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Abstract: In this paper the velocity field and the adequate shear stress corresponding to the rotational flow of an Oldroyd-B 

fluid, between two infinite coaxial circular cylinders, are determined by applying the finite Hankel transforms. The motion is 

produced by the inner cylinder that, at time t = 0+, is subject to a time-dependent rotational shear stress. The solutions that have 

been obtained are presented under series form in terms of Bessel functions, satisfy all imposed initial and boundary conditions. 

Moreover, these solutions satisfy both the governing differential equations and all imposed initial and boundary conditions. The 

corresponding solutions for Maxwell, second grade and Newtonian fluids are obtained as limiting case of general solutions. 

Finally, the influence of the pertinent parameters on the velocity and shear stress of the fluid is analyzed by graphical 

illustrations. 
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1. Introduction 

Due to the several technological applications the flow 

analysis of non-Newtonian fluids is very important in the 

fields of fluid mechanics. Many investigators have not studied 

the flow behavior of non-Newtonian fluids in various flow 

fields due to the complex stress - strain relationship [1]. The 

study of non-Newtonian fluids has got much attention because 

of their practical applications. Non-Newtonian characteristics 

are displayed by a number of industrially important fluids 

including polymers, molten plastic, pulps, microfluids and 

food stuff display. Exact analytic solutions for the flows of 

non-Newtonian fluids are important provided they correspond 

to physically realistic problems and they can be used as checks 

against complicated numerical codes that have been 

developed for much more complex flows. Many 

non-Newtonian models such as differential type, rate type and 

integral type fluids have been proposed in recent years. 

Among them, the rate type fluid models have received special 

attention. The differential type fluids do not predict stress 

relaxation and they are not successful for describing the flows 

of some polymers. 

Here, we shall consider a model due to Oldroyd [2], which 

contains as special cases Maxwell, second grade and 

Newtonian Models. For Newtonian fluid, the velocity field for 

a fluid contained in an annular region between two co-axial 

circular cylinders, is given in [3]. The first exact solutions for 

motions of Oldroyd-B fluids in cylindrical domain seem to be 

those of Waters and King [4]. In the meantime many papers 

regarding such motions have been published but we mention 

here only a few of those regarding Oldroyd-B or more general 

fluid [5-16]. 

To the best of our knowledge, the first exact solutions for 

motions of non-Newtonian fluids, due to a constant shear 

stress on the boundary, are those of Waters and King [17] over 

an infinite plate, and Bandelli and Rajagopal [18] between two 

co-axial circular cylinders. Similar solutions for the flow due 

to an infinite plate that applies a constant/time-dependent 

shear to a non-Newtonian fluid, have been also obtained by 

Erdogan [19], Fetecau and Kannana [20], Awan et al. [21] and 

Kamran et al. [22]. The computer techniques make the 

complete integration of the momentum equation feasible, the 

accuracy of the numerical results can be established by 
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comparison with an exact solution. Consequently, as in the 

case of the motion problems in which the velocity is given on 

the boundary, it is necessary to develop a large class of exact 

and approximate solutions for problems in which the 

boundary (or a part of the boundary) applies a shear stress to 

the fluid. 

The purpose of this paper is to establish exact solutions 

corresponding to the motion of an Oldroyd-B fluid between 

two co-axial circular cylinders, in which outer cylinder being 

fixed and the inner cylinder applying a time-dependent 

rotational shear stress to the fluid. The Oldroyd-B fluids store 

energy as linearized elastic solids and their dissipation is due 

to two dissipative mechanisms which arise from a mixture of 

two viscous fluids. They have been extensively used in many 

applications although an Oldroyd-B fluid cannot describe 

either shear thinning or shear thickening. However, they can 

describe stress-relaxation, creep and the normal stress 

differences that develop during simple shear flows. This 

model is viewed as one of the most successful models for 

describing the response of a subclass of polymeric liquids. It is 

worthy to point out that the solutions that have been obtained 

satisfy both the governing differential equations as well as all 

imposed initial and boundary conditions. The solutions 

corresponding to Maxwell, second grade and Newtonian 

fluids, performing the same motion, are also obtained as 

limiting cases of general solutions. Finally, the influence of 

the pertinent parameters on the fluid motion, as well as a 

comparison between the four models, is shown by graphical 

illustrations. 

