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Abstract: Nowadays, there is evidence that hydrological processes exhibit long-range dependence (LRD), i.e. power-type 

decay of autocorrelation also known as the Hurst phenomenon. This means that the stationarity assumption of hydrological 

time series, which has been widely used in the past, cannot be further advocated. The objective of this paper is to detect the 

long-range dependence in rainfall in Oueme River basin and to understand how the Hurst coefficient influences the river 

discharge dynamics. To this end, this paper formulated the Hurst phenomenon that characterized hydrological and other 

geophysical time series. Then, the fractional generalization of the triple relationship between the fractional Brownian motion, 

the corresponding stochastic differential equations (SDE) describing the river basin and the deterministic fractional Fokker-

Planck equations (FPE) is analysed for the modelling of the river discharge dynamics. This fractional FPE provides an 

essential tool for the study of the dynamics of the river discharge in Oueme River basin. 

Keywords: Hurst Coefficient, Fractional Brownian Motion, Stochastic Differential Equations,  

Fractional Fokker-Planck Equations, Probability Distribution Function 

 

1. Introduction 

The last decades have been marked by rapid change of 

climate on a global scale [1-3]. As a consequence, the 

uncertainty or unpredictability becomes greater when moving 

from climatic variables, such as temperature to hydrological 

variables, such as rainfall and runoff and from the coarse 

spatial scale of hydrological models [1]. In parallel, the 

importance of these hydrological variables is greater when 

dealing with engineering and management issues, such as 

design and operation of hydro systems. It is therefore 

important to deal with the uncertainty issue such as 

uncertainty due to the random character of natural processes 

governing water supply (rainfall, streamflow, etc.). It should 

be acknowledged that much of water resources management 

takes place in an environment in which the basic input 

information, i.e., rainfall, is not known accurately [4]. In 

other words, water resources managers and modellers are 

bound to deal with uncertainty, mostly due to insufficient 

data and imperfect knowledge. Good planning and 

management demand a strong theoretical basis and the 

proper application of fundamental notions. Traditionally, 

hydrological statistics, the branch of hydrology that deals 

with uncertainty, has been based on the implicit assumption 

of a stable climate. Indeed, pure randomness, where different 

variables are identically distributed and independent, is 

sometimes a useful model. However, this disagrees with the 

fact that climate has changed irregularly on all time scales 

throughout the history of the Earth, as noted by [1]. The key 

question that arises is how best to include these 

hydroclimatic fluctuations in water planning and 

management. 

Nowadays, there is evidence that hydrological processes 

exhibit long-range dependence (LRD), i.e. power-type decay 

of autocorrelation also known as the Hurst phenomenon [5]. 
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Indeed, [6] tried to model the river levels over the year as a 

Brownian motion process. He discovered to his surprise that 

the river level is not totally random. Instead the process 

increments have some vivid correlation, which indicates that 

the natural phenomena of river level fluctuation follows a 

biased random walk or Fractional Brownian motion (FBM) 

path more than that of a regular Brownian motion. 

Several authors used the rescaled range analysis (R/S), the 

modified rescaled range (R/S), the aggregated variance 

method and the aggregated standard deviation (ASD) method 

for the hydrological studies [7-9]. They concluded that 

several other natural processes including lake levels, rainfall, 

temperature, sunspot counts, and tree rings, etc exhibit long 

memory. In statistical terms, the presence in a time series of 

long-term fluctuations implies dramatically increased 

uncertainty, especially on long time scales, in comparison to 

classical statistics. This is easy to understand as the observed 

record could be a small portion of a longer cycle whose 

characteristics might be difficult to infer on the basis of the 

available observations. In this respect, in processes 

characterized by long-range dependence, the results of the 

statistical analysis may be difficult to decipher. As a 

consequence, the application of statistical tools to climatic 

time series should be carefully revisited to locate points that 

may produce misleading or incorrect results. 

