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Abstract: The general theme of this article is the theorical study of phase field systems, more precisely that of 

Caginalp. This work is motivated by their immense applications in many physical fields, industriels… The Caginalp 

problem gives the authors a formulation based on the fact that the phases separated by an unknown regular interface, 

which evolves in a regular way. The authors’ aim in this paper is to study on Caginalp for a conserved Phase-field 

with two temperatures. The authors have worked on the existence and uniqueness of the Caginalp phase field in a 

conservative version. Moreover, the authors have also used Dirichlet type boundary conditions with a regular 

potential; existence and uniqueness are analyzed by means of absorbing bounded sets. The authors build the solution 

of the conservative problem on the estimates which lead authors to treat the problem well to arrive at the result. These 

equations are known as the conserved phase-field based on type II heat conduction and two temperatures. The 

authors consider a regular potential, more precisely a polynomial with edge conditions of Dirichlet type. More 

precisely, the authors prove the existence and uniqueness of solutions. 
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1. Introduction 

The Caginalp proposed two phase-field system in [10, 12], 

namely 

��
�� � ∆� � �	�
 � �             (1) 

�

�� � ∆� � �

��
��                (2) 

Called no conserved system, and 

��
�� � ∆

�� � ∆�	�
 � �∆�           (3) 

�

�� � ∆� � �

��
��                (4) 

Called no conserved system (in the sense that, when 

endowed with Dirichlet boundary conditions, the spatial 

average of u is the order parameter, T is the relative 

temperature (defined as T= �� � �� , where �� is the absolute 

temperature and ��  is the derivative of a double-well 

potential F (a typical choice is F(s)=
�
� 	�

� � 1
�, hence the 

usual cubic nonlinear term �	�
 � �� � �furthermore, we 

have set all physical parameter equal to one. These systems 

have been introduced to model phase transition phenomena, 

such as melting-solidification phenomena, and have been 

much studied from a mathematic pointof view. Refer (total 

Ginzbureg-landau) free energy 

Ψ	�, �
 � � ��� |��|
� � �	�
 � �� � �

� �
�� ��   (5) 

Where Ω  is the domain occupied by the system (we 

assum here that it is a bounded and regular domain of "#, 

n=2 or 3, with boundary Γ) and the enthalpy. 
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% � � � �                   (6) 

As far as the evolution equation for the order parameters is 

concerned, one postulates the relaxation dynamics (with 

relaxation parameter set equal to one) 

��
�� � �

�&
��                   (7) 

Where 
'
'� denotes a variational derivate with respect to u, 

which yields (1). Then, we have the energy equation 

�(
�� � ��)*+                 (8) 

Where q is the heat flux. Assuming finally the usual 

fourier law for heat condition. 

+ � ���                  (9) 

We obtain (2) Now, one essential drawback of the Fourier 

law is that it predicts that thermal signals propagate at an in 

infinite speed, which violates causality (the so-called paradox 

of heat conduction) To overcome this drawback, or at least to 

account for more realistic features, several alternative to the 

Fourier law, base, e.g., on the Max-well-cattaneo law or recent 

laws from thermo mechanics, in [8, 14, 16, 22]. 

In the late 1960s, several authors proposed a heat 

conduction theory based on two temperatures (see [16]). 

More precisely, one now considers the temperature T and the 

thermo dynamic temperature� . In particular, for simple 

materials, these two temperature are shown to coincide. 

However, for non-simple materials, they differ and are 

related as follows 

� � �∆�                  (10) 

The Caginalp system, based on this two temperature 

theory and the usual Fourier law, was studied in [17]. 

Our aim in this paper is to study a variant of the caginalp 

phase-field system based on the type II thermomechanics theory 

(see [11]) with two temperature recently proposed in [16]. 

In that case, the free energy reads, in terms of the (relative) 

thermo mechanics temperature�. 