2. Constitutive and Governing Equations 

The Cauchy stres T for an incompressible Oldroyd-B fluid 

is related to the fluid motion by the following constitutive 

equations 

T = I S,

S (S LS SL ) = [A (A LA AL )],
T T

r

p

λ µ λ

− +

+ − − + − −
      (1) 

where Ip− denotes the indeterminate spherical stress due to the 

constraint of incompressibility, S  is the extra-stress tensor, L

is the velocity gradient A = L + L
T is the first Rivlin-Ericksen 

tensor, µ  is the dynamic viscosity of the fluid, λ and

(< )rλ λ are relaxation and retardation times, the superposed 

dot indicates the material time derivative and the superscript 
T  denotes the transpose operation. The model characterized 

by Eqs. (1) contains as special cases the upper convected 

Maxwell model for = 0
r

λ and the Newtonian fluid model for 

= = 0
r

λ λ . In some special flows, like those to be considered 

here, the governing equations corresponding to the Oldroyd-B 

fluids resemble those of second grade fluids. Consequently, it 

is to be expected that the general solutions for Oldroyd-B 

fluids contain as special cases both the solutions 

corresponding to Maxwell and Newtonian fluids and those for 

second grade fluids. 

For the problem under consideration we assume a velocity 

field V  and an extra-stress tensor S of the form as studied by 

Bandeli and Rajagopal [18]. 

V = V( , ) = ( , )e , S = S( , ),r t w r t r tθ       (2) 

where eθ  is the unit vector in the θ -direction of the 

cylindrical coordinates system r , θ  and z . For such flows 

the constraint of incompressibility is automatically satisfied. If 

the fluid is at rest up to the moment = 0t , then 

( ,0) = 0, S( ,0) = 0,v r r             (3) 

and Eqs. 2(1)  and (2) imply = = = = 0rr rz zz zS S S S θ  and 

we obtain the meaningful equation [5,6,13] 

( , ) = ( , ),
1

1 1
r

r t w r t
t t r r

τ µλ λ∂ ∂ ∂    + + −    ∂ ∂ ∂    
  (4) 

where =
r

S θτ  is the non zero shear stress. 

Neglecting body forces and in the absence of a pressure 

gradient in the axial direction, the balance of the linear 

momentum leads to the relevant equation [5] 

( , ) 2
= ( , ),

w r t
r t

t r r
ρ τ∂ ∂ + ∂ ∂ 

          (5) 

where ρ  is the constant density of the fluid. Eliminating 

( , )r tτ  between Eqs. (4) and (5), the governing equation for 

velocity is 

2

2 2

( , ) 1 1
1 = ( , )

w r t
w r t

t t t r rr r
λ ν α  ∂ ∂ ∂ ∂ ∂   + + × + −    ∂ ∂ ∂ ∂∂     

(6) 

where = /ν µ ρ  is the kinematic viscosity of the fluid and 

= rα ν λ . 

The partial differential equations (4) and (6), with suitable 

initial and boundary conditions, can be solved in principle by 

several methods, their efficiency depending on the domain 

definition. The integral transforms technique represents a 

systematic, efficient and powerful tool. We will use Hankel 

transform to eliminate the spatial variable. In order to avoid 

the lengthy and burdensome calculations of residues and 

contour integrals, we shall use the finite Hankel transform. 

3. Rotational Flow Through an Annulus 

Consider an incompressible Oldroyd-B fluid at rest in an 

annular region between two infinitely long co-axial circular 

cylinders. After time = 0t  let the inner cylinder of radius 1R  

be set in rotation about its axis by a time-dependent torque per 

unit length 1 12 ( , )R R tπ τ , where 

/

1
( , ) = [ (1 )]; = constant,

t
R t f t e f

λτ λ −− −      (7) 

and let the outer cylinder of radius 
2 1
(> )R R  be held fixed. 

