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Abstract: Information on growing stock is important for understanding health assessment, environmental analysis, carbon 
storage estimation, and economic analysis of urban forest. The stand volume estimation enables the calculation of ecosystemic 
services value and growth stock of urban forests. However, most of volume models fitted for multiple species in tropical forests 
may not be suitable for urban trees. This study was conducted to develop generic volume models for urban trees in 
Abomey-Calavi at the southern Benin. A total of 1608 trees belonging to 80 plant species were measured for their diameter at 
breast height (DBH), stem height (h) and stem volume using non-destructive sampling methods. Using a nonlinear procedure, six 
volume models were constructed. Cross validation and Fit statistics like standard error of estimate (SEE), relative absolute error 
(RAE), root mean square error (RMSE), fit index (FI), Akaike information criterion (AIC) and Willmott’s agreement index (dw) 
were used to evaluate the efficiency and stability of different models. The six generic volume models developed in this study 
included both diameter and height. These models exhibited an absence of multicollinearity, with normal and homoscedastic 
residuals. Furthermore, they show high efficiency (IF > 0.997) and reduce of prediction errors (RMSE: 0.05388–0.06629 m3; 
RAE: 0.05186–0.06952), which ensuring stability in the estimates. However, the Model II was the best for predicting the stem 
volume of urban tree according to evaluation statistics and rank analysis. The models developed can provide stem volumes 
prediction with accurate estimations. Though, stem heights should be systematically measured. These models can contribute to 
assess the productivity of urban forests in order to pursue their sustainable management and planning. 
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1. Introduction 

The cities are facing challenges in preserving and 
sustaining urban forest. Rapid population growth and urban 
sprawling tend to eclipse the importance of plant species in 
the South Sahara cities’ development plan. These 
phenomenon deeply modified the urban ecosystem, which 
cannot satisfy the well-being of city dwellers. 

Urban greening needs better data for describing its 
structure and functions [1-3]. An inventory is an important 
step in understanding the composition, structure and growing 
stock of urban forest. Information on growing stock is 
essential for understanding health assessment, environmental 

analysis, carbon storage estimation, and economic analysis of 
urban forest [4, 5]. However, much more information is 
needed to begin managing the urban forest in a sustainable 
way, and to guide forest managers. Quantitative information 
about trees, area coverage and distribution are required to 
evaluate the function of urban forest in supporting the 
resilience of urban ecosystem [3]. Volume equations are 
among other commonly used for this purpose [6, 7]. 
According to Avery and Burkhart [8], volume equations are 
used to estimate average content of standing trees of various 
sizes and species. The development of effective and accurate 
volume model is essential for urban forest managers and 
planners. Modeling is good tools for decision making 
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regarding the complexity of urban ecosystem. 
Volume models are various mathematical statements 

applied to quantify tree and stand volume for forest 
management planning [9, 10]. These models are often used to 
estimate the volumes of other standing trees which cannot be 
over emphasized. Therefore, the prediction of volume models 
are required to be very accurate, flexible and valid [11]. 
Volume is easily estimated from direct measurable tree 
dimensions [12]. Trees diameter, height and forms are main 
variable in stand volume assessment [13]. The range, extent 
and availability of these variable are important for volume 
estimate reliability [12, 14]. 

Recent research works use allometric equations 
constructed from easily measurable tree parameters (diameter, 
height and forms) to estimate individual tree and stand 
volume [12, 15, 16]. Thus, generalized allometric models are 
fitted for multiple species in tropical forests, and they are 
usually employed to evaluate timber volume in various 
countries [17, 18]. Although, these models give out useful 
volume estimation insights into most or wider forest 
management applications [10], they may not be suitable for 
urban trees [19-21]. Indeed, there are big differences between 
growth environment in urban and natural forest [5]. Trees in 
urban areas allocated proportionately more resources to stem 
and canopy growth rather than height growth [22]. Which 
gave them more different conformations than forest trees 
forms [21]. It is then evident to develop new local volume 
models for urban trees [23]. 

