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Abstract: Difference equations arise in many contexts in biological, economic and social sciences., can exhibit a complicated
dynamical behavior, from stable equilibria to a bifurcating hierarchy of cycles. There are a lot of fascinating problems, which
are often concerned with both mathematical aspects of the fine structure of the trajectories and practical applications. In this
paper, we investigate the generalized rational difference equation, a kind of fractional linear maps with two delays. Sufficient
conditions for the global asymptotic stability of the zero fixed point are given. For the positive equilibrium, we find the region of
parameters in which the positive equilibrium is local asymptotic stable and attracts all positive solutions. As for general solutions,
two specific and easy checked conditions on the initial values are obtained to guarantee corresponding solutions to be eventually
positive. The upper or lower bound are also provided according to different parameters. Of particular interest for this generalized
equation would be the existence of periodic solutions and their stabilities. We get the necessary and sufficient conditions for
the existence of period two solutions depending on the combination of delay terms. In addition, the sufficient conditions for the
existence of 2r− and 2d−periodic solutions are obtained too. In the end of the paper, we give examples to illustrate our results.
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1. Introduction

Fractional linear maps play a key role in mathematical
biology,population dynamics, and other research areas. The
study of fractional linear map dates back to August Ferdinand
Möbius (1790–1868). The Beverton-Holt map

f(x) =
µx

1 + cx
, c =

1− µ
K

and the periodic Sigmoid Beverton-Holt equation

xn+1 =
anx

δn
n

1 + xδnn
, x0 > 0, n = 0, 1, 2, · · ·

are examples of such a map ([1, 2])
The long-term behavior of solutions of these particular

forms of the mapping has been studied widely when
environmental fluctuations give rise to periodically varying
carrying capacities K or both intrinsic growth rate µ and

carrying capacity K change periodically with period p ([3, 4,
5]).

In this paper,we consider generalized rational difference
equation with delay

xn+1 =
Axn−l +Bxn−k

C + xn−k
, n = 0, 1, 2, · · · (1)

where delays l and k are nonnegative integers satisfying l 6= k.
A, B and C are real and positive parameters. Our discussions
will be focused on the non-negative solutions because of its
biological meanings. The famous Beverton-Holt equation is
a special case when A = 0. We shall assume that all initial
values are all nonnegative in this paper. The equation (1) can
be rewritten as the following form

yn+1 =
pyn−l + yn−k
q + yn−k

, n = 0, 1, 2, · · · (2)

by a linear transformation xn = Byn, where p = A
B > 0,
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q = C
B > 0. So, we only consider the equation (2) from here

on. Without loss of generality, we assume l < k because all
proofs for the case l > k follow similar steps.

For the different k and l, the solutions of equation (2)
changes significantly. Some special combinations of (l, k)
have been studied in literatures. For example, R.Grove et
al studied the equation (2) for l = 1, k = 2[6]. The case
l = 0 was studied in [7]. E.Camouzis et al proved the global
stabilities of the nonnegative equilibria for l = 2, k = 3 [8].
More related works and details can be found in [9, 10] for other
special cases of (l, k).

This paper is organized as follows. In Section 2, we analyze
the properties of equilibrium points. In Section 3, we consider
the characters of general solutions. In Section 4, the existence
and stability of periodic solutions are discussed. The last
Section is a brief conclusion.

2. The Equilibrium Points

In this section, we review some known results about Eq. (2).
Any equilibrium point of Eq. (2) satisfies the equation

y =
py + y

q + y
.

Clearly, y∗ = 0 is always an equilibrium point. Eq. (2) has
a positive equilibrium point ȳ = p+1−q if q < p+1. y∗ = 0
will be unique nonnegative equilibrium point if q ≥ p + 1.
The stability of equilibrium y∗ = 0 is given by the following
theorem [11].

Theorem 2.1. For the Eq. (2), equilibrium y∗ = 0 is globally
asymptotically stable when q ≥ p + 1, it is unstable when
q < p+ 1.
Proof. We only prove the local stability ([12])of zero
equilibrium by definition. The proofs for the global stability
and un-stability may be found in [11].

For q ≥ p + 1 and any given ε positive, we choose
δ = ε. Then for any group of nonnegative initial values
{y−k, y−k+1, · · · , y0}, we have

y1 =
py−l + y−k
q + y−k

.

Hence,

0 ≤ y1 <
p+ 1

q
· δ ≤ δ = ε for y−i < δ, i = 0, 1, · · · , k.

Similarly, we have

0 ≤ yn < ε, n = 1, 2, · · · , k + 1.

This means that y∗ = 0 is locally stable.
The solutions of Eq. (2) can be classified into two classes.