The objective of this paper is to detect the long-range 

dependence in rainfall in Oueme River basin and to 

understand how the Hurst coefficient influences the river 

discharge dynamics. To this end, the Hurst phenomenon, 

which characterized hydrological and other geophysical 

time series, is formulated. Moreover, the FBM, which is the 

most classical process commonly used for a system with 

long-range dependence, is considered as an approximation 

of rainfall fluctuation in Oueme River basin. The FBM is 

useful in modelling anomalous diffusive phenomena and is 

also a universal model that under some restrictions exhibits 

super or sub diffusive behavior. Today, the relationship 

between the stochastic differential equation (SDE) driven 

by Brownian motion and their associated Fokker-Planck 

equation (FPE) is well understood [10-11]. The present 

paper addresses the fractional generalization of this triple 

relationship between the driving process (i.e., the FBM), 

the corresponding SDE describing the river basin and the 

deterministic fractional FPE. Fractional FPE have been 

used to model the dynamics of complex processes in many 

fields, including physics, hydrology. Complexity includes 

phenomena such as weak or strong correlations, different 

sub or super-diffusive modes, memory and jump effect. 

Therefore, fractional FPE can be an essential tool for the 

study of the dynamics of river discharge. 

 

Figure 1. Study area and the hydrometeorological stations used. 
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2. Study Location and Location 

The Ouémé catchment at the Bonou outlet extends to 49, 

256 km
2
 of surface area and makes up of roughly 43% of 

the Benin country [12] between 6.8 and 10.2 °N of latitude. 

About 89% of the catchment is located in Benin, about 10% 

in Nigeria and about 1% in Togo (Figure 1). On a global 

view, Benin extends from the Niger River to the Atlantic 

Ocean, with a relatively flat terrain. Benin lies entirely in 

the tropical Sub-Saharan region with a wet and dry climate. 

A semi-arid environment is met northwards, made up of 

savannahs and small mountains (about 600 m), while the 

south of the country consists of a low coastal plain with 

marshlands, lakes and lagoons. Meteorological data (daily 

rainfall data and daily potential evapotranspiration, 

calculated by the Penman formula) and daily discharge data 

were provided respectively by the Benin Meteorological 

Department, ASCENA (Agency for Air Navigation Safety 

in Africa and Madagascar) and the National Directorate of 

Water (DG-Eau). A Kruskal-Wallis homogeneity test was 

conducted on every station of the study area. This test 

ensures that spatial homogeneity of the rainfall can be 

assumed. The period 1961 – 2010 was chosen as the study 

period and spatialized regional daily mean rainfall obtained 

by kriging method by [11] was used in this paper. 

3. Model of Long-Range Dependence in 

Rainfall: Fractional Brownian Motion 

In probability theory, fractional Brownian motion 

(FBM) is a generalization of Brownian motion. Unlike 

classical Brownian motion, the increments of FBM need 

not be independent. The FBM was developed specifically 

to account for the Hurst phenomenon. The connection 

with Hurst’s law is the parameter H in FBM. FBM is 

defined as: 

1/2

0

( ) (0) ( ) ( )

t

H H HB t B t s dB s−− = −∫ ,            (1) 

where t > 0 and 0 < H <1. 

The value assigned to H, the Hurst coefficient, 

determines the range of behavior of FBM. In fact, the long 

memory effect in a time series is quantified using the Hurst 

coefficient. The Hurst coefficient is referred to as an index 

of long-range dependence. Long memory property denotes 

that a time series has a slowly declining correlogram. The 

auto covariance function of the increments, C (τ), is defined 

by: 

( ) ( , ) ( , )C n t h n t hτ τ=< + > ,                          (2) 

where ( , )n t h is the increments of FBM represent by ( )
H

B t , 

( , ) ( ) ( )
H H

n t h B t h B t= + − .                          (3) 

As shown in Appendix A, equation (2) may be expressed 

in terms of the mean squared increments of ( )
H

B t , which for 

hτ >>  ultimately leads to 

2 2 2 2
( ) [ (2 1)] | |

H
C h H Hτ σ τ −= − .                  (4) 

One can see why the limits of 0 and 1 are imposed on H. 

Equation (4) defines the classes of correlation: 

H = 1/2 ( )C τ⇒  is zero; this indicates a Brownian motion 

process; 

0 < H < 1/2 ( )C τ⇒  is negative. This indicates an anti-

persistent process, which means an up value is more likely 

followed by a down value, and vice versa; 

1/2 < H < 1 ( )C τ⇒ is positive. This indicates a persistent 

process, which means the direction of the next value is more 

likely the same as current value. 

