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Abstract: In the current analysis vibration characteristics of a cylindrical shell composed of three layers are examined. 

Vibration of cylindrical shells is accomplished for their involvement in various areas of engineering and technology. Shell 

vibration behavior depends upon on different geometrical material parameters and material parameters. They provide the 

maximum stability of a physical system. There is graduation distribution of constituent materials in functionally graded materials 

and is controlled by polynomial, exponential and trigonometric volume exponent fraction laws. In the present study a cylindrical 

shell is composed of three layers whereas the middle layer consists of functionally graded material and the extreme layer are of 

isotropic nature. Material composition of the FG layer is governed by polynomial, exponential and trigonometric volume fraction 

exponent laws. Impact of these laws is examined on shell vibration frequencies for different physical parameters. Love’s thin 

shell theory is adopted for shell motion equations. The vibration of cylindrical shells with FGM will be expressed by using the 

Raleigh-Ritz technique in this method. Three volume fraction laws are used to define the middle layer of tri-layer cylindrical 

shells. The Rayleigh-Ritz technique is applied to form the shell frequency equation which is solved by MATLAB software. The 

validity and accuracy of this method is investigated for a number of comparisons of numerical results. 

Keywords: Component, Formatting, Style, Styling, Insert 

1. Introduction 

Cylindrical shells are essential components in the field of 

technology as well as that of engineering. Vibrations of 

cylindrical shells have been extensively studied for their simple 

geometrical designing. So a huge amount of research on them is 

seen in open literature. Egle et al. [1] examined free vibrations 

of orthogonally inflexible cylindrical shells where rigidness has 

been treated as distinct elements. Sharma et al. [2] investigated 

vibrations of cylindrical shells for clamped-free boundary 

conditions by using Rayleigh-Ritz technique. The vibration of 

cylindrical shells with intermediary supports was examined by 

Swaddiwudhpong et al. [3]. Vibrations of functionally graded 

(FG) cylindrical shells were investigated by Loy et al.[4] and 

Pardhan et al. [5] for various physical parameters and several 

boundary conditions. Li et al. [6] examined vibrations of 

circular cylindrical shells with FG materials middle layer for 

simply supported end conditions. They also used Love’s 

approximation for strain and curvature-displacement 

relationships for shells The idea of tri layered cylindrical shells 

with intermediate layer of FGM was given by Batra [7] for 

studying axial buckling of cylindrical shells and they 

investigated this aspect of dynamical study of the shells. Bing et 

al. [8] examined vibration frequencies of thin walled cylindrical 

shells for different edge condition. Shao and Ma [9] investigate 

the vibration analysis of those cylindrical shells split into thin 

layer and used Fourier series expression method for SS-SS, C-C, 

C-F and C-SS boundary conditions. Naeem et al. [10] 

employed the Ritz formulation to investigate vibration of 

natural frequency characteristic of FG cylindrical shells. Naeem 

et al. [11] established the equation of FGM shells in eigenvalue 

expression to observe their frequencies. 

In this study vibration characteristics of three layered 

cylindrical shell with FG middle layer are investigated. The 

frequencies analysis of two layers cylindrical shells was 

examined by Arshad et al. [12] in which one layer was FG layer 

and other layer was of homogeneous materials. Iqbal et al. [13] 

examined vibrations of FG cylindrical shells applying the wave 

propagation technique. The generalized differential quadrature 
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method was applied to examine the vibration characteristics of 

FG materials cylindrical shells by Naeem et al. [14]. Sofiyev et 

al. [15] examined the non-linear free vibration of FG cylindrical 

shells attached to combine loads with various ends conditions 

and resting on elastic foundations. Vel [16] employed the 

elasticity solution technique to observe free and forced 

vibration of cylindrical shells. These shells were estimated by 

SS-SS boundary condition. Shah et al. [17] applied exponential 

volume fraction law to observe the cylindrical shell’s vibration 

with FGM. Warburton et al. [18] investigated the appearance of 

frequency variations with the circuit wave and expressed the 

frequency in the form of shell energies. Vibration of spinning 

cylindrical shells was examined by Mehparvar [19]. The shells 

were constructed from FGM. They used the higher ordered 

theory for shell deformation with the use of energy Hamilton’s 

principle to obtain the shell dynamical equations. The vibration 

of cylindrical shells which are containing FGM was observed 

by Lam et al. [20]. Their purpose was to check the effect of 

FGM on vibration characteristics of the shells. Their 

composition was maintained by volume fraction power law of 

distribution of materials in the radial direction. Yamanouchi et 

al.[21] and Koizumi [22] studied the structure and design of 

FGMs. 

In this paper vibration of three layered cylindrical shells are 

analyzed for various shell parameters. The shell thickness 

consists of three layers where materials of the outer layers are of 

isotropic. The middle layer consists of FG materials. The shell 

problem has been written in the integral form by considering 

expressions of kinetic and strain energies for a cylindrical shell. 