Ψ	�, �
 = � ��� |∇�|� + �	�
 − �� − �
� ��� ��   (11) 

and (7) yields, in view of (10), the following evolution 

equation for the order parameter 

��
�� − ∆� − �	�
 = −∆�           (12) 

Furthermore, the enthalpy now reads 

% = � + � = � − ∆�            (13) 

Which yields, owing to (8), the energy equation 

�,
�� − ∆� − �)*+ = − ��

��            (14) 

Finally, the heat flux is given, in the type II theory with 

two temperatures, by (see [1, 3, 14, 23]) 

+ = −∇�                   (15) 

Where 

-	., �
 = � �	/, �
�/ + -0	�
�
0         (16) 

is the conductive thermal displacement. Nothing that 

� = �1
�� , we finally deduce from (12) and (14)-(15) the 

following variant of the Caginalp phase-fields system (see 

[7]): 

��
�� − ∆� − �	�
 = �1

��             (17) 

�21
��2 − ∆ �1�� − ∆- = − ��

��            (18) 

In this paper, we conder the following conserved 

phase-field model: 

��
�� + ∆�� − ∆�	�
 = −∆ �1��          (19) 

�21
��2 − ∆ �1�� − ∆- = − ��

��            (20) 

These equation are known as the conserved phase-fields 

system model (see [2, 5, 19, 22]) based on type II heat 

conduction and two temperatures [3, 4], conservative in the 

sens that, when endowed with Neumann boundary conditions, 

the spatial average of the order parameter is a conserved 

quantity. Indeed, in that case, integrating (19) over the spatial 

domainΩ, we have the conserved of mass 

< �	.
 >=< �	0
 > . ≥ 0          (21) 

<.>=
�

89: � ��                (22) 

Denotes the spatial average. Furthermore, integrating (20) 

over, obtain 

< -	.
 >=< -	0
 > . ≥ 0         (23) 

Our aim in this paper is is to study the existence and 

uniqueness of solution of (17)-(18). We consider here only 

one the type boundary condition namely, Dirichlet (see [6, 

18]). Furthermore, we consider regular term f (a usual choice 

being the cubic term �	�
 = �� − �. 
We consider the following initial and boundary value 

problem 

��
�� + ∆�� − ∆�	�
 = −∆ �1��            (24) 

�21
��2 − ∆ �1�� − ∆- = − ��

��             (25) 

�|; = Δ�|; = -|; = 0, on Γ          (26) 

�|=>0 = �0, -|=>0 = -0, 
�1
�� = -�        (27) 

As far as the nonlinear term f is concerned, we assume that 

� ∈ @�	"
, �	0
 = 0             (28) 

�A	�
 ≥ −@0, @0 ≥ 0, � ∈ "          (29) 



207 Narcisse Batangouna et al.:  On the Caginalp for a Conserved Phase-Field with Two Temperatures   

 

�	�
� ≥ @�B	�
 � @� 	≥ �@�, @� > 0, @�, @� ≥ 0 

� ∈ "                   (30) 

Where B	�
 = � �	D
�D.E
0  In particular, the usual cubic 

non linear term �	�
 = �� − � satisfies these assumpions. 

Remark 2.1. We take here, for simplicity, Dirichlet 

boundary conditions. However, we obtain the same results 

for Neumann Boundary condition namely, 

��
�F = �G�

�F = �H
�F IJ	Γ             (31) 

Where K denotes the unit outer normal to Γ. To do so, we 

rewrite, owing to (!!) and (7), the equations in the form 

L�
L. + ∆�� − ∆	�	�
−< �	�
 >
 = −∆

L-
L.  

L�M
L.� − ∆

LM
L. − ∆M = −

L�
L.  