Owing to the shear the fluid between cylinders is gradually 

moved. Its velocity is of the form 1(2) , the governing 

equations are given by Eqs. (4) and (6) while the appropriate 
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initial and boundary conditions are 

1 2

( , 0)
( , 0) = = 0, ( , 0) = 0; ( , ],

w r
w r r r R R

t
τ

∂
∈

∂
        (8) 

2

= 1

= 1

1 ( , ) =

( , ) = ; ( , ) = 0; > 0.

| 1

1
|

r R

r R

rr t
t

w r t ft w R t t

t

r r

λ τ µ λ∂
+

∂

×

∂   +   ∂   

∂ − ∂ 

    (9) 

The 
1

( , )R tτ  given by Eq. (7) is just the solution of the 

differential equation 1(9) . 

3.1. Calculation of the Velocity Field 

We shall denote by [23,24] 

2

1

( , ) = ( , ) ( , ) ,
R

nH n n
R

w r t rw r t B r r dr∫            (10) 

the finite Hankel transform of ( , ),w r t where 

1 2 1 2 1 1
( , ) = ( ) ( ) ( ) ( ),

n n n n n
B r r J rr Y R r J R r Y rr−        (11) 

where ( )pJ ⋅  and ( )pY ⋅  are the Bessel functions of the first 

and second kind of order p  and nr  are the positive roots of 

the transcendental equation 2( , ) = 0B R r . 

The inverse Hankel transform of ( , )nH nw r t  is given by 

[23,24] 

2 22

1 2

2 2
=1 2 1 1 2

( ) ( , )
( , ) = ( , ).

2 ( ) ( )

n n n

nH n

n n n

r J R r B r r
w r t w r t

J R r J R r

π ∞

−∑     (12) 

Now Multiplying Eq. (6) by ( , )nrB r r , then integrating it 

with respect to r from 1R  to 2R , and using the identity 

2

1

2

2 2

2

=
1

1 1
( , ) ( , )

2 1
= ( , ) | ( ),

R

n
R

r R n nH

n

rB r r w r t dr
r rr r

w r t r w t
r r rπ

 ∂ ∂+ − ∂∂ 

∂ − − ∂ 

∫
     (13) 

as well as the boundary condition 2(9) , we find that 

2 2 2
( ) (1 ) ( ) ( ) = , > 0.nH n nH n nH

n

ft
w t r w t r w t t

r
λ α ν

ρπ
+ + +ɺɺ ɺ  (14) 

In view of Eqs. 1,2(8) , it must satisfy 

(0) = (0) = 0.nH nHw wɺ            (15) 

The solution of the ordinary differential equation (14), with 

the initial conditions (15), has the simple form 

22 1

3 2

2 1

1 2
2 1

2 1

12
( ) =

1 ,

p p
n n

n

nH

n nn n

p p
n n

n n

n n

t t
rf e e

t t
p pr r

t t
p e p e

p p

αω
µπ ν

 +−− −
−

 −
 × −

 −  

     (16) 

where
2 2 2 2

1 2

(1 ) (1 ) 4
, = .

2

n n n

n n

r r r
p p

α α νλ
λ

− + ± + −
 

Now, applying the inverse Hankel transform to Eq. (16) and 

using the identity 

2

2 2 22
2 3

1 1

4
( ) ( , ) = ,n

R
n

RR
r R B r r dr

Rrπ
 

−  
 

∫     (17) 

we obtain for velocity field ( , )w r t  the expression 

2
2 22 1 22 1

1 2 2 11 2

2 2 2
=12 2 1 2 12 1 1 2

( ) ( , ) 1
( , ) = [ (1 )],

2 [ ( ) ( )]

p pp p n nn n
n n n n n

nn n n n nn n n

t tt t
J R r B r r r p e p eR Rft f e e

w r t r
R r r p p p pJ R r J R r r

απ
µ µ ν

∞   + −−− − + −   − −−   
∑     (18) 

it can be written in simpler form as 

( )
2

22

1 21 2

3 2 2
=12 2 1 1 2

2 2 1 22 1
1 2 2 1

3 2 2 2
=1 2 1 2 12 1 1 2

( ) ( , )
( , ) =

2 [ ( ) ( )]