The first class includes the solutions {yn}∞−k, which keep
positive when n large enough for some nonnegative initial
values. That is, there exists a positive integer N , such that
yn > 0 as n ≥ N . Another class of solution {yn}∞−k will have
infinite many terms satisfying yn = 0. For example, taking l =

2, k = 5, and initial values {y−5, y−4 = 0, y−3, y−2, y−1 =
0, y0}, we get y2 = y5 = · · · = y3m+2 = 0, m = 0, 1, 2, · · ·
by a direct calculation.

Definition 2.1. A solution {yn}∞−k of Eq. (2) is said to be
eventually positive if there exists a positive integerN such that
yn > 0 for n ≥ N . We will call a eventually positive solution
a positive solution for simplicity.

Eq. (2) has unique positive equilibrium ȳ = p+ 1− q when
q < p + 1. The theorem 4.1 in [11] claims that ȳ is globally
asymptotically stable for p − 1 < q < p + 1. In fact, only
(eventually) positive solutions approach to the ȳ as n → ∞.
As a counter-example, we take p = q and l = 1, k = 3. Then
ȳ = 1. And Eq. (2) has a periodic solution with period 2, i.e.
{yn}∞−k = {0, 1, 0, 1, · · · }.

We rewrite this theorem and prove that all positive solutions
approach the positive equilibrium ȳ = 1 for p = q. The proofs
for other cases can be obtained by making a little change in
[11].

Theorem 2.2. When p − 1 < q < p + 1, the positive
equilibrium ȳ = p+ 1− q of Eq. (2) is locally asymptotically
stable, and all positive solutions converge to p+ 1− q.
Proof. The local asymptotical stability follows from Clark’s
Theorem [13]. We only prove that all positive solutions
approach the positive equilibrium ȳ for p = q > 0.

When p = q, we have

yn+1 − 1 =
p(yn−l − 1)

p+ yn−k
.

For any positive solution, let
a = min{y−k, y−k+1, · · · , y0, 1} > 0.

Then yi ≥ a for all i = 1, 2, · · · , and

|yn+1 − 1| = p

p+ yn−k
|yn−l − 1| ≤ p

p+ a
|yn−l − 1| .

Therefore the subsequence {yn(l+1)+1} converges to finite
limit 1 as n → ∞ because of a > 0. Similarly, we get l
subsequences

{yn(l+1)+2}, {yn(l+1)+3}, · · · , {yn(l+1)+l}, {yn(l+1)},

which all converge to 1 as n→∞ . Finally, we get

lim
n→∞

yn = 1 = p+ 1− q.

3. Characters of General Solutions

In this section, we give some general characters of the
solutions of Eq. (2). First we list a few of them from [11].

Lemma 3.1
(i) If q > p, then every solution of Eq. (2) is eventually

bounded from above by the constant q/p.
(ii) If q < p, then every positive solution of Eq. (2) is

eventually bounded from below by the constant q/p.
Lemma 3.2 If q < p − 1, then Eq. (2) has unbounded

solutions for odd l and even k.
See [14] for the proof of Lemma 3.2.
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The following example shows that Eq. (2) has non-trivial
solutions with zero as lower bound.

Example 3.1. Suppose q < p+ 1, then Eq. (2) has at least l
periodic solutions with period l + 1 for k = 2l + 1.

Proof. It is easy to check that
{0, · · · , 0︸ ︷︷ ︸

m

, p+ 1− q, · · · , p+ 1− q︸ ︷︷ ︸
l+1−m

}

are all (l + 1)−periodic solutions for m = 1, 2, · · · , l. For
example, we take y0 = yl+1 = 0 and yi = yl+1+i = ȳ =
p+ 1− q, i = 1, 2, · · · , l for m = 1, then

yk+1 =
pyl+1 + y0

q + y0
= 0;

and

yk+1+i =
pyl+1+i + yi

q + yi
= ȳ, i = 1, 2, · · · , l.

Generally, if taking yj = yl+1+j = 0, j = 0, 1, · · · ,m− 1,
and yi = yl+1+i = ȳ = p+ 1− q, i = m,m+ 1, · · · , l, then
we have

yk+1+j =
pyl+1+j + yj

q + yj
= 0, j = 0, 1, · · · ,m− 1;

and

yk+1+i =
pyl+1+i + yi

q + yi
= ȳ, i = m,m+ 1, · · · , l.

Next theorem tells us when we have an eventually positive
solution.

Theorem 3.1. Let d = gcd(l + 1, k + 1) is the greatest
common divisor of l + 1 and k + 1, then followings are true.

(i) If d = 1, then all solutions with non-zero initial values
are eventually positive.