The shell frequency equation is formed by applying the 

Raleigh-Ritz technique. The estimation of axial modal 

dependence is done by characteristic beam functions. These 

functions satisfy boundary conditions. Results are obtained for 

simply supported- simply supported, clamped-clamped, 

clamped- free and clamped-simply supported boundary 

conditions. Comparisons of results determined by this 

procedure are done with those found in literature to verify the 

validity and efficiency of this technique and accuracy of the 

results. 

2. Theoretical Formulation 

Figure 1, represents the geometry of a cylindrical 

shell. , ,  L h R , stand for its geometrical quantities viz.; length, 

thickness and mean radius respectively while 

,  andE v ρ designate Young’s modulus, the Poisson ratio and 

the mass density respectively. The triplet ( , , )?x zθ defines an 

orthogonal coordinate system and they lie at the mid plane of 

the cylindrical shell. They describe the coordinates in the 

longitudinal, tangential and transverse directions respectively. 

The functions ( , , , ),u x z tθ  ( , , , )v x z tθ and 

( , , , )w x z tθ indicate for the longitudinal, tangential and 

transverse displacements from the mid surface of the shell. 

 

Figure 1. Coordinate system and shell geometry. 

For a vibrating thin cylindrical shell, its strain energy, 

expressed by U is stated as Loy et al. [4]: 
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where the stress where 1
,e

2
e  and γ  define the reference 

surface strains, 1
k , 2

k and τ represent the surface curvatures 

and where ,
ij

A
ij

B and ij
D ( , 1,2i j = and 6)  are associated 

with the extensional , coupling and bending stiffness 

respectively and are stated as [4]: 
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The reduced material stiffness ( , 1, 2
ij

Q i j = and 6) for 

isotropic materials are described as [4]:: 

11 22 12 662 2
, ,

2(1 )1 1

E vE E
Q Q Q Q

vv v
= = = =

+− −
   (3) 

for isotropic cylindrical shells the coupling stiffness 

considered equal zero and for the shells formed by FGM they 

considered non-zero. For the cylindrical shells which 

fabricated by FG materials their values depend on the material 

distribution. The negativity and positivity of coupling stiffness 

exist due to the irregularity of characteristics of materials at 

mid plane when reduced stiffness produced by physical 

properties of FG materials. 

Also the kinetic energy of the cylindrical shell, denoted by 

T  , is written as [4] 

2 2 22
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t
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t t t

π

ρ θ
 ∂ ∂ ∂     = + +      ∂ ∂ ∂       

∫ ∫    (4) 

where t denotes the time variable and t
ρ  represents the mass 

density per unit length and is written as 
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2

2

h

t

h

dzρ ρ
−

= ∫                    (5) 

where ρ stand for the mass density. 

2.1. Love’s Shell Theory 

Several shell theories have been found in the open literature. 

Kirchhoff’s assumption is the basis for all shell theories. This 

assumption states that “Normal to the original mid-surface of a 

shell retains its normal position, suffer no change in length 

during deformation”. Shell theory due Love is the pioneering 

one and all other modern theories have designed from it by 

modifying some physical terms. The formulas for strain and 

curvature–displacements are adopted from Love’s shell theory 

to solve the present shell problem and are written as: 
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(7) 

These expressions for the surface strains 1
,e

2
,e and γ and 

the curvatures 1
,k 2,

k  and τ from the relations (6) and (7) 

respectively are replaced into Equ.(1), the expression for strain 

energy, U  attains the following form: 
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The Lagrange energy functional, symbolized by T U∏ = −  

for a cylindrical shell is described by the difference of its 

strain and kinetic energies as: 

T U∏ = −                   (9) 

The Raleigh-Ritz technique is used to examine the vibration 

of cylindrical shells. The deformation of cylindrical shells in 

longitudinal, tangential and transverse direction describe in 

the form of shell motion’s equations with particular variables. 

Many kinds of mathematical functions are used to measure the 

axial modal dependence. The boundaries conditions of 

cylindrical shells are satisfied by them. 

2.2. Modal Displacement Functions 

The unidentified displacement functions ( , , ),u x zθ  

( , , )v x zθ and ( , , )w x zθ showing deformations in the 

longitudinal, tangential and transverse directions are supposed 

in such shapes that the separation of the special and temporal 

variables is performed. This process is done by classical 

technique of separation of variables used for solving partial 

differential equations. The substitution of the presumed shapes 

of the modal displacement functions are made into the shell 

governing equations and a system of simultaneous equations is 

obtained in the vibration amplitude coefficient by the 

Rayleigh-Ritz method. The axial modal dependence related to 

the unknown functions is used to determine those functions 

which meet boundary conditions described for cylindrical shells. 

The following models for the modal deformation function are 

mentioned for axial, tangential and temporal variables: 

( , , , ) ( )sin sin
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=
=
=

        (10) 

where  
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( , , , ) ( ) sin sin
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θ θ ω
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=
=
=

 

and ω denotes the frequency of the cylindrical shell and n is the 

circumferential wave number. The coefficients A, B, C show 

the vibration amplitudes in the longitudinal, tangential and 

transverse directions respectively. 