( ) ( , ) 1

[ ( ) ( )]

n n

r

n n n n

p pp p n nn n
n n n n n

n n n n nn n n n

J R r B r rR Rf f
w r t r t

R r r J R r J R r

t tt t
J R r B r r r p e p ee e

p p p pr J R r J R r r

πλ
µ µν

α
ν

∞

∞

  
− − −   −   

  + −−
 − −
 − −−   

∑

∑ ,


                   (19) 

or equivalently 

( )
2

2 2 22 2 1
1 2 1 21 2

3 2 2
=12 2 12 1 1 2

( ) ( , )
( , ) = 1 .

2 [ ( ) ( )]

p p
n n

n n n n

r

n n nn n n

t t
J R r B r r p e p eR Rf f

w r t r t
R r p pr J R r J R r

πλ λ
µ µν

∞     −
 − − − × −    −−     

∑        (20) 

3.2. Calculation of the Shear Stress 

Solving partial differential equation (4)  with respect to ( , )r tτ  and using the initial condition 3(8) , we find that 
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0

1
( , ) = 1 ( , ) .

t s
t

rr t e e w r s d s
s r r

λ λµτ λ
λ

− ∂ ∂  + −  ∂ ∂  
∫                           (21) 

Substituting ( , )w r t  from Eq. (20) into Eq. (21) we get after lengthy but straightforward computations the simple form of the 

shear stress 

( )
2 2 1 2

/ 1 2 2 11

2 2 2
=1 2 12 1 1 2

( ) ( , )
( , ) = 1 1 ,

[ ( ) ( )]

p p
n n

t n n n n

n n nn n n

t t
J R r B r r p e p eR f

r t f t e
r p pr J R r J R r

λ πτ λ
ν

∗∞
−

 −    − − + × −   −−    
∑         (22) 

where
2 2 1 2 1 2

( , ) = ( ) ( ) ( ) ( ).
n n n n n

B r r J rr Y R r J R r Y rr
∗ −  

4. Limiting Cases 

4.1. Maxwell Fluid 

Taking the limit as 0rλ →  in Eqs. (20) and (22), we recover the solutions 

2
2 2 22 4 3

1 2 3 41 2

3 2 2
=12 4 32 1 1 2

( ) ( , )
( , ) = (1 ),

2 [ ( ) ( )]

p p
n n

n n n n

M

n n nn n n

t t
J R r B r r p e p eR Rft f

w r t r
R r p pr J R r J R r

π λ
µ µν

∞   −
− − × −   −−   

∑          (23) 

( )
2 2 3 4

/ 1 2 4 31

2 2 2
=1 4 32 1 1 2

( ) ( , )
( , ) = 1 1 ,

[ ( ) ( )]

p p
n n

t n n n n

M

n n nn n n

t t
J R r B r r p e p eR f

r t f t e
r p pr J R r J R r

λ πτ λ
ν

∗∞
−

 −    − − + × −   −−    
∑         (24) 

corresponding to a Maxwell fluid performing the same motion obtained by Jamil and Fetecau [25] by using different technique. 

In the above relations 

2

3 4

1 1 4
, = .

2

n

n n

r
p p

νλ
λ

− ± −
 

4.2. Second Grade Fluid 

When 0λ →  in Eqs. (20) and (22), we obtain the solutions 

( )
2

2 22

21 21 2

3 2 2 2
=12 2 1 1 2

( ) ( , )1
( , ) = 1 (1 )exp ,

2 [ ( ) ( )] 1

n n n

SG r n

n n n n n

J R r B r r r tR R f
w r t r f t r

R r r J R r J R r r

νπλ α
µ µν α

∞       − − − × − + −     − +       
∑       (25) 

2 2 2

1 21

2 2 2 2
=1 2 1 1 2

( ) ( , )
( , ) = 1 exp ,

[ ( ) ( )] 1

n n n

SG

n n n n n

J R r B r r r tR f
r t ft

r r J R r J R r r

νπτ
ν α

∗∞   −  + × −     − +    
∑                   (26) 

corresponding to a second grade fluid. Eq. (25) can also be written in the following form 

2
2 22

21 21 2

3 2 2 2
=12 2 1 1 2

( ) ( , )1
( , ) = (1 ) 1 exp .