In Benin, tree volume models are generally constructed for 
plantation forest [24] and natural forest species [25-27]. On 
this fact, the development of volume models for urban forest 
become an imperative. Using data from field inventory (tree 
height, diameter and form), timber volume has been estimated 
with non-destructive felling methods. Current and accurate 
stand volume estimation enables the calculation of 
ecosystemic services value and growth stock of urban forest. It 
make managers understanding of forest productivity and give a 
basis for planning sustainable forest management [28]. The 
aim of this research is to develop generic volume allometric 
models for urban trees in order to apprehend the regulation 
function of urban flora notably its productivity and potential of 
carbon storage for the cities in southern Benin. 

2. Material and Methods 

2.1. Study Area 

Abomey-Calavi city (6°20’–6°35’30’’N, 2°13’–2°24’30’’E) 
is located in the Guineo-Congolese zone of southern Benin. 
The climate is sub-tropical with four distinct seasons 
throughout the year (Two wet and two dry seasons). The site is 
characterized by a bimodal precipitation distribution. March 
and July receive higher rainfall, while September–November 
receive less rainfall. The mean annual rainfall and temperature 
recorded were 1277.67mm (1982–2018) and 27.59°C (1982–
2018), respectively. The Soils are mainly ferralitic on loose 
clayey sediment of continental terminal, on sandstone and 

colluvial materials. These climatic and pedological conditions 
are favorable for plant species establishment in the city. The 
urban area of Abomey-Calavi district covers 257.11 km² 
presently. The population density is 1443.30 persons per km2 
with an average annual growth rate of 4.97% [29]. This rapid 
population growth rate is a challenges in preserving and 
sustaining urban forest. 

2.2. Data Collection 

The data was collected using stratified random sampling 
approach [30, 31]. The inventory of urban trees was done in 
square sample plots of one-hectare size to assess stem 
volume. One hundred and sixteen (116) plots were 
prospected in whole stand. The free version of Mobil 
Topographer 9.3.2 and QField 1.5.3 were utilized for location 
and moving in the sample plots area, respectively. 

A non-destructive method was used to measure all living 
tree species during the inventory process [24, 32]. It is an 
alternative method for obtaining tree volume data without 
cutting down or cause physical damage to the trees [33, 34]. 
In each plot, the following variables were measured on the 
trees: (1) diameter at breast height outside bark (dbh≥ 5 cm); 
(2) stem height (height measured at the ground level to the 
crown base). The diameter at breast height was measured at 
30 cm above the buttresses, if present [35]. All trees were 
also counted and identified at species level. The 
measurements of diameter were made using diameter tape 
whereas those of the heights were done using an optical 
clinometer (Brunton Sum 360LA). 

After the inventory process, trees for consecutive diameter 
measured along the stem, were selected proportionally to 
species frequency in a plot. However, hollow trees and trees 
with a broken top were not taken into account [24, 27]. A 
total of 1608 trees belonging to 80 plant species were 
considered to quantifying the stem volume (Table 1). Three 
segments were considered during the measurement of 
diameter along the bole (base segment, intermediate and 
upper). At the base segment of the tree (from ground level to 
0.3 m), the first three measurements were of the constant 
length of 0.1 m. In the following segment (0.3–1.3 m height), 
five measurements were made at 0.20 m interval. The upper 
section started at 1.30 m above the ground, here, the diameter 
outside bark was measured at 1 m interval up to the 
maximum height measurable using a ladder and climbing 
techniques [32]. These measurements were considered to 
describe tree profile in the lower section in which taper 
changes so rapidly low on the bole [36]. 

According to the global form of trees inventoried, the 
volume of each tree was estimated with three equations. The 
volume of bottom section was obtained using the formula for 
truncated Neloid [37], and then Smalian’s formula was used 
to compute the volume to the following section (0.3–1.3 m 
height) of the tree. For the top stem section (up to 1.3 m 
height), truncated cone formula was used to calculate its 
volume [16, 25]. The volume of the different sections were 
summed up to calculate the stem volume [38, 39]. 
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Table 1. Descriptive statistics of urban trees observed data. 