Substituting the above expressions of the shell energies into 

Equation (9), the new expression for the Lagrange functional is 

achieved as 
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Applying the Rayleigh- Ritz method, the process of 

minimization is applied to the Lagrange functional Π  and is 

partially differentiated with regard to the vibration amplitude 

coefficients A, B and C. So doing process of extremization 

of Π , the following required minimum value conditions are 

obtained: 

0
A B C

∂ ∂ ∂
= = =

∂ ∂ ∂
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           (11) 

2.3. Derivation of the Shell Frequency Equation 

The point when terms of these compelling conditions 

adjusted in particular shape then shell recurrence 

mathematical statement is discovered. Three concurrent 

mathematical statements in A, B, C are acquired as: 

11 12 13
0C A C B C C+ + =            (12) 

21 22 23
0C A C B C C+ + =            (13) 

31 32 33
0C A C B C C+ + =            (14) 

where the coefficients ( )’  , 1, 2,3ijC s i j= = are some 

constants. The above equations can be written in the matrix 

form as 
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0
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C C C A

C C C B

C C C C

     
     =    
    

     

       (15)  

This represents the frequency equation in the eigenvalue 

problem form. The condition of making the determinant of the 

matrix coefficients zero is applied for non-trivial solution for 

achieving the frequency equation. 

2.4. Polynomial Volume Fraction Law 

The properties of FG materials vary for temperature and 

they are originating in the field of high thermal condition. If 

the material property is denoted by P which is function of the 

absolute temperature T(K). Then Touloukian (1973) stated as: 

1 2 3

0 1 1 2 3
( )P P P T PT P T PT−

−= + + +           (16) 

where the thermal coefficients are indicated by P0, P-1, P1, P2 

and P3 while T indicates the temperature at absolute scale. 

The material properties of a FG constituent material for a 

cylindrical shell are functions of both temperature and their 

volume fractions. The succeeding material of a FG material is 

described as: 

1
j

K

j f

j

P PV
=

=∑                 (17) 

where the materials characteristics are mentioned by '
j

P s  and 

the volume fraction of FGM denoted by '
jfV s . Their sum 

always equal to one 

i.e.
1

1
j

K

f

j

V
=

=∑               (18) 

f
V denotes the volume fraction of a FG material. It can be 

written as: 

2

3 2

N

f

z h
V

h h

 −
=  − 

            (19) 

The thickness of cylindrical shell denoted by h and 

power-law exponent by N and its value always lie between 

zero and infinity. FGM are composition of two materials. For a 

FG cylindrical shell E , &v ρ  are expressed as: 

( ) 2

1 2 2

3 2

N

z h
E E E E

h h

 −
= − + − 
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1 2 2 3 2 2
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ρρ ρ ρ
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          (22) 
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where 2 2
/ 3,  ,  z h E E v v= − = = denotes the materials used 

for M2 and 1 1
/ 3,  ,  z h E E v v= = = describe the materials 

for
1

 M . Both the materials present on the inward and outward 

surfaces of cylindrical shells can change their materials 

characteristics by interchanging themselves. The cylindrical 

shells with FGM are usually in-homogeneous shell. When the 

thickness of a shell toward its radius ratio is less than 0.05 then 

the theory of classical thin-walled cylindrical shell is 

applicable. 

2.5. Exponential Volume Fraction Law 

Arshad et al. [10] modified the polynomial volume fraction 

law (20) and framed it in the exponential expression as: 

( )0.5
1 .

N
z

h
jV e

− += −              (23) 

where 2.718e = … is the usual natural base. Further formula 

is amended and a more general base ( )0b >  is established 

and a new expression is written as: 

( )0.5
1 ,

z N
h

jV b
− +

= −              (24) 

Thus formulae for the effectual material properties: the 

effective Young’s modulus ,E  the Poisson ratio ,E  and 

the mass density ρ  for a FG are written as: 
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where
2 2 2

2 , , and , when 2,z h E E v v z hρ ρ= − = = = =  

( )( )1

1 2 21 ,E E E b E−= − − + ( )( )1

1 2 21 ,v v v b v−= − − + and

( ) ( )1

1 2 21 ,bρ ρ ρ ρ−= − − +  

The above relations express M2 present at the inward 

surface while M1 at outward surface of the cylindrical shells. 

2.6. Trigonometric Volume Fraction Law 

This law obtained by making some changing in the 

formulae defines in (20) and (25) for cylindrical shell with FG 

layer related to 
1

M and 
2

M can be defined as: 
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1
sin 0.5
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f
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h
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f
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h
 = +  

           (27) 

where N  is a positive real number. The conclude materials for 

this law can also express like other two laws for cylindrical 

shells with FG 
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From formulae (30), when 2 2
,v v ρ ρ= = and when 

( ) ( )2 2

1 2 2 1 2 22, sin (1) , sin (1) ,z h E E E E v v v v   = = − + = − +   

( ) 2

1 2 2sin (1) ,ρ ρ ρ ρ = − +  Thus at 2,z h= −  

M2 is attached at inward side but when z=h/2 then the 

characteristics material are obtained by both M1 and M2 

materials present at outward surface of the cylindrical 

composed with FG material. 