Where * = *−< * >, | < *0 > | ≤ O�, | < *0 > | ≤ O�, 
For fixed positive constants O�andO�. Then, we note that 

* → �QR	−∆
S�\�*RQ +< * >��� 

Where, here −∆  denotes the minus Laplace operators 

with Neumann Boundary conditions and qction on fonctions 

functions with null average where it is understood that 

<.>= 1
*IU	Ω
 <. , 1 >(VW	 
(VW	 
, 

Furthermore 

* → XR|*|R +< * >�Y� 

* → XR|∇	*|R +< * >�Y� 

* → XR|∆	*|R +< * >�Y� 

are norms in %S�	Ω
, 	Z�	Ω
, 	%�	Ω
	[J�		%�	Ω
,	respectively, which are 

equivalent to the usual ones. 

We further assume that 

|�	�
 ≤ \B	�
 + @] , \ > 0, � ∈ "         (32) 

Which allows to deal with term < �	�
 >. 
2. Notation 

We denotes by ||. || the usual Z� −norm (with associated 

product scalar (.,.) and set ||. ||S� = ||	−∆
VW2 . ||,  where −∆	 denotes the minus Laplace operator with Dirichlet 

Boundary conditions. More generally, ||. ||^  denotes the 

norm of Banach space X. 

Throughout this paper, the same letters @�	, @� and @� 

denote (generally positives) constants which may change 

from line and line, or even a same line. 

3. A Priori Estimate 

The estimates derived in this subsection will be formal, but 

they can easily be justified with in a Garlerkin scheme. We 

rewrite (24) in the equivalent form. 

	−∆
S� ���� − ∆� − �	�
 = �1
��                                    (33) 

We multiply (33) by 
��
��  and integrating overΩ. We have 

_
_� �||∇�||� + 2� B	�
�� � + 2|| ���� ||S�� = 2����� , �1���                        (34) 

Then we multiply (25) by 
�1
��  and integrating over Ω. We obtain 

_
_� �||∇-||� + || �1�� ||�� + 2|| �1�� ||� = −2����� , �1���                          (35) 

Summing (34) and (35), we find the differential inequality of the form 

_
_�a� + @ �||∇ �1�� ||� + || ���� ||S�� � ≤ @A, @ > 0                            (36) 

where 

a� = ||∇�||� + 2� B	�
�� + ||∇-||� + || �1�� ||�                          (37) 

Satisfies 

a� ≥ bR|∇�|R� + 2� B	�
�� + R|∇-|R� + cQ�1�� Qc
�d − @′′                      (38) 

Hence estimates on �, - ∈ ZfX0, �;	%0�	Ω
Y, 
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��
�� ∈ Z

�X0, �; 	%S�	Ω
Y and 

L-
L. ∈ ZfX0, �;	Z�	Ω
Y⋂Z�X0, �;	%0�	Ω
Y 

We multiply (33) by −∆ ����  and integrating over Ω. We obtain 

_
_� 	||∇�||�
 + 2|| ���� ||� = −2 ����� , ∆ �1��� + �∆�	�
, �����                         (39) 

Which yields to (28) and the continuous embedding%�	Ω
 ⊂ @		Ω

 
_
_� 	||∇�||�
 + 2|| ���� ||� ≤ j	||�||(2
 − 2 ����� , ∆ �1���                           (40) 

Then we multiply (25) by −∆ �1��  and integrating over Ω. We obtain 

��21��2 , −∆ �1���+ ||∆ �1�� ||�+
�
�
_
_� ||∆�||� = ����� , ∆ �1��� 

Which give 

_
_� �||∆-||� + ||∇ �1�� ||�� + 2||∆ �1�� ||� = −2����� , ∆ �1���                           (41) 

Summing then (40) and (41), we obtain 

_
_� �||∆�||� + ||∆-||� + ||∇ �1�� ||�� + 2||∆ �1�� ||� + || ���� ||� ≤ j	||�||(2
                 (42) 

In particular, setting 

k = ||∆�||� + ||∆-||� + ||∇ L-L. ||� 

We deduce from (42) in equation of the form 

k′ ≤ j	k
                                           (43) 

Let z be the solution to the ordinary differential equation 

lA ≤ j	l
, l	0
 =≤ k	0
                                    (44) 