(ii) If d > 1, then the solutions of Eq. (2) are eventually
positive if initial values {y−k, y−k+1, · · · , y0} contain
at least d positive yαi

(i = 0, 1, · · · , d − 1), where
αi = i mod d and αi − αj 6= 0 mod d, i, j =
0, 1, · · · , d− 1, i 6= j.

Proof. (i) Suppose d = 1. Because of l < k, there exist
positive integer m ≥ 1 and positive integer 0 < r ≤ l, such
that

k + 1 = m(l + 1) + r.

Without loss of the generality, we consider a solution with
initial values

{y−k, y−k+1, · · · , y0} = {0, 0, · · · , 0, y0 > 0}.

Now, we try to find a positive integer N , such that yn > 0 if
n ≥ N .

By Eq. (2), we have

yl+1 > 0, y2(l+1) > 0, · · · , ym(l+1) > 0, yk+1 > 0

at once. That is, there are at least different m + 1 items
yj > 0 (1 ≤ j ≤ k + 1) between y1 and yk+1. Using Eq. (2)

again, we get at least different 2m+ 1 items yj > 0 (k + 2 ≤
j ≤ 2(k+1)) between yk+2 and y2(k+1) = y2m(l+1)+2r listed
below

y(m+i)(l+1) > 0, yk+1+i(l+1) > 0,

y2(k+1) > 0, i = 1, 2, · · · ,m.

There are two possibilities now, 2r = l + 1 or 2r 6= l + 1.
If 2r = l + 1, then we get k + 1 = (2m + 1)r. So, r = 1

because d = gcd(l + 1, k + 1) = 1. Therefore, we have l = 1
and k + 1 = 2m + 1. This means yn > 0 for all n ≥ k + 1
because of yk+1+i(l+1) = y(m+i)(l+1)+1 > 0.

If 2r 6= l + 1, we can get at least different 3m + 1 items
yj > 0 (2(k+ 1) + 1 ≤ j ≤ 3(k+ 1)) between y2(k+1)+1 and
y3(k+1) listed below

y(2m+i)(l+1) > 0,

yk+1+(m+i)(l+1) = y(2m+i)(l+1)+r > 0,

y2(k+1)+i(l+1) = y(2m+i)(l+1)+2r > 0,

y3(k+1) > 0,

i = 1, · · · ,m.

Continuing in this way, we get, at s’th step, at least different
sm + 1 items yj > 0 ((s − 1)(k + 1) + 1 ≤ j ≤ s(k + 1))
between y(s−1)(k+1)+1 and ys(k+1) listed below if sr < l + 1{

yj > 0, j = [(s− 1)m+ i](l + 1) + tr,

ys(k+1) > 0, s = 1, 2, · · · .
(3)

where i = 1, 2, · · · ,m; t = 0, 1, 2, · · · , s− 1.
Note if l+1 < sr < 2(l+1), we will get additional positive

item y(sm+1)(l+1) at s’th step.
If sr = l + 1, then k + 1 = (sm + 1)r. We then have

k + 1 = sm + 1 because of d = 1. So yn > 0 for all
n ≥ (s− 1)(k + 1) according to the first equation of Eq. (3).

If we always have sr 6= l + 1, there must be some positive
integer s1 such that s1m + 1 ≥ k + 1 because k is fixed.
Therefore, yn > 0 when n ≥ (s1 − 1)(k + 1).

(ii) Suppose d > 1. Denoting l + 1 = md, k + 1 = rd,
where m and r are positive integers, r > m ≥ 1. For a group
of initial values {y−k, y−k+1, · · · , y0} satisfying (ii), it can be
divided into following d groups

Y0 = {y−k+d−1, y−k+2d−1, · · · , y0};
Y1 = {y−k, y−k+d, · · · , y−k+(r−1)d};
...

Yd−1 = {y−k+d−2, y−k+2d−2, · · · , y−k+rd−2}.

Clearly, yαi
∈ Yi, i = 0, 1, · · · , d− 1.

For any positive integers s and t, we have

yαi+sd+t(k+1) =
pyαi+(s−m)d+t(k+1) + yαi+sd+(t−1)(k+1)

q + yαi+sd+(t−1)(k+1)
.

This means that any item yn of solution {yn}∞−k depends on
the items yn̄ only, where n̄ < n and n− n̄ = 0 mod d.
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Let zs = yαi+sd+t(k+1), then

zs+1 =
pzs−(m−1) + zs−(r−1)

q + zs−(r−1)
. (4)

By (i), any solution of Eq. (4) with initial values
{zm, zm+1, · · · , zm+r−1}

zm = yαi+(l+1)+t(k+1) > 0, i = 0, 1, · · · , d− 1

will be eventually positive because gcd(m, r) = 1. So, the
solution of Eq. (2) with d positive initial values yαi

(i =
0, 1, · · · , d− 1) must be eventually positive.