The latter case, 1/2 < H <1, has been of main interest in 

surface hydrology because the positive correlation feature 

can be used to model processes that tend to cluster first on 

one side of the mean and then the other. These were the types 

of processes discovered and studied by [6, 13]. 

High values of H, particularly those approaching 1, 

indicate enhanced change at large scales or strong clustering 

of similar values. In others words, in a stochastic framework 

and in stationary terms, change can be characterized by the 

Hurst coefficient [14]. 

4. Detecting Long-Range Dependence in 

Rainfall Dynamics 

We analyse the rainfall in the Oueme River basin to 

check the existence of a long-range dependence in the 

time series using Hurst coefficient. In the present paper, 

The Hurst coefficient is calculated by using the rescaled 

range analysis (R/S analysis) method, the rescaled range 

(R/S) method modified by [8], the aggregated variance 

method [9] and the aggregated standard deviation (ASD) 

method. 

4.1. The R/S Method 

The R/S analysis is the range of partial sums of deviations 

of a time series from its mean, rescaled by its standard 

deviation. To study the long-range dependence in the rainfall 

time series, the following algorithm is used: 

A time series ( )
1,k k N

X
∈

 is divided into d sub-series of 

length m. For each sub-series 

n = 1, …, d; 

Find the mean, En and the standard deviation, Sn; 

Normalize the data (Xin) by subtracting the sub-series 

mean: 
in in nZ X E= − , 

i = 1, …, m; 

Create a cumulative time series: 
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1

i

in jn

j

Y Z
=

=∑ , i = 1, …, m;                   (5) 

Find the range 
1,1,

max minn jn jn
j mj m

R Y Y
==

= − ;        (6) 

Rescale the range Rn / Sn; 

Calculate the mean value of the rescaled range for all sub-

series of length m: 

( )
1

1
/ /

d

n nm
n

R S R S
d =

= ∑                          (7) 

Hurst found that (R/S) scales by power – law as n 

increases, which indicates 

( )/ . H

n
R S c n= .                             (8) 

In practice, in classical R / S analysis, the Hurst coefficient 

H can be estimated as the slope of log / log plot of (R/S)n 

versus n. 

1
log log

n

R
H n c

S

  = + 
 

.                       (9) 

Various papers, [15-18] emphasized the superiority of the 

R/S analysis compared to more traditional methods of 

detection of long – term persistence such as studying 

autocorrelation, reports variances and spectral analysis. [19] 

showed that the R/S analysis can detect the presence of long 

– term persistence even in a highly non-Gaussian time series. 

4.2. Modified R/S Method 

[8] proposed another statistic, called "modified R/S 

statistic." Its limit distribution is invariant to different forms 

of short memory processes. This method allows testing the 

null hypothesis of no long term persistent (LTP) against the 

alternative of STP. The modified R/S statistic has the 

following form: 

1 ( )
( )

( )
q

q

R n
Q n

S nn
=ɶ                          (10) 

with 

1/2

2

1 1

2
( ) ( ) ( )( )

q n

n nq n j i i j

j i j

S n S w q X X X X
n

−
= = +

   = + − −  
   

∑ ∑  (11) 

2

nS  and nX  are respectively the empirical variance and 

mean ( ) 1
1

j

j
w q

q
= −

+
 

(q=1, 2, …., q) are the weights proposed by [20]. In 

practice, the selection of the integer q is a real problem. [21-

22] have shown by Monte Carlo studies that when q is 

relatively large compared to the sample size, the estimator is 

biased and therefore q must be chosen as a small integer, 

while other studies have shown by Monte Carlo that q = 1 is 

an acceptable choice. Then, we choose q = 1. Contrary to the 

classic R/S statistic, the limit distribution of the modified R/S 

is known and the statistic V defined by: 

TQ
V

T
=
ɶ

,                                (12) 

converges to the extent of a Brownian bridge on the unit 

interval. 

4.3. Aggregated Variance Method 

The method of aggregated variance is based on the 

aggregation of the time series into several blocks ( )m

kY  of size 

m: 

( )

1 ( 1)

1
( )

km
m

k

t m k

Y Y t
m = + −

= ∑                           (13) 

k = 1, 2,..., T/m is the block sequence number. T is the 

number of observations. 