Statistics DBH (cm) Height (m) Volume (m3) 

Model fitting dataset (80% of observed data) 
No. Of observation 1286 1286 1286 
Minimum (Min) 6.3636 1.300 0.0266 
Maximum (Max) 222.7272 10.8012 22.1585 
Mean 27.7359 3.6241 0.4964 
Standard-Deviation 21.5612 1.9353 1.2125 
Model validation dataset (20% of observed data) 
No. Of observation 322 322 322 
Minimum (Min) 6.3636 1.3 0,0276 
Maximum (Max) 197,2727 8,3846 16,4342 
Mean 28,3061 3,5820 0,4999 
Standard-Deviation 21,5666 1,8789 1,2048 

2.3. Data Analysis 

To fit and test the possibility of a generic volume equation 
for the whole city, seventy-four models (8 single-predictor 
models and 66 two-predictor models) had been constituted 
from several models commonly published in forestry 
literatures [5, 6, 38, 40-43]. These models were fitted in their 
nonlinear form to predict stem volume [43-45]. Only, those 
which were successfully satisfied the assumptions underlying 
nonlinear regression models were considered in this paper 
(Table 2). 

Table 2. Models for stem volume predictions of urban trees. 

Models Volume model 

I ( )= + +31
0 2 i

βββ βV * DBH * DBH * h  ε  

II ( )= + +31 4
0 2 i

β βββ βV * DBH * DBH * h  ε  

III ( )= + +3
0 1 2 i

β2
β β βV * DBH * DBH + * DBH * h  ε  

IV ( )= +  + + +0 1 2 3 i
2 2

β β β βV * DBH * h  * DBH * h  ε  

V ( )= + + +3
0 1 2 i

β
β β βV * DBH * h * DBH * h  ε  

VI ( )= +  + + +4
0 1 2 3 i

β2 2
β β β βV * DBH * h  * DBH * h  ε  

V : over-bark stem volume (in m3), DBH: diameter at breast height (in cm), h: 
stem height (in m), εi: random error, and β0, β1, β2, β3 and β4 are parameters to 
be estimated from the data. 

Exploratory data analysis was carried out to identify the 
dispersion and distribution of the variable used for modeling. 
The presence of heteroscedasticity was checked by visual 
inspection of the standardized residuals plots and tested using 
White-Pagan’s general test [44] at α=0.05. The 
multicollinearity was assessed in the model by condition 
number (CN). CN is calculated as the square root of the ratio 
between the maximum and minimum eigenvalue of the 
correlation matrix [46]. The collinearity associated problems 

was considered when CN value was greater than 1000  
[47]. 

To account the heteroscedasticity in the model, the 
nonlinear generalized least squares function (gnls) in the R 
package [48] was used with the argument 
“weights=varPower()”. This argument was added to the model 
to describe the within group heteroscedasticity. Which 

allowed to give an unbiased estimates of the model parameters. 
When the gnls function had not satisfied model assumption, 
nonlinear boxcox transformation was done through 
“boxcox.nls()” in the R package nlrwr. To assess whether or 
not the residuals are normally distributed, the Shapiro-Wilk’s 
normality test was used at 0.05 level significance [49]. The 
significance of regression coefficients (βi) was tested against 
zero using t-test (α=0.05). 

2.4. Model Evaluation and Validation 

To assess the performance of the models, five 
goodness-of-fit statistics were computed using the 
formulation presented by [49-51] (Table 3): standard error of 
estimate (SEE), relative absolute Error (RAE), root mean 
square error (RMSE), fit index (FI) and Akaike information 
criterion (AIC). 

Table 3. Parameters used to assess the performance of volume models. 