It following the comparaison principal that there exist 

�0 = �0X||�0||(2 , ||-0||(2 , ||-�||(WYbelonging to say, �0, ���such that 

k	.
 ≤ l	.
, mI�n.I�.. ∈ o0, �p                                 (45) 

hence 

||�||q2	r
� + ||-	.
||(2	r
� + || �1�� ||(W	r
� ≤ jX||�0||(2 , ||-0||(2 , ||-�||(WY, . ≤ �               (46) 

We now differentiate (31) with respect to time and have, noting that 

�21
��2 = ∆ �1�� + ∆- − ��

��                                        (47) 

We have 

	−∆
S� ��� ���� − ∆ ���� − �′	�
 ���� = ∆ �1�� + ∆- − ��
��                           (48) 

We mulply (48) by . ����  and we find, owing to (25) 

_
_� �.|| ���� ||S�� � + �

� ||∇ ���� ||� ≤ @. �|| ���� ||S�� + ||∆-||��+||∆ �1�� ||�                   (49) 

Which yields employing the interpolation inequations 
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|| L�L. ||� ≤ ||
L�
L. ||S�||∇

L�
L. ||� 

In particular, deduce (36), (46) and (49), applying the Gronwall’ s lemma that 

|| ���� ||S�� ≤ 	jX||�0||(2 , ||-0||(2 , ||-�||(WY, . ∈ o0; �0p                        (50) 

Multiplying then by (33), we have, proceeding as above 

_
_� �|| ���� ||S�� � + ||∇ ���� ||� ≤ @ �|| ���� ||S�� + ||∆-||��+||∆ �1�� ||�                    (51) 

It thus follows from (36), (51) and Gronwall’ s lemma that 

|| ���� ||S�� ≤ stjX||�0||(2 , ||-0||(2 , ||-�||(WY|| ��	,u
�� ||S�� , . ≥ �0                    (52) 

Hence, owing to (50) 

|| ���� ||S�� ≤ stjX||�0||(2 , ||-0||(2 , ||-�||(WY, . ≥ �0                        (53) 

We rewrite (36) in the form 

∆� + �	�
 = ℎ�	.
, � = IIJ	Γ                                  (54) 

For . ≥ �0 fixed, here 

ℎ�	.
 = 	−∆
S� ���� + �1
��                                      (55) 

Satisfies, owing to (36) and (53) 

||ℎ�	.
|| ≤ stjX||�0||(2 , ||-0||(2 , ||-�||(WY, . ≥ �0                        (56) 

We multiply (54) by uand have, noting that 

�A	�
 ≥ −@0, @0 ≥ 0, � ∈ " 

||∇�||� ≤ wR|ℎ�	.
|R + w                                     (57) 

Then we multiply (54) by −∆�and we find, owing to (29) 

||∆�||� ≤ w	||ℎ�	.
||� + ||∇�||�
                                 (58) 

We thus deduce from (56)-(58) that 

||�||(2� ≤ stjX||�0||(2 , ||-0||(2 , ||-�||(WY. ≥ �0                          (59) 

And thus, owing to (46) 

||�||(2� ≤ stjX||�0||(2 , ||-0||(2 , ||-�||(WY. ≥ �0                          (60) 

Returning to (41), have 

_
_� �||∆-||� + ||∇ �1�� ||�� + ||∆ �1�� ||� ≤ || ���� ||�                           (61) 

Noting that it follows (36), (51) and (53) that 

� bR|∆-|R� + cQ∇ �1�� Qc
�d�

,u �τ ≤ stjX||�0||(2 , ||-0||(2 , ||-�||(WY. ≥ �0                   (62) 

We finally deduce from (46) and (60)-(62) that 

||�||(2	r
� + ||-	.
||(2	r
� + || �1�� ||(2	r
� ≤ jX||�0||(2 , ||-0||(2 , ||-�||(WY, . ≥ 0	               (63) 
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4. Existence and Uniqueness of Solution 