Different values are selected for the parameter m, {mi, i ≥ 

1} such as 
1i

i

m
C

m

+ =  

where C is a constant that depends only on the lengths of the 

time series and the desired number of points. Then, one 

calculates the variance ( )
( )

m
V Y  of ( )m

Y : 

2
/ /

( ) ( ) 2 ( )

1 1

1 1
( ) ( ) ( )

/ /

T m T m
m m m

k k

k k

V Y Y Y
T m T m= =

 = −  
 

∑ ∑       (14) 

The procedure is repeated for successive values of m and 

one has ( ) 2 2
( ) .

m H
V Y C m

−≈  where C is a constant. 

A regression of ( )
log ( )

m
V Y  on log (m) is a straight line 

with slope 2H-2, which provides an estimator of H. 

4.4. Aggregated Standard Deviation 

To apply the aggregated standard deviation (ASD) method, 

we need to assess the standard deviation at several time 

scales. 

Let Xi be a stationary process on discrete time i (referring 

to days here) with standard deviation σ and let 

( )

1( .... ) /
k

i i i kX X X k− += + +                    (15) 

be the aggregated process at time scale k, with standard 

deviation σ
(k)

. The long term persistent is expressed by 

elementary scaling process: 

( )

1

k

Hk

σσ −=                               (16) 

Equation (16) corresponds to a stochastic process in 

discrete time and termed Hurst-Kolmogorov process (HK). 

Its continuous time form is [14] 
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1

( ) ( )

H

k a a

k
σ σ

−
 =  
 

                      (17) 

where a is any time scale, σ (a) is the standard deviation at 

scale a, and both a and k have units of time. To determine H, 

we use the algorithm constructed by [1]. 

Table 1 presents the results of the estimation of H using 

the four methods described above. 

Table 1. Hurst coefficient for rainfall time series in Oueme at Bétérou, Save 

and Bonou sub-catchments. 

Sub-catchments R/S 
Modified R/S 

Variance 

Aggregated 

method 
ASD 

Bétérou H = 0.69 H = 0.67 H = 0,66 H = 0.64 

Save H = 0.68 H = 0.67 H = 0.64 H =0.65 

Bonou H = 0.70 H = 0.68 H = 0.64 H = 0.66 

The obtained Hurst coefficient values for rainfall shows 

that all three series, for the investigated methods, exhibit 

persistent behaviour. These values of H also suggest the 

existence of long-range memory in the rainfall dynamics. 

The fact that 1 / 2 1H< < , means that the rainfall process 

has positively correlated increments. These findings are in 

accordance with the types of processes discovered and 

studied by [6, 13]. Furthermore, these results are 

consistent with the works of [23] which used a simple 

scaling stochastic (SSS) process to show the evidence of 

the hydroclimatic fluctuations on multiple time scales, a 

behaviour that is none other than the Hurst phenomenon. 

In fact, the Hurst phenomenon is a manifestation of 

irregular climate fluctuations on several scales. Therefore, 

identifying the Hurst phenomenon on a specific 

hydroclimatic time series provides some indications of 

climate fluctuations 

To consolidate the results obtained above, let us plot the 

covariance of the increments, C (τ), given by equation 4. To 

this end, letting 1h σ= =  and using the estimated Hurst 

coefficient for Bétérou, Save and Bonou yields 

0.68

0.22
( )

| |
C τ

τ
=  in Bétérou,                   (18) 

0.67

0.21
( )

| |
C τ

τ
=  in Save,                      (19) 

0.66

0.23
( )

| |
C τ

τ
=  in Bonou,                   (20) 

a positive correlation that fall off relatively slowly asτ gets 

large, as illustrated in Figure 2. Such long-range correlations 

in the rainfall and hydrologic records have been difficult to 

explain but appear real [24]. In such a case, Fractional 

Brownian motion is a good choice for the modelling the 

random component of rainfall in Oueme River basin. Figure 

2 shows the plot of dimensionless covariance of increments 

as a function ofτ in Oueme at Bétérou, Save and Bonou sub-

catchments. 