2.7. Material Stiffness for Three-Layered Cylindrical Shells 

The thickness layer of the cylindrical shell is divided into 

three layers. Thicknesses of interior, intermediate and exterior 

layers are h1, h2 and h3 respectively. For simplicity, thickness 

of each layer is of the thickness h/3. According to this 

configuration, the coefficients of extensional, coupling and 

bending stiffness Aij, , Bij and Dij are modified as 

Here E, E2 and E2 are Young’s moduli, N is power-law 

exponent and vf volume fractions while v,v1 and v2 are Poisson 

ratios. 

( )1 23 2 4 32 1

11 22 22 2 2

1 2

( ) ( )( )

11 1 1
f

E EE h h E h hE h h
A A E

Nv v v

− − −−
= = + + + +− − − 

 

( )3 2 1 2 4 32 1

12 22 2 2

1 2

( ) ( )( )

11 1 1

f

f

E h h v E E vE h hvE h h
A E

Nv v v

− −  −−
= + + + +− − − 

 

( )1 23 2 4 32 1

66 2

1 2

( ) ( )( )

2(1 ) 2(1 ) 1 2(1 )f

E Eh h E h hE h h
A E

v v N v

− − −−
= + + + + + + + 

 

( ) ( ) ( )2 2 2 22 22 2
3 2 4 33 2 2 3 22 1

11 22 1 22 2 2

1 2

( ) ( )( ) 1

2 1 22(1 ) (1 ) (1 )f

E h h E h hh h h h hE h h
B B E E

N Nv v v

 − − − −−
 = = + − + + + + +− − −   

 



 American Journal of Applied Mathematics 2015; 3(3-1): 32-40  37 

 

( ) ( ) ( )2 2 2 222 2
2 3 2 4 33 2 2 3 22 1

12 1 22 2 2

1 2

( ) ( )( )

2 1 22(1 ) 1 2(1 )

f

f

E h h vE h hv h h h h hvE h h
B E E

N Nv v v

 − − − −−
 = + − + + + + +− − −   

( ) ( ) ( ) ( )2 2 2 222 2
2 3 2 4 33 2 2 3 22 1

66 1 22

21

( ) ( )( )

2 1 2 4(1 )4(1 ) 2 1

f

f

E h h E h hv h h h h hE h h
B E E

N N vv v

 − − − −−
 = + − + + + + + ++ +    

( ) ( ) ( )3 3 2 23 23 3
2 3 2 4 33 2 2 3 2 2 3 22 1

11 22 1 22 2 2 2

1 2

( ) 2 ( ) ( )( ) 1

3 2 13(1 ) (1 ) 6(1 ) 3(1 )f f

E h h E h hh h h h h h h hE h h
D D E E

N N Nv v v v

 − − − − −−
 = = + − + + + + + + +− − − −   

 

( ) ( ) ( )3 3 2 23 2 23 3
2 3 2 4 31 2 3 2 2 3 2 2 3 22 1

12 2 2 2 2

1 2

( ) 2 ( ) ( )( )

3 2 13(1 ) (1 ) 6(1 ) 3(1 )

f

f f

E h h vE h hv E E h h h h h h h hvE h h
D

N N Nv v v v

− − −  − − −−
= + + + + +  + + +− − − −   

 

( ) ( ) ( )3 23 3
1 2 3 2 3 22 1

66

1

2( )

6(1 ) 2(1 ) 3 2f

E E h h h h hE h h
D

v v N N

− − −−
= + +

+ + + +
+

( ) ( )3 33 3 3
2 3 22 3 2 4 3

2

( ) ( )

1 6(1 ) 6(1 )f

E h hh h h E h h

N v v

−− −
+ ++ + +

 

3. Result and Discussion 

The comparison of values of non-dimensional frequency 

parameters ( )2

1 /R v Eω ρ= −Ω , for simply supported 

boundary conditions for homogeneous cylindrical shell with 

those of Loy et al. [4] is composed in Table 1. The present case 

was solved by the Raleigh-Ritz method while the frequency 

parameters in Loy et.al. [4] were obtained by the differential 

quadrature method. This comparison shows that the present 

results are nearly equal with each other. At n=2, the frequency 

parameter has the lowest value. 