Evaluation statistics Equations 

Standard error of estimate 
(SEE) ( )2

1
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n

i i

i
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= −
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(RMSE) ( )2
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Akaike’s Information 
Criterion 

( ) ( )2log L   2 p  1− + +  

iV : over-bark stem volume of ith tree, V : mean over-bark stem volume of the 

trees, ˆ
iV : predicted over-bark stem volume of ith tree, n: number of 

observations, L: maximum likelihood of the model [49], p: parameters of the 
model 

The best model was identified using rank analysis [46, 52]. 
The specific and relative position of each model were gotten 
by the method proposed by Poudel and Cao [53]. The relative 
rank of the model i was defined in Equation (1). In this ranking 
system, 1 and m indicate the best and the worst model 
respectively. It was applied to SEE, RAE, RMSE, FI and AIC 
statistics for stem volume to calculate average rank of each 
model. 
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( ) ( )min

max min

1
1

− −
= +

−
i

i

m S S
R

S S
            (1) 

Where Ri is the relative rank of model i (i=1, 2, 3,…, m), Si 
is the goodness-of-fit statistics produced by model i, Smin is the 
minimum value of Si, and Smax is the maximum value of Si. 

The graphical analysis of residuals for the selected model 
was made using a scatterplots and a quantile-quantile plots at 
95% probability. A scatterplots of standardized residuals and 
fitted values allowed to explore how better the model 
estimated the observed data. However, quantile-quantile plots 
was used to compare residuals to theoretical quartiles. 
Cross-validation approach was used as an additional criterion 
for validating the selected model [32, 53, 54]. All field data 
were randomly split into two subsets (calibrating set and 
validating set). The calibrating set comprised 80% of data 
(1286 trees). It was used to construct the models. The 
validating set comprised 20% of tree data (322 trees). This set 
was used to test the models [39, 55, 56]. The train dataset was 
used for model estimation at 1,000 times. For each iteration, 
RMSE, RAE, FI and AIC were computed. At the end of 
process, the mean of each parameter was reported with 95% 
confidence interval. To identify an eventual prediction bias for 
the best model, the relation between observed and predicted 
stem volumes was graphically represented on the original 
scale [32]. Moreover, agreement index (dw) of Willmott [57] 

was also calculated to verify agreement among observed and 
predicted values for the selected models [50]. This index is 
ranged from 0 to 1, where the value close to 1 indicates perfect 
agreement between pairs of values [32]. The measured and 
predicted volumes were also compered using a paired student 
t-test at 5% of significance level [43]. 

All computations and analyzes were performed using the 
statistical software R [48]. 

3. Results 

3.1. Development of Volumetric Models 

The six adjusted volumetric models included tree diameter, 
stem height and interaction terms as predictor variables. All of 
them presented significant regression coefficients at 1% level 
(Table 4). The standard errors for each of the coefficients vary 
from model to model. The lowest standard error was noticed 
for β3 in Model IV whereas the maximum standard error was 
for β1 in Model I. The values of condition number (CN: 3.238 

- 17.195) of these models were less than 1000 . The residuals 
of each model were normally distributed (Shapiro-Wilk’s 
normality test: p-value> 0.001) without heteroscedasticity 
(White-Pagan’s general test: p-value> 0.001). 

Table 4. Statistical parameters of stem volumes fitted models. Standard error of estimated parameters in bracket; level of significance: *** (p-value<0.001). 

