPERBA with mean value 1192.14716. This is due to the 

fact that the two tree species are affected by an outlier (i.e. 

extremely high numbers in the data set). Also MANSONIA 

ALTISSIMA gives the best reflection on the closeness and 

variation of the data set around the mean by having the 

lowest std. deviation of 40.458744 and variance 1636.910. 

On the basis of skewness for the average observed AGB, 

all the 8 selected tree species were positively skewed i.e. they 

are skewed to the right but the best tree species with the 

highest skewness was BOMBAX RHODOGNAPHALON with 

value 3.232. Also on the basis of kurtosis for the average 

observed AGB, the trees with a negative kurtosis were 

GMELINA ARBOREA, KHAYA GRANDIFOLIA and 

followed by PINUS CARIBEAN. This means that these 3 

trees have a flatter distribution and the tree that has the 

highest peaked kurtosis was BOMBAX 
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RHODOGNAPHALON with value 14.091. 

From the computed estimates we gaves a summary of the 

measure of central tendency and measure of shape carried out 

on the five predicted models of AGB for each of the tree 

species. It was seen that for BOMBAX 

RHODOGNAPHALON tree species, the mean of the five 

predicted models were unbiased as they gave similar mean 

value result and their variances and std. deviation gave a 

large value which signifies a large variation and deviation 

from the mean. Hence it was also observed that the five 

models were positively skewed to the right for the Bombax 

tree and the kurtosis value were very positively peaked. 

On the basis of the mean, it was observed that the five 

predicted models were unbiased all through for all the 8 

selected tree species but their std. deviation and variances 

were very large all through for all the 8 selected tree species. 

On the basis of the skewness and kurtosis, the five predicted 

models for the 8 selected tree species were moderately 

positively skewed and peaked to the right except the kurtosis 

of ‘‘GMELINA ARBORE, KHAYA GRANDIFOLIA AND 

PINUS CARIBEAN’’ that was negatively peaked. 

Using the least squares parameter estimates derived from 

the Marquardt algorithm, the best-fit models were selected by 

examining the mean square of the error (MSE), the 

coefficient of determination (R
2
), the coefficient of variation 

(CV), standard error of estimate (Se), Akaike information 

criterion (AIC), Bayesian information criterion (BIC), mean 

absolute error (MAE), and residual standard error (RSE). The 

best-fit models were selected as having the highest R
2
; the 

lowest MSE, AIC, BIC, MAE and CV; and the RSE which 

reflects the least amount of error that best describe the model 

of prediction of the AGB of the selected tree species. 

For ‘‘BOMBAX RHODOGNAPHALON’’ the proposed 

best fit AGB models based on the (AIC, MSE, C.V, MAE 

and R
2
) selection criteria with lowest AIC value of 

132.7471211kg, lowest MSE value of 9.83kg, lowest C.V. 

value of 0.02572992kg, lowest MAE value of 

2.078678571kg and the highest R
2 

value of 0.999533253kg 

was the Chave (moist & wet) model. 

For ‘‘GMELINA ARBOREA’’ the proposed best fit AGB 

models based on the (AIC, BIC, MSE, C.V) selection criteria 

was the Brown 1989 (moist) model with the lowest AIC 

value of 179.3601702kg, lowest BIC value of 

186.5301062kg, lowest MSE value of 281.216kg, lowest C.V. 

value of 0.029601002kg and on the basis of MAE selection 

criteria, Brown (wet) model has the lowest MAE value of 

11.42812903kg. The Chave (moist & wet) model produced a 

higher R
2
 value with 0.998479052kg showing the goodness 

of fit for the data of the model. 

For ‘‘Khaya Senegalensis’’ tree species the proposed best 

fit AGB models was selected to be the Brown 1989 (wet) 

model based on the (AIC, BIC, MSE, C.V) selection criteria 

with lowest AIC value of 44.25975014 kg, lowest BIC value 

of 48.42581687kg, lowest MSE value of 10.629kg, lowest 

C.V. value of 0.020143551kg and on the basis of MAE and 

R
2 

selection criteria, Chave 2005 model has the lowest MAE 

value of 2.159058824kg and highest R
2
 value with 

0.999273698kg showing the goodness of fit for the data of 

the model. 

For ‘‘Terminalia Superba.’’ tree species the proposed best 

fit AGB models for the data was selected to be the Chave 

2005 (moist & wet) model based on the (AIC, BIC, MSE, 

C.V, and MAE) selection criteria with lowest AIC value of 

185.8828857kg, lowest BIC value of 193.0528217kg, lowest 

MSE value of 347.072kg, lowest C.V value of 

0.015627154kg and the lowest MAE value of 

13.86877419kg. Also the Chave 2005 (moist & wet) model 

produced an higher R
2
 value with 0.999640912kg showing 

the goodness of fit for the data of the model. 

In conclusion, the predicted allometric models presented in 

this study for quantifying the aboveground biomass of the 

eight selected tree species using the least squares parameter 

estimates derived from the Marquardt algorithm were 

discovered to be species-specific and should significantly 

improve capacity to accurately estimate biomass and carbon 

sequestration in Nigeria terrestrial ecosystems. In particular, 

the use of dbh as a sole predictor variable for all type of tree 

species will facilitate the use of inventory data to examine 

temporal and spatial variability in ecosystem structure and 

function. In addition, our parameter estimate can be used 

with the existing developed allometric biomass models in 

predicting the aboveground biomass of trees and wood 

formations. We recommend that AIC, BIC, MSE, MAE and 

RSE model criteria should be computed for any predicted 

AGB of so as to determine how appropriate the allometric 

models are for the given data of the tree species. However, 

care should be taken in the way human activities destroys, 

burn and cut down trees in Nigeria. 
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