Table 1. Comparison of frequency parameters ( )2

1 /R v Eω ρ= −Ω for a 

cylindrical shell with simply supported;-simply supported boundary 

conditions ( )1, / 20, / 0.01, 0.3m L R h R v= = = = . 

n Loy et al. [4] Present 

1 0.016101 0.016101 

2 0.009382 0.009363 

3 0.022105 0.022085 

4 0.042095 0.042075 

5 0.068008 0.069788 

Table 2. Comparison of natural frequencies (Hz) for a simply supported- 

simply supported isotropic cylindrical shell (L=8in, h=0.1in, 

v=0.3, ( )1, / 20, / 0.01, 0.3m L R h R v= = = = ( )1, / 20, / 0.01, 0.3m L R h R v= = = =  

ρ =7.35×
4

10
−

Ibfs2 in-4, E=30×106Ibf in-2). 

n N Warburton[18] Present 

2 

1 2946.8 2042.7 

2 5637.8 5631.9 

3 8935.3 8926.4 

4 11405 1139.3 

5 13245 13243.7 

3 

1 2199.3 2194.4 

2 4041.9 4031.2 

3 6620.0 6605.9 

4 9124.0 9108.4 

5 11357 11343.4 

A comparison of the result of natural frequencies (Hz) for a 

cylindrical shell for simply supported-simply supported edge 

conditions is given with the results of Warburton [18] in the 

Table 2. These boundary conditions are applied at the both end 

points of the cylindrical shell. The half-wave axial numbers are 

taken to be m = 1, 2, 3, 4, 5, 6 and the circumferential wave 

numbers are taken n=2, 3. From the comparison it observed that 

these results are close to each other. 

The results frequencies (Hz) of vibration cylindrical shells 

having FGM are obtained. These cylindrical shells consisof two 

types of FG material. Two materials: nickel and stainless steel 

are associated at inward and outward surfaces of a FG 

cylindrical shell of 1
st
 Type. While in 2

nd
 Type they interchange 

their positions. The outer surface denoted by M1 and inner 

denoted by M2. Natural frequencies (Hz) of 1
st
 Type and 2

nd
 

Type cylindrical shells are composed in Table 3 and 4 

respectively for the half-axial wave mode m =1. Geometric 

parameters are mentioned in the Tables. Polynomial fraction 

law regulates the material distributions in FGM. The power law 

exponents are taken as: N= 0.5, 1, 15.The present obtained 

frequencies and those of Iqbal et al. [13] are compared with 

each other. The shell frequencies have been evaluated by the 

Raleigh - Ritz method and wave propagation method was 

applied by Iqbal et al. [13] to obtain them. The condition which 

is stated at both the ends is simply supported-simply supported. 

So the compared results coincided with each other. 

Table 3. Natural frequencies (Hz) comparisons of 1st Type cylindrical shells 

having simply supported – simply supported end condition (m=1, L/R=20, 

h/R=0.002). 

 Iqbal et al. [13] Present 

n N=0.5 N=1 N=15 N=0.5 N=1 N=15 

1 13.103 13.211 13.505 13.102 13.209 13.504 

2 4.4382 4.4742 4.5759 4.4386 4.4742 4.5767 

3 4.1152 4.1486 4.2451 4.1256 4.1578 4.2522 

4 6.9754 7.0330 7.1943 6.9945 7.0497 7.2051 

5 11.145 11.238 11.494 11.172 11.2611 11.5070 
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Table 4. Natural frequencies (Hz) comparisons of 2nd Type cylindrical shells 

having simply supported-simply supported end condition. (m=1, L/R=20, 

h/R=0.002). 

 Iqbal et al. [13] Present 

n N=0.5 N=1 N=15 N=0.5 N=1 N=15 

1 13.321 13.211 12.933 13.321 13.211 12.932 

2 4.5168 4.480 4.3834 4.5195 4.4831 4.3858 

3 4.1911 4.1569 4.0653 4.2014 4.1685 4.0788 

4 7.0972 7.0384 6.8856 7.113 7.0563 6.9091 

5 11.336 11.241 10.999 11.356 11.265 11.032 

From the above comparisons, it is clear that the present 

numerical procedure is efficient and valid and yields accurate 

results. 

Natural frequencies (Hz) for the present configurations of 

three layered cylindrical shells are furnished with variations 

depending on circumferential wave number, n for the half axial 

wave numbers, considering m=1. The end conditions considered 

here are simply supported – simply supported (SS-SS), 

clamped-clamped (C-C), clamped- free (C-F) and clamped- 

simply supported (C-SS). The three volume fraction laws: (i.) 

polynomial, (ii.) exponential and (iii.) trigonometric are applied 

to measure the material composition of FG layer. 

Table 5. Variation of natural frequencies (Hz) of 1st Type with SS-SS and C-C 

boundary condition (L=20, h=0.002, R=1, m=1) with polynomial fraction law. 

 N=0.5 N=1 N=5 

n SS-SS C-C SS-SS C-C SS-SS C-C 

1 13.574 22.325 13.511 22.150 13.377 21.678 

2 4.4803 7.5297 4.4653 7.4698 4.4052 7.3080 

3 3.4889 4.1355 3.4437 4.0902 3.3525 3.9671 

4 5.5134 4.4917 5.4206 4.4126 5.2341 4.1950 

5 8.7339 6.5838 8.5821 6.4538 8.2779 6.0945 

6 12.768 9.4979 12.545 9.3066 12.098 8.7771 

7 17.558 13.023 17.251 12.759 16.636 12.029 

8 23.092 17.113 22.687 16.766 21.878 15.806 

9 29.366 21.756 28.851 21.315 27.822 20.093 

10 36.379 26.948 35.741 26.401 34.466 24.888 

Table 6. Variation of natural frequencies (Hz) of 1st Type with C-F and C-SS 

boundary condition (L=20, h=0.002, R=1, m=1) with polynomial fraction law. 