Models ˆ
0β  ˆ

1β  ˆ
2β  ˆ

3β  ˆ
4β  

I 

ˆˆˆ ˆ  
 
 

= + 31
0 2

βββ βV * DBH * DBH * h  

3.090717e-3*** 
(8.036395e-5) 

1.18101*** 
(1.064057e-2) 

2.683241e-5*** 
(1.600893e-6) 

2.18684*** 
(1.548498e-2) 

- 

II 

ˆ ˆˆˆ ˆ  
 
 

= + 31 4
0 2

β βββ βV * DBH * DBH * h  

3.333772e-3*** 
(1.197466e-4) 

1.13612*** 
(2.057014e-2) 

3.297694e-5*** 
(3.873651e-6) 

2.173432*** 
(1.571985e-2) 

0.9307291*** 
(2.894055e-2) 

III 

ˆˆ ˆ ˆ  
 
 

= + 3
0 1 2

β2
β β βV * DBH * DBH + * DBH * h  

4.054806e-3*** 
(4.243279e-5) 

5.293607e-5*** 
(3.176334e-6) 

3.406283e-5*** 
(1.514866e-6) 

2.117552*** 
(1.187489e-2) 

- 

IV 
( )ˆ ˆ ˆ ˆ= +  + + 0 1 2 3

2 2
β β β βV * DBH * h  * DBH * h  

0.02945628*** 
(1.1237e-3) 

1.514673e-4*** 
(3.61876e-6) 

-1.204299e-3*** 
(4.681679e-4) 

5.307427e-5*** 
(1.029161e-6) 

- 

V 

ˆˆ ˆ ˆ  
 
 

= + + 3
0 1 2

β
β β βV * DBH * h * DBH * h  

5.096067e-3*** 
(5.024491e-5) 

-2.950904e-3*** 
(2.324569e-4) 

3.917498e-5*** 
(1.668212e-6) 

2.1192*** 
(1.102899e-2) 

- 

VI 

ˆˆ ˆ ˆ ˆ  
 
 

= +  + + 4
0 1 2 3

β2 2
β β β βV * DBH * h  * DBH * h  

0.0302293*** 
(1.210197e-3) 

1.35515e-4*** 
(1.32413e-5) 

-1.518597e-3*** 
(4.987545e-4) 

6.350504e-5*** 
(8.71704e-6) 

0.929278*** 
(5.38234e-2) 

β̂. : estimates value of regression coefficient 

3.2. Models Accuracy and Reliability 

The performance of the models was evaluated using five fit 

statistics (Table 5). Among the different models, the SEE was 
ranged from 0.05398 to 0.06639 with a difference of 0.0124 
m3. The Model II having the best value and the Model III the 
poorest (Table 5). Concerning the RMSE distribution, Model 
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III had the highest value (RMSE=0.06629 m3), whereas the 
Model II had the lowest (RMSE=0.05388 m3). The difference 
in RMSE among models was 0.01241 m3. The Models II and I 
allowed more accurate prediction for stem volume than the 
others. The value of fit index (IF: 0.9970–0.9980) revealed 
that the six constructed models were quasi perfect. For this 
statistic, Model II (IF=0.9980) and Model I (IF=0.9979) 
performed well with a difference of 1‰ on the others. They 
were followed by the Models V and IV. For the Models VI and 
III, the IF values were around 0.9970. The Relative Absolute 
Error were closer to zero (RAE: 0.0519–0.0695). The 

difference in RAE among models was 0.01766, which 
indicated a better performance of the models. A lower value 
was obtained in Model II while the higher value was noted in 
Model VI. Regarding the AIC value, Model II presented better 
performance with the lowest AIC (-3851.324) while the 
Model III exhibited the highest value (AIC=-3320.347; Table 
5). During the model ranking process, higher values of the 
average rank of the five fit statistics is an indication of a poor 
model. Based on a result, the best model was found to be 
Model II (Av.Rank=1), whereas Model VI (Av.Rank=5.932) 
was the poorest (Table 5). 

Table 5. The indices of goodness-of-fit of six volumetric models: SEE: Standard error of estimate, RMSE: Root Mean Square Error, RAE: Relative Absolute Error, 

FI: Fit index, AIC: Akaike’s Information Criterion. The best model is bolded. 