 

Figure 2. Plot of dimensionless covariance of increments as a function ofτ
in Oueme at Bétérou, Save and Bonou sub-catchments. Notice the long tail 

of the plot that is essential to preserving the Hurst effect. 

5. Modelling River Discharge Dynamics 

5.1. Fractional Generalization of the Triple Relationship 

Between the FBM, the Corresponding SDE and the 

Associate FPE 

The time-varying behaviour of hydrological systems can 

be described by ordinary, deterministic differential equation 

(21) 

( , )
dQ

f Q t
dt

=                                (21) 

where Q  is the discharge at the outlet of the river basin and 

( , )f Q t  is a function completely describing the dynamics of 

the system. However, this model may not be perfect because 

there are uncertainties in the system. In such cases, a 

stochastic extension of the model is preferred, such that the 

hydrological system behaviour is described in terms of 

probabilities. When the model is extended by taking into 

account the uncertainties, equation (21) changes to 

( , ) ( , ) ( )
dQ

f Q t g Q t t
dt

ε= + ,                    (22) 

where ( )tε  is the noise or fluctuation, i.e., the uncertainties 

related to the random component of rainfall and ( , )g Q t  is a 

function specifying the amount of noise. Here, the function

( , )f Q t  is derived from the Hydrological Model based on the 

Least Action Principle (HyMoLAP). The HyMoLAP uses the 

principle of minimum energy expenditure and has two 

physical parameters υ  and λ . The parameter υ  describes 

the non-linearity of the transformation of rainfall into runoff, 

while the parameter λ  describes properties related to the 

geomorphology and pedology of the catchment. This model 
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has been used in a number of studies in the past. Inputs of the 

model include area catchment rainfall and potential 

evapotranspiration, while the output is the estimated river 

discharge. The HyMoLAP has been discussed extensively in 

many previous papers [11, 25-28]. Details of the model can 

be found therein. 

The driving process of a stochastic differential equation 

plays a key role in the dynamics and future evolution of the 

solution to that SDE. Thus, in this paper, the fluctuation ( )tε  

is modelled by FBM. Thus, the SDE describing the river 

basin is given by 

( ) ( ( ), ) ( ( ), ) ( )
H

dQ t f Q t t dt g Q t t dB t= + ,          (23) 

where 
2 1^ ^

( , ) ( , )f Q t Q q t
υυ ψ

λ

−

= − + ; ψ describes the model 

input (q is the effective rainfall); 2
( ( ), )g Q t t σ=  is the 

standard deviation of ( ( ), )f Q t t . 

The FBM-driven FPE with respect to equation (23) is 

given by equation (24). Its derivation is given in Appendix B. 

[ ]
2

2

0

( , )
( ( ), ) ( , )

( ( ), ) ( ( ), ) ( , ) ( , ) 0

t

P Q t
f Q t t P Q t

t Q

g Q t t g Q s s s t dsP Q t
Q

ϕ

∂ ∂+ −
∂ ∂

 ∂ = ∂  
∫

       (24) 

where the function ( , )s tϕ  is defined by 

2 2
( , ) (2 1) | |

H
s t H H s tϕ −= − − .                (25) 

[27] showed the effect of different specific noises on the 

dynamics of river discharge by comparing their associated 

FPE. They found that each specific type of noises modifies the 

form of FPE. The result given by equation (24) confirms these 

findings since the derived FBM – FPE is not similar to the 

ordinary FPE driving by Brownian motion. As a consequence, 

the dynamics of the river discharge for FBM could not be the 

same as the one derived from the ordinary FPE. 

5.2. Derivation of the Time-Dependent Probability 

Distributions Function of the River Discharge 

Now we focus on the evolution of the probability 

distribution function of system (23). For simplicity, one can 

set 1υ = , /θ υ λ= . According to the FBM-driven FPE (24), 

one has 

( )
2

2 2 1

2

( , )
( ) ( , ) ( , )

( , ) 0H

P Q t
Q t q t P Q t

t Q

Ht P Q t
Q

θ ψ

σ −

∂ ∂+ − + −  ∂ ∂
∂

  = ∂

       (26) 

which leads to 

( )

( )
2

2 2 1

2

( , )
( ) ( , )