 N=0.5 N=1 N=5 

n C-F C-SS C-F C-SS C-F C-SS 

1 22.325 10.057 22.150 9.9785 21.811 9.8255 

2 7.5302 3.3181 7.4704 3.2903 7.3540 3.2356 

3 4.1365 2.5839 4.0915 2.5433 4.0028 2.4624 

4 4.4927 4.0833 4.4139 4.0032 4.2580 3.8445 

5 6.5845 6.4683 6.4548 6.3380 6.1980 6.0802 

6 9.4984 9.4564 9.3072 9.2650 8.9292 8.8865 

7 13.033 13.004 12.759 12.740 12.239 12.219 

8 17.113 17.102 16.766 16.755 16.081 16.070 

9 21.756 21.748 21.315 21.307 20.443 20.435 

10 26.948 26.942 26.402 26.396 25.322 25.316 

From the Tables 5 and 6, it is observed the natural frequencies 

(Hz) of 1
st
 Type of cylindrical shells with four boundary 

conditions like SS-SS, C-C, C-F and C-SS for polynomial 

volume fraction law decreases when the value of power exponent 

N increases 

The Tables 7 and 8, describe the natural Frequencies of 2
nd

 

Type of cylindrical shells with four boundary conditions like 

SS-SS, C-C, C-F and C-SS for polynomial volume fraction law. 

It is observed the frequencies increase when power exponent N 

increases 

Table 7. Variation of natural frequencies (Hz) of 2nd Type with SS-SS and C-C 

boundary condition (L=20, h=0.002, R=1, m=1) with polynomial fraction 

law. 

 N=0.5 N=1 N=5 

n SS-SS C-C SS-SS C-C SS-SS C-C 

1 13.442 21.950 13.473 13.473 13.647 22.474 

2 4.4217 7.3967 4.4318 4.4318 4.4890 7.5161 

3 3.3347 3.9608 3.3418 3.3418 3.3823 4.0957 

4 5.1848 4.0480 5.1956 5.1956 5.2558 4.2878 

5 8.1969 5.8092 8.2140 8.2140 8.3084 6.2076 

6 11.980 8.3458 12.005 12.005 12.143 8.9338 

7 16.474 11.432 16.508 16.508 16.697 12.242 

8 21.665 15.018 21.710 21.710 21.959 16.084 

9 27.551 19.090 27.609 27.609 27.925 20.447 

10 34.130 23.645 34.202 34.202 34.593 25.327 

Table 8. Variation of natural frequencies (Hz) of 2nd Type with C-F and C-SS 

boundary condition (L=20, h=0.002, R=1, m=1) with polynomial fraction 

law. 

 N=0.5 N=1 N=5 

n C-F C-SS C-F C-SS C-F C-SS 

1 21.950 9.8997 22.121 9.9768 22.474 10.136 

2 7.3962 3.2569 7.4546 3.2819 7.5757 3.3345 

3 3.9597 2.4573 4.0036 2.4753 4.0947 2.5136 

4 4.0469 3.8202 4.1258 3.8478 4.2868 3.9054 

5 6.1575 6.0386 6.2023 6.0823 6.2946 6.1728 

6 8.8670 8.8249 8.9313 8.8888 9.0639 9.0208 

7 12.153 12.134 12.240 12.222 12.422 12.403 

8 15.968 15.957 18.083 16.073 16.321 16.311 

9 20.299 20.292 20.446 20.439 20.749 20.742 

10 25.148 25.138 25.325 25.320 25.700 25.695 

The variations of cylindrical shells having FG middle layer 

with SS-SS, C-C, C-F and C-SS boundary conditions for both 

types described in the Tables 9-12 for versus n for the half- 

axial wave mode, m=1 with exponential fraction law. 

Table 9. Variation of natural frequencies (Hz) of 1st Type with SS-SS and C-C 

boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n SS-SS C-C SS-SS C-C SS-SS C-C 

1 13.374 22.317 13.311 22.149 13.186 21.821 

2 3.3600 7.5349 3.3438 7.4782 3.3104 7.3677 

3 1.2446 4.0913 1.2388 4.0608 1.2245 4.0014 

4 4.1349 4.3080 4.1166 4.2765 4.0800 4.2154 

5 7.6059 6.2464 7.5722 6.2010 7.5057 6.1132 

6 11.634 8.9922 11.582 8.9269 11.480 8.8007 

7 16.288 12.323 16.216 12.234 16.074 12.061 

8 21.602 16.192 21.505 16.075 21.317 15.848 

9 27.591 20.585 27.468 20.436 27.228 20.147 

10 34.264 25.498 34.112 25.313 33.814 24.956 

Table 10. Variation of natural frequencies (Hz) of 1st Type with C-F and C-SS 

boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n C-F C-SS C-F C-SS C-F C-SS 