4. Periodic Solutions

In this section, we study the periodic solutions of Eq. (2) and
their stabilities. Firstly, we give the necessary and sufficient
conditions for the existence of 2−periodic solutions.

Theorem 4.1. The following statements are true.
(i) If l, k both are odd, then Eq. (2) has 2−periodic

solutions if and only if q < p+ 1.
(ii) If l is odd and k is even, then Eq. (2) has 2−periodic

solutions if and only if q = p − 1. In this case,
any 2−periodic solution {a, b, a, b, · · · } satisfies b =
a
a−1 (a > 1, a 6= 2).

(iii) If l is even, then Eq. (2) has no any periodic solution
with period 2.

Proof. (i) Suppose l, k both are odd.
It is easy to check that {0, p+ 1− q, 0, p+ 1− q, · · · } is a

periodic orbit when q < p+ 1.
Next, we assume that Eq. (2) has a periodic solution with

period 2, denoted by a, b, a, b · · · , where a 6= b. Then a and b
must satisfy the following system a = pa+a

q+a ,

b = pb+b
q+b .

So q < p+1 and a = 0, b = p+1−q or b = 0, a = p+1−q.
(ii) Suppose l is odd and k is even.
If q = p − 1, then p > 1 by our assumption. Clearly,
{p, p

p−1 , p,
p
p−1 , · · · } is a 2−periodic solution when p 6= 2. We

get the unique positive equilibrium point ȳ = 2 when p = 2.
In fact, for any a ∈ (1, 2)

⋃
(2,+∞), {a, a

a−1 , a,
a
a−1 , · · · }

are all the 2−periodic solutions.
If Eq. (2) has a periodic solution with period 2, denoted

by {a, b, a, b · · · }, where a 6= b, then a and b must satisfy the
following system  a = pa+b

q+b ,

b = pb+a
q+a .

So, we have (a − b)(p − q − 1) = 0. q = p − 1 follows at
once.

In addition, if q = p−1 in above system, we have ab = a+b
or

b =
a

a− 1
, a > 1.

This means that any 2−periodic solution of Eq. (2) must
have the form {a, b, a, b, · · · }, where a > 1, a 6= 2, b = a

a−1 >
1.

(iii) Suppose l is even, then there exist two possibilities: k
is odd or not.

Case I k is odd. If Eq. (2) has a 2−periodic solution
{a, b, a, b · · · } (a 6= b), then a = pb+a

q+a ,

b = pa+b
q+b .

We get a+ b = 1−p− q at once through above system. So,
p+ q < 1 and both a and b must satisfy the following quadric
equation

x2 + (p+ q − 1)x− p(1− p− q) = 0. (5)

The equation (5) has one positive root at most. This implies
that Eq. (2) does not have any periodic solution with period 2.

Case II l and k are both even. Same as in the case I, for any
2−periodic solution {a, b, a, b · · · } (a 6= b), we have a = pb+b

q+b ,

b = pa+a
q+a .

p+ q + 1 = 0 follows, which is impossible.
According to the Theorem 4.1, we have following corollary.
Corollary 4.1. If both l and k are odd, then Eq. (2) has

unique 2−periodic solution {0, p+1−q, 0, p+1−q, · · · }when
q < p+ 1. If l is odd but k is even, then for any a > 1, a 6= 2,
{a, a

a−1 , a,
a
a−1 , · · · } always is a periodic solution of Eq. (2)

with period 2 for q = p− 1.
Next we consider the stability of 2−periodic solutions of

Eq. (2).
Theorem 4.2. The 2−periodic solution of the equation(2) is

unstable if both l and k are odd.
Proof. If both l and k are odd, there must be two nonnegative

positive integers s and t such that l = 2s+ 1, k = 2t+ 1. The
unique 2−periodic solution {0, p+ 1− q, 0, p+ 1− q, · · · } is
unstable because the un-stability of zero equilibrium of Eq. (2)
by Theorem 2.1 and the odd items can be written as following

y2m−1 =
py2m−2s−3 + y2m−2t−3

q + y2m−2t−3
, m = 1, 2, · · · .

Or

wm+1 =
pwm−s + wm−t
q + wm−t

, m = 1, 2, · · · , (6)

where wm = y2m−1. In other words, the odd items of Eq. (2)
satisfies Eq. (6), which is same as Eq. (2).

The following results say Eq. (2) may