( , )
( , ) ( , ) H

P Q t
Q t P Q t

t Q

P Q t
q t P Q t H t

Q Q

θ

ψ σ −

∂ ∂− +
∂ ∂

∂ ∂−
∂ ∂

        (27) 

with initial condition 
0( , 0) ( )P Q Q Qδ= − . Denote the 

Fourier transform with respect to Q, for each fixed t, of 

( , )P Q t  by 

ˆ( , ) F{ ( , )} ( , ) iP t P Q t h t e dξωξ ω ω
∞

−

−∞

= = ∫ .            (28) 

So applying the Fourier transform to both sides of 

equation (27) gives 

( ) ( ) ( ) ( )2 2 1 2
ˆ ,

ˆ ˆ, ,H
P t

P t H t P t
t

ξ
θξ ψ ξ σ ξ ξ−∂

+ + = −
∂

  (29) 

By the method of characteristics, we suppose that 

( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ, , ,

ˆ ˆ, ,

dP t P t P t d

dt t dt

P t P t

t

ξ ξ ξ ξ
ξ

ξ ξ
θξ ψ

ξ

∂ ∂
= + =

∂ ∂

∂ ∂
+ +

∂ ∂

                (30) 

which implies that 
d

dt

ξ θξ ψ= + , and its solution is 

expressed by 
0

t
e

θξ ξ= , with 0
.te θξ ψ −= ∫  It means that the 

left hand side of equation (29) is the total time derivative 

along each of the curve ( )0,t tξ . On this curve, we then get 

( ) ( )

( )

2 2 1 2

2 2 1 2

0

ˆ ,
ˆ ,

ˆ ,

H

H t

dP t
H t P t

dt

H t e P t
θ

ξ
σ ξ ξ

σ ξ ξ

−

−

= − =

−
.                (31) 

Since ( ) 0

0
ˆ ,0 { ( )}

Q
P F Q Q e

ξξ δ −= − = , we further obtain 

( ) ( ) 2 2 1 2

0 0

0

ˆ ˆ, ,0 exp
t

H sP t P H s e dsθξ ξ σ ξ − 
= − 

 
∫

( )
2

2 2 2 1 2

0

0

exp 2 .
2

t

t t H si Q e H e s e dsθ θ θξξ σ− − −  
= − −  

   
∫   (32) 

Let 
0( )

t
t Q e

θµ −=  and 
2 2 2 2 1 2

0

( ) 2 ,

t

t H st H e s e dsθ θγ σ − −= ∫  and 

it follows that 

( )2

22

( )1
( , ) exp

2 ( )2 ( )

Q t
P Q t

tt

µ
γπγ

 −
 = −
 
 

.                 (33) 

This means that the derived time-dependent probability 

distribution of the river discharge Q  is a Gaussian process 
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with the mean ( )tµ and a standard deviation ( ).tγ  In most 

studies using HyMoLAP, the parameter λ is high. Thus, 

1 /θ λ=  tends to 0. In such a case,
0( )t Qµ = , 2 2 2

( )
H

t tγ σ=  

and the time-dependent probability distribution (33) gives 

( )2

0

2 22 2

1
( , ) exp

22
HH

Q Q
P Q t

tt σπσ

 −
 = −
 
 

.              (34) 

By letting 0
Q Q

u
σ
−

= , one derive 

2

22 2

1
( , ) exp

22
HH

u
P u t

ttπσ
 

= − 
 

.              (35) 

We carry out the numerical simulations for evolution of 

the probability distribution function. Figures 3, 4 and 5 show 

the time-dependent probability distribution P (u, t) of the 

standardized daily discharge u over the investigated sub-

catchments. 

 

Figure 3. Time-dependent probability distribution P (u, t) of the standardized daily discharge u for the Bétérou sub-catchment for the period 1961–2010. The 

colours toward the blue end of the colour map indicate low probability and the colours at the red end of the colour map indicate high probability. 

 

Figure 4. Time-dependent probability distribution P (u, t) of the standardized daily discharge u for the Save sub-catchment for the period 1961–2010. 

 

Figure 5. Time-dependent probability distribution P (u, t) of the standardized daily discharge u for the Bonou sub-catchment for the period 1961–2010. 