1 22.235 9.9054 22.067 9.8309 21.740 9.6853 

2 7.1317 2.4884 7.0792 2.4695 6.9698 2.4315 
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 N=0.5 N=1 N=5 

n C-F C-SS C-F C-SS C-F C-SS 

3 3.1758 0.9217 3.1552 0.9149 3.0966 0.8994 

4 3.4062 3.0623 3.3847 3.0402 3.3247 2.9968 

5 5.6490 5.6330 5.6102 5.5922 5.5236 5.5130 

6 8.5831 8.6162 8.5223 8.5538 8.3971 8.4328 

7 12.026 12.063 11.940 11.975 11.768 11.806 

8 15.966 15.998 15.851 15.882 15.624 15.658 

9 20.407 20.434 20.260 20.286 19.972 19.999 

10 25.355 25.376 25.171 25.192 24.814 24.836 

It is observed from the Tables 8 and 9, the natural 

frequencies (Hz) of 1
st
 Type of cylindrical shells with SS-SS, 

C-C, C-F and C-SS boundary conditions for exponential 

volume fraction law decreases when the value of power 

exponent N increases. 
The natural frequencies (Hz) of 2

nd
 Type of cylindrical 

shells with same mentioned above boundary conditions and 

volume fraction law catalogued in the Tables 11 and 12. It is 

observed the behaviour of natural frequencies is reverse of 2
nd

 

Type. 

Table 11. Variation of natural frequencies (Hz) of 2nd Type with SS-SS and C-C 

boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n SS-SS C-C SS-SS C-C SS-SS C-C 

1 13.248 21.959 13.311 22.123 13.439 22.465 

2 3.3257 7.4147 3.3418 7.4702 3.3760 7.5853 

3 1.2283 4.0281 1.2340 4.0580 1.2487 4.1199 

4 4.0992 4.2461 4.1172 4.2770 4.1548 4.3407 

5 7.5417 6.1591 7.5751 6.2035 7.6433 6.2952 

6 11.536 8.8671 11.587 8.9310 11.691 9.0628 

7 16.151 12.152 16.223 12.240 16.369 12.420 

8 21.421 15.267 21.516 16.083 21.709 16.320 

9 27.360 20.299 27.481 20.446 27.728 20.747 

10 33.978 25.144 34.128 25.326 34.434 25.699 

Table 12. Variation of natural frequencies (Hz) of 2nd Type with C-F and 

CC-SS boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n C-F C-SS C-F C-SS C-F C-SS 

1 21.8769 9.7576 22.0404 9.8306 22.3811 9.9825 

2 7.0099 2.4494 7.0614 2.4680 7.1716 2.5075 

3 3.1066 0.9046 3.1269 0.9113 3.1777 0.9274 

4 3.3397 3.0190 3.3610 3.0406 3.4134 3.0860 

5 5.5596 5.5544 5.5978 5.5943 5.6818 5.6771 

6 8.4568 8.4964 8.5165 8.5575 8.6430 8.6839 

7 11.8545 11.8957 11.9390 11.9813 12.1157 12.1581 

8 15.7410 15.7764 15.8537 15.8901 16.0880 16.1245 

9 20.1214 20.1506 20.2658 20.2957 20.5650 20.5951 

10 25.0006 25.0244 25.1803 25.2047 25.5519 25.5764 

The variations of cylindrical shells having FG middle layer 

with SS-SS, C-C, C-F and C-SS boundary conditions for both 

types described in the Tables 13-16 for versus n for the half- 

axial wave mode, m=1 with trigonometric fraction law. 

Table 13. Variation of natural frequencies (Hz) of 1st Type with SS-SS and C-C 

boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n SS-SS C-C SS-SS C-C SS-SS C-C 

1 12.7887 21.1528 12.7325 20.9910 12.6077 20.6817 

2 4.2153 7.0933 4.1950 7.0391 4.1552 6.9355 

3 3.2995 3.8996 3.2840 3.8699 3.2528 3.8131 

4 5.2247 4.2520 5.2002 4.2199 5.1521 4.1585 

5 8.2760 6.2383 8.2372 6.1915 8.1615 6.1015 

6 12.0972 8.9993 12.0405 8.9318 11.9302 8.8021 

7 16.6337 12.3380 16.5556 12.2455 16.4042 12.0676 

8 21.8714 16.2115 21.7714 16.0899 21.5724 15.8563 

9 27.8155 20.6086 27.6849 20.4541 27.4319 20.1517 

10 34.4549 25.5258 34.2951 25.3345 33.9817 24.9666 

Table 14. Variation of natural frequencies (Hz) of 1st Type with C-F and C-SS 

boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n C-F C-SS C-F C-SS C-F C-SS 