Models SEE RMSE RAE FI AIC Av.Rank CN 

I 0.05559 0.05551 0.05255 0.99790 -3776.824 1.402 3.357 
II 0.05398 0.05388 0.05186 0.99802 -3851.324 1.000 3.686 
III 0.06639 0.06629 0.05597 0.99701 -3320.347 5.041 17.195 
IV 0.06404 0.06394 0.06782 0.99722 -3412.989 4.647 12.923 
V 0.06132 0.06123 0.05660 0.99745 -3524.531 3.039 3.238 
VI 0.06633 0.06620 0.06952 0.99702 -3321.585 5.932 13.715 

 

The graphic presentation of residuals plots against 
predicted stem volume indicated no identifiable trend of 
scatter-plots (Figure 1a). There were also no heteroscedacity 
problems (Figure 1b). The selected models presented uniform 
residual distributions over the range of predicted volume. 
These residuals were adequate for theoretical normal 

distribution (Figure 1c). The standardized residuals values 
higher than -3 and 3 indicated sight presence of discrepant 
observations. However, these observations had a small 
contribution to the estimates and, represented real values of 
the sampled populations. Furthermore, they were kept in the 
analysis process. 

 

Figure 1. Scatterplots of residuals against fitted values (a), scatterplots of standardized residuals against fitted values (b), and normal Q-Q plot (c) for the 

best-fitted stem volume model. 

The cross validation process had provided satisfactory 
statistical results. The RMSE was ranged from 0.05221 m3 
(Model II) to 0.06586 m3 (Model VI). It was 0.48% to 3.20% 
lower than the initial values of table 6. The value of RAE 
varied from 0.05286 (Model II) to 0.07172 (Model VI). The fit 
index exhibited a value higher than 0.995 for all models, 
indicating a good prediction of stem volume. The six models 
were perfect to predict accurately the stem volume, but 
Models II and I performed better. The agreement index 
showed the values closest to 1 (dw: 0.9992–0.9995). So, 
observed and predicted stem volume were very similar 
through the models (Table 6). The scatterplot of observed and 

predicted stem volume for the best model revealed a good 
distribution of point around the reference line (Figure 2). 

Table 6. Cross validation fit statistics of six volumetric models. The best model 

is bolded. 

Models RMSE RAE FI AIC dw 

I 0.05488 0.05364 0.99656 -762.298 0.9994 

II 0.05221 0.05286 0.99681 -785.903 0.9995 

III 0.06416 0.05706 0.99571 -685.351 0.9993 

IV 0.06330 0.07021 0.99532 -685.249 0.9993 

V 0.06093 0.05763 0.99589 -706.170 0.9993 

VI 0.06586 0.07172 0.99511 -662.678 0.9992 
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The mean difference between observed and predicted stem 
volume was ranged from -0.01929 m3 (Model VI) to 0.00594 
m3 (Model V). It was very close to zero for Model II. The 
standard error of mean difference was slightly higher for the 
Models IV, V and VI than the others. There are lower range 
between min and max predicted value among models (Table 

7). However, the range of predicted values performed by 
Model II was the closest to the initial ones in table 1. The 
comparison of these observed and predicted volumes using a 
paired student t-test (α=0.05) indicated that the difference 
between the two volumes was non-significant (Table 7). 

Table 7. Results of paired t-test for estimated and predicted stem volume. Standard error of mean difference in bracket; Min and Max: Minimum and maximum of 

predicted stem volume. 

Models Mean t-value P-value Min Max 

I -0.00342 (0.0410) -0.0382 0.9695ns 0.02949 14.81107 
II 0.00041 (0.0513) 0.0039 0.9969ns 0.02964 16.50293 

III 0.00354 (0.0479) 0.0339 0.9729ns 0.03018 16.9771 
IV -0.01843 (0.0607) -0.1759 0.8604ns 0.03682 17.83857 
V 0.00594 (0.0744) 0.0557 0.9556ns 0.03097 14.59825 
VI -0.01929 (0.0767) -0.1637 0.8700ns 0.03702 16.9371 

ns: non significant (p-value>0.05) 

 

Figure 2. Scatterplots of observed against predicted tree volume for 

best-fitted stem volume model. The finest line corresponding to a ratio of 1:1 

(reference line). 