It can also be seen from these figures that the probability 

distribution function of the river discharge has decreasing tail 

area with time. This illustrates the significant and 

distinguishing influence of Hurst parameter H on the 

dynamics of the river discharge when time t evolves in 

comparison to the works of [11] which are based on the 

assumption that statistical samples consist of independent, 

identically, distributed variables (e.g. Gaussian white noise). 

The probability distribution function of the solution 
tQ  

carries significant dynamical information. The analyses in 

this study act as a warning that the classical hydrological 

statistics describes only a portion of the natural uncertainty of 
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hydroclimatic processes, because it is based on the implicit 

assumption of a stable climate. In addition, its use may 

characterize a regular behaviour of hydroclimatic processes 

as an unusual phenomenon. 

6. Conclusion 

The main contribution of this paper is to detect the long-

range dependence in rainfall in Oueme River basin and to 

understand how the Hurst coefficient influences the river 

discharge dynamics. The achievement of this analysis 

stemmed first from the estimation of Hurst coefficient by using 

different methods in order to detect long-range dependence in 

rainfall dynamics, and second from the fractional 

generalization of this triple relationship between the driving 

process (i.e., the FBM), the corresponding SDE describing the 

river basin and the deterministic fractional order FPE for the 

modelling of the river discharge dynamics. The results of the 

estimation of the Hurst coefficient, in Oueme River basin, 

showed the existence of long-range memory in the rainfall 

dynamics. The fractional FPE provides an essential tool for the 

study of the dynamics of various complex processes arising in 

anomalous diffusion in hydrology. 
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Appendix A: Auto Covariance Function 

of the Increments, C (τ) 

( ) ( , ) ( , )C n t h n t hτ τ=< + >                       (A1) 

( ) ( ) ( ) ( )H H H HB t h B t B t h B tτ τ   = + − + + − +     

2 2

2
2

1
( ) ( ) ( ) ( )

2

( ) ( ) [ ( ) ( )]

H H H H

H H H H

B t h B t B t B t h

B t h B t h B t B t

τ τ

τ τ

   = < + − + + − + +   

 − + − + + − − + > 

 

The self-affinity of FBM allows (A1) to be written as 

( )
2

2 2 2| | |1 | |1 | 2
2

H H Hh h
C

στ τ
τ τ

 = − + + − 
 

.     (A2) 

For / 1h τ ≤  one may use a Taylor series to write 

2 2

2

2 (2 1)
1 1

H
h Hh H H h

τ τ τ
− ± ≈ ± + 

 
              (A3) 

Combining (A2) and (A3) yields equation (4), that is 

2 2 2 2
( ) [ (2 1)] | |

H
C h H Hτ σ τ −= − . 

Appendix B: Derivation of the  

FBM-driven Fokker-Planck Equation 

Let consider the SDE describing the river basin 

( ) ( ( ), ) ( ( ), ) ( )
H

dQ t f Q t t dt g Q t t dB t= +          (B1) 

Then, applying the fractional Ito formula [29] to the 

process h (Q) gives 

2

2

0

( )
( ( ), )

( )
( )

( ( ), ) ( ( ), ) ( , )

( )
( ( ), ) ( )
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dh Q
f Q t t

dQ
dh Q dt

d h Q
g Q t t g Q s s s t ds
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dh Q
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dQ

ϕ

 + 
 =
 
  
 

+

∫      (B2) 

where the function ( , )s tϕ  is defined by 

2 2
( , ) (2 1) | |

H
s t H H s tϕ −= − −                 (B3) 

Taking the expectation of equation (B2), one has 

[ ]
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f Q t t

dQ
E dh Q E dt
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dQ

 
+  
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Therefore, we get 

2

2

0
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.
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dQdh Q
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 (B5) 

Denote by ( , )P Q t the time-dependent probability 

distribution of the river discharge, we have 

[ ]( ) ( ) ( , )E h Q h Q P Q t dQ

∞

−∞

= ∫ ,                     (B6) 

which implies that 
( ) ( , )

( ) .
dh Q P Q t

E h Q dQ
dt t

∞

−∞

∂  =  ∂ 
∫  Thus, we 

further get 
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After the integration by parts we find that 
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since ( , ) 0.P t±∞ =  In a similar way, we further have 
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From equation (B7), (B8) and (B9), we obtain 
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which leads to equation (24), that is 
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