2 [ ( ) ( )] 1

n n n

SG n

n n n n n

J R r B r r r tR R f
w r t r ft r

R r r J R r J R r r

νπ α
µ µν α

∞     
− − × + − −      − +      

∑          (27) 

4.3. Newtonian Fluid 

Finally when 0λ →  in Eqs. (23) and (24) or 0rλ →  and then 0α →  into Eqs. (25) and (26), the solutions 

( )( )
2

22

21 21 2

2 2
=12 2 1 1 2

( ) ( , )1
( , ) = 1 exp ,

2 [ ( ) ( )]

n n

N n

n n n n

J R r B r rR R f
w r t r ft r t

R r r J R r J R r

π ν
µ µν

∞  
− − × − −   −   

∑              (28) 

( )( )
2 2

21 21

2 2
=1 2 1 1 2

( ) ( , )
( , ) = 1 exp .

( ) ( )

n n

N n

n n n

J R r B r rR f
r t ft r t

r J R r J R r

πτ ν
ν

∗∞  + × − −  − 
∑                  (29) 



 American Journal of Applied Mathematics 2015; 

 

for a Newtonian fluid are recovered. 

Of course when 0λ →  in Eq. (7), we find that

1( , ) = .R t ftτ          

Consequently, the solutions (25) and (26), as well as (28) 

and (29), correspond to a couple ft  on the boundary.

5. Numerical Results and Conclusions

The purpose of this paper was to provide exact solutions for 

the velocity field ( , )w r t  and the shear stress 

corresponding to the flow of an Oldroyd-B fluid between two 

infinite co-axial cylinders, the inner cylinder being subject to a 

time-dependent torque. The solutions that have been obtained, 

presented under series form in terms of Bessel functions 

2
( )J ⋅ , 

1
( )Y ⋅  and 

2
( )Y ⋅ , satisfy both the governing equations and 

all imposed initial and boundary conditions. They can easily 

be simplified to give similar solutions for Maxwell, second 

grade and Newtonian fluids. The solutions for second grade 

and Newtonian fluids correspond to a time dependent torque 

ft  on the boundary. 

In order to exhibit some relevant physical aspects of the 

obtained results, the diagrams of the velocity 

the shear stress ( , )r tτ  are plotted against 

values of t  and of the pertinent parameters. From Figs. 

and 1b  the influence of the rigid boundary on the fluid motion 

is clearly evident. The velocity of the fluid, as well as the shear 

stress in absolute value, is an increasing function with respect 

to t  and a decreasing one with respect to 

Figure 1. Profiles of the velocity ( , )w r t and shear stress 

Figure 2. Profiles of the velocity ( , )w r t  and shear stress 
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in Eq. (7), we find that 

            (30) 

25) and (26), as well as (28) 

on the boundary. 

Results and Conclusions 

The purpose of this paper was to provide exact solutions for 

and the shear stress ( , )r tτ  

B fluid between two 

axial cylinders, the inner cylinder being subject to a 

dependent torque. The solutions that have been obtained, 

presented under series form in terms of Bessel functions 
1
( )J ⋅ , 

, satisfy both the governing equations and 

all imposed initial and boundary conditions. They can easily 

be simplified to give similar solutions for Maxwell, second 

grade and Newtonian fluids. The solutions for second grade 

nd to a time dependent torque 

In order to exhibit some relevant physical aspects of the 

obtained results, the diagrams of the velocity ( , )w r t  and of 

are plotted against r  for different 

eters. From Figs. 1a  

the influence of the rigid boundary on the fluid motion 

is clearly evident. The velocity of the fluid, as well as the shear 

stress in absolute value, is an increasing function with respect 

 r . The veolcity is 

decreasin with respect r due to the fact that we are applying 

time depemdent stress on the inner cylinder. 