4. Discussion 

The volume models of this study are new for the urban 
forests of Benin. These models can provide an accurate 
estimates of stem volume of these forests in southern Benin. 
Environmental heterogeneity of the city have an influence on 
the diversity, composition and structure of urban flora. In this 
sense, providing the regression models capable to determine 
forest production based on estimated timber volume is 
fundamental. [54, 58]. The six models selected from de 74 
ones initially established were double-entry models. They 
integrated systematically interaction terms as predictor 
variable, and presented the best statistical performance for 
predicting stem volume. This highlight the main role of 
interaction terms in stem volume estimation. This quality was 

due to the relative homogeneity of stem volume and its 
allometric attributes which, were easily described by tree 
diameter and height [32, 59]. This pint of view was reinforced 
by the most accurate models of tree volume cited in the forest 
literature [4, 12, 23, 34, 44, 60, 61]. The models of 
Schumacher-Hall and Spurr which are based on the interaction 
terms, were widely used to predict most accurately tree 
volume prediction in tropical and subtropical regions [12, 24, 
27, 32, 54] Although, the use of height to estimate volume and 
biomass in tropical forests engender a controversy due to 
measurement difficulties in dense forests [59, 62], the 
situation in urban area is different. In urban area, 
environmental heterogeneity, forests management practices, 
presence of several isolate and large trees and, a wide range of 
heights for the same diameter range increased the variability 
of allometric relationships [60, 63, 64]. Therefore, the use of 
height became necessary for accurate prediction of tree 
volume. At city scale, height measurement can be easier by 
training. Moreover, the production of an adequate local 
allometric relationship could be an alternative way to estimate 
tree height [62]. Tree height measurement can also be 
improved by using LIDAR sensor fine-scale data [65, 66]. The 
importance of diameter-height relationship in the accurate 
estimation of tree volume [32, 54] and biomass [24, 63, 67, 68] 
oblige to think about the development of web or mobile 
applications capable to facilitate the measurement of height 
with more accuracy. 

Regarding the fit statistics, the generic volume models (I to 
VI) developed in this study show high efficiency (IF > 0.997) 
and stability (lower standard error for estimates). The 
prediction errors (RMSE, RAE) are much reduced which 
ensuring better estimates. This result is globally comparable to 
other studies [32, 44, 54-61]. These models have done a high 
explications of observed data and return the most accurate 
estimates. However, the Model II is considered as the best for 
predicting the stem volume of urban tree based on the 
evaluation statistics and rank analysis. Our results confirm 
that stem heights should be systematically measured in order 
to improve stem volume estimation [61]. The quality of the 
models validate the suitability of nonlinear models for volume 
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estimation in tropical ecosystem [18]. 
Cross validation process reveal a better predictive 

capabilities of the stem volume models developed in this study. 
The mean difference between observed and predicted stem 
volume for Model II is very close to zero, which show the 
quality of this model for predicting accurately the stem 
volume of urban tree. 

5. Conclusions 

Base on the regression methods assumptions, the stem 
volume models constructed in this study were validated. The 
six generics models provided an accurate estimates with valid 
confidence intervals. An interaction terms are key predictor in 
the models. Which, highlight the importance of height for 
predicting stem volume (with bark) in urban forest. 
Depending on fit statistics and cross validation process results, 
the models are efficiency and performed well for predicting 
stem volume. However, the rank analysis indicated Model II 
as the best. Therefore, applying this volume model can help to 
understand accurately urban forest growing stock. These 
models represented a valuable contribution to forest managers. 
They can be used to develop decision support tools to sustain 
urban forestry decision making. Further researches should 
elucidate the influence of stem form in model accuracy and, 
the prediction performance of models cross city strata and 
phyto-districts. It would be worthwhile to compare these 
volume models to species-specific ones at a city scale. 
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