1 21.1529 9.4714 20.9911 9.3990 20.6817 9.2604 

2 7.0938 3.1359 7.0396 3.0981 6.9357 3.0565 

3 3.9006 2.4436 3.8710 2.4253 3.8136 2.3928 

4 4.2529 3.8694 4.2210 3.8405 4.1590 3.7898 

5 6.2389 6.1293 6.1922 6.0834 6.1018 6.0034 

6 8.9998 8.9593 8.9323 8.8922 8.8024 8.7755 

7 12.3383 12.3190 12.2458 12.2267 12.0678 12.0664 

8 16.2117 16.2001 16.0902 16.0786 15.8564 15.8680 

9 20.6088 20.6003 20.4543 20.4459 20.1572 20.1780 

10 25.5260 25.5189 25.3346 25.3276 24.4967 24.9959 

It is observed from the Tables 13 and 14, the natural 

frequencies (Hz) of 1
st
 Type of cylindrical shells with SS-SS, 

C-C, C-F and C-SS boundary conditions for trigonometric 

volume fraction law decreases when the value of power 

exponent N increases. 

The natural frequencies (Hz) of 2
nd

 Type of cylindrical 

shells with same mentioned above boundary conditions and 

volume fraction law catalogued in the Tables 15 and 16. It is 

observed the behaviour of natural frequencies is reverse of 1
st
 

Type. 

Table 15. Variation of natural frequencies (Hz) of 2nd Type with SS-SS and C-C 

boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n SS-SS C-C SS-SS C-C SS-SS C-C 

1 12.678 20.895 12.753 21.054 12.896 21.378 

2 4.1767 7.0094 4.2010 7.0626 4.2487 7.1711 

3 3.2651 3.8502 3.2817 3.8793 3.3156 3.9387 

4 5.1712 4.1898 5.1956 4.2212 5.2454 4.2853 

5 8.1929 6.1432 8.2312 6.1890 8.3089 6.2829 

6 11.976 8.8611 12.032 8.9272 12.145 9.0625 

7 16.468 12.148 16.545 12.238 16.701 12.424 

8 21.657 15.962 21.758 16.081 21.962 16.324 

9 27.540 20.291 27.669 20.472 27.928 20.752 

10 34.115 25.133 34.275 25.320 34.597 25.704 

Table 16. Variation of natural frequencies (Hz) of 2nd Type with C-F and 

CC-SS boundary condition (L=20, h=0.002, R=1, m=1). 

 N=0.5 N=1 N=5 

n C-F C-SS C-F C-SS C-F C-SS 

1 20.895 9.3688 21.054 9.4399 21.378 9.5852 

2 7.0089 3.0861 7.0621 3.1095 7.1709 3.1577 

3 3.8492 2.4076 3.8783 2.4256 3.9382 2.4632 

4 4.1889 3.8091 4.2202 3.8374 4.2848 3.8961 

5 6.1426 6.0341 6.1883 6.0790 6.2825 6.1715 

6 8.8607 8.8208 8.9267 8.8865 9.0623 9.0213 

7 12.147 12.123 12.238 12.219 12.424 12.404 

8 15.961 15.950 16.080 16.069 16.324 16.312 

9 20.291 20.282 20.442 20.434 20.752 20.743 

10 25.138 25.125 25.320 25.313 25.704 25.696 
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4. Conclusions 

The vibration of cylindrical shells with FGM express by 

using the Raleigh-Ritz technique in this method. Three volume 

fraction laws are used to define the middle layer of tri-layer 

cylindrical shells. Two types of cylindrical shells are discussed 

in this method. The middle layer of cylindrical shell is FG 

which is composition of two materials Nickel and Stainless 

steel. At the inward surface of shell Stainless steel attached, 

while Nickel is attached at outward surface in 1
st
 Type of shells. 

The position of these materials will interchange in 2
nd

 Type. The 

results for simply-supported-simply supported, 

clamped-clamped, clamped-free and clamped- simply 

supported boundary conditions are obtained by this method. 

Following results are obtained by this present shell problem. 

I. Circumferential wave number affect on the natural 

frequencies (Hz) of both Types of cylindrical shells. The 

frequencies increased and decreased by them. 

II. Comparison of present obtained results with exponent 

power law for three volume fraction laws with the results 

of Loy et al.[4] and Naeem et al. [10-11] shows that they 

are good agreement with each other. 

III. It observe that in 1
st
 Type of cylindrical shell frequency is 

increasing as N increase and in 2
nd

 Type it decreasing 

when N increase, due to interchanging the materials M1 

and M2. 

IV. The comparison of frequencies values of three volume 

fraction laws give the result that the frequency of 1
st
 Type 

cylindrical shell increasing by polynomial fraction law, 

while in 2
nd

 Type the frequency of cylindrical shells with 

clamped-clamped boundary condition increased by 

exponential law and other with polynomial fraction law. 

The comparison of variations of frequencies estimated 

that the recent method is valid and accurate. The obtained 

results are very close to previous result. 
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