Theorem 5.1. We assume (28)-(30) and X�0,	-0,	-�,Y ∈ 

X%�	Ω
 ∩ %�	Ω
Y × X%�	Ω
 ∩ %�	Ω
Y × X%�	Ω
Y 
Then (24)-(27) possesses at last one solution ��, -, �1��� 
Such that �, - ∈ ZfX0, �;	%�	Ω
 ∩ %�	Ω
Y,���� ∈ Z�X0, �;	Z�	Ω
Yand 

L-
L. ∈ ZfX0, �;	%�	Ω
Y ∩ Z�X0, �;	%�	Ω
 ∩ %�	Ω
Y 

ProofThe proof is based on (63) and e.g., a standard Garlerkin scheme. We have concerning the uniqueness, the following. 

Theorem 5.2. We assume that the assumptions of the theorem 4.1. hold. Then, the solution obtained in theorem 4.1. is 

unique. 

Let ��	�
, -	�
, �1W�� �  and ��	�
, -	�
, �12�� �  be twoSolutions (24)-(27) with initial data 	�0�, 	-0�, -��
 
and	�0�, -0�, -��
,	respectively. We set 

{�, -, L-L.| = b�	�
, -	�
,
L-�
L. d − b�	�
, -	�
,

L-�
L. d 

and 

X�0,-0,-�,Y = 	�0�, -0�, -��
 − 	�0�, -0�, -��
 
Then, 	�, -
 satisfies 

��
�� + ∆�� − ∆	�	��
 − �	��

 = −∆ �1��                                (64) 

�21
��2 − ∆ �1�� − ∆- = − ��

��                                       (65) 

�|; = Δ�|; = -|; = 0, on Γ                                   (66) 

�|=>0 = �0, -|=>0 = -0,
�1
�� = -�                                  (67) 

We multiply (33) by 	−∆
S� ����  and integrating over Ω. We have 

_
_� 	||∇�||�
 + 2|| ���� ||S�� = 2����� , �1��� − 2	�	��
 − �	��
, ����
                      (68) 

We multiply (33) by
�1
��  and integrating over Ω. We obtain 

_
_� �||∇-||� + || �1�� ||�� + 2|| �1�� ||� = −2����� , �1���                           (69) 

Summing (68) and (69), we find 

�
�. {||∇�||� + ||∇-||� + ||

L-
L. ||�| + 2||

L�
L. ||S�� = 2{L�L. ,

L-
L.| − 2	�	��
 − �	��
,

L�
L. 
 

We know 

2| ��	��
 − �	��
, ����� | ≤2||	−∆
W2X�	��
 − �	��
Y||||	−∆
VW2 ��
�� || 

Which implies 

2| {�	��
 − �	��
, L�L.| | ≤ 2||	−∆

W
2X�	��
 − �	��
Y||� + ||	−∆
VW2 L�L. ||� 

Which yields 
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2| ��	��
 − �	��
, ����� | ≤ Q	||u||
+|| ���� ||S��  

Where, here and below 

Q=jX||�0�||(2 , ||-0�||(2 , ||-��||(W||�0�||(2 , ||-0�||(2 , ||-��||(WY, 
Therefore 

_
_� bR|∇�|R� + R|∇-|R� + cQ�1�� Qc

�d + 2 cQ����QcS�
� + 2|| �1�� ||� ≤ Q	||u||
                    (70) 

In particular 

_
_� �||∇�||� + ||∇-||� + || �1�� ||�� ≤ Q	||u||
                            (71) 

It thus following form (71) and Gronwall’s lemma that 

||�||(2	r
� + ||-	.
||(2	r
� + || �1�� ||(2	r
� ≤ ws�jX||�0||(2 , ||-0||(2 , ||-�||(WY, . ≥ 0	            (72) 

Hence the uniqueness, as well continuous dependence with 

to respect to the intial data. 
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