our solution satisfy the boundary coditions as the velocity on 

the outer cylinder is zero. In Figs. 2, it is shown

of the kinematic viscosity ν  on the fluid motion. It is clearly 

seen that the velocity as well as the shear stress in absolute 

value, is a decreasing function with respect to 

fact that velocity of fluid decreases as the flui

thick, as the incrasing value of viscosity give more resistance 

to fluid to flow. Figs. 3  and 

relaxation and retardation times 

motion. The two parameters, as it was to be expected, have 

opposite effects on the fluid motion. Both the velocity and the 

shear stress (in absolute value) are decreasing functions with 

respect to λ  and increasing ones with regard to 

Finally, for comparison, the diagrams of 

corresponding to the four models (Oldroyd

second grade and Newtonian) are presented in Figs. 

same values of the common pertinent parameters and the time 
t . In all cases the velocity of the fluid is a decreasing function 

with respect to r . The Newtonian fluid as it results from

5(a), is the swiftest on the whole flow domain while the 

Oldroyd-B fluid is the slowest excepting a small region near 

the outer cylinder. The comparison of Figs. 5 (a) and (b), 

clearly shows that for large values of time, Oldroyd

Maxwell and second grade fluid tends to Newtonian fluid. 

Consequently the non-Newtonian effects disappear for 
t → ∞ . The units of the parameters into Figs. 

units and the roots nr  have been approximated by 

2 1(2 1) /[2( )]n R Rπ− − . 

and shear stress ( , )r tτ  given by Eqs. (20) and (22) for 
1 2

= 0.6, = 0.9, = 5,R R f −  = 0.57, = 32, = 4, = 3ν µ λ λ

and shear stress ( , )r tτ  given by Eqs. (20) and (22) for 
1 2

= 0.6, = 0.9, = 5,R R f −  = 10, = 5, = 1t
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due to the fact that we are applying 

time depemdent stress on the inner cylinder. This shows that 

satisfy the boundary coditions as the velocity on 

In Figs. 2, it is shown the influence 

on the fluid motion. It is clearly 

seen that the velocity as well as the shear stress in absolute 

value, is a decreasing function with respect to ν . It is due the 

fact that velocity of fluid decreases as the fluid become ore 

thick, as the incrasing value of viscosity give more resistance 

and 4  show the influence of the 

relaxation and retardation times λ  and rλ  on the fluid 

motion. The two parameters, as it was to be expected, have 

effects on the fluid motion. Both the velocity and the 

shear stress (in absolute value) are decreasing functions with 

and increasing ones with regard to rλ . 

Finally, for comparison, the diagrams of ( , )w r t  

corresponding to the four models (Oldroyd-B, Maxwell, 

second grade and Newtonian) are presented in Figs. 5  for the 

same values of the common pertinent parameters and the time 

. In all cases the velocity of the fluid is a decreasing function 

. The Newtonian fluid as it results from Fig. 

5(a), is the swiftest on the whole flow domain while the 

B fluid is the slowest excepting a small region near 

the outer cylinder. The comparison of Figs. 5 (a) and (b), 

clearly shows that for large values of time, Oldroyd-B, 

d grade fluid tends to Newtonian fluid. 

Newtonian effects disappear for 

. The units of the parameters into Figs. 1 5− , are SI 

have been approximated by 

 

= 0.57, = 32, = 4, = 3
r

ν µ λ λ  and different values of t. 

 

= 10, = 5, = 1
r

λ λ  and different values of .ν  



30 M. Imran et al.:  Taylor-Couette Flow of an Oldroyd

Figure 3. Profiles of the velocity ( , )w r t  and shear stress 

values of .λ  

Figure 4. Profiles of the velocity ( , )w r t  and shear stress 

values of .
r

λ  

Figure 5. Profiles of the velocity ( , )w r t

1 2= 0.5, = 0.9, = 5, = 3, = 0.5, = 32rR R f λ λ µ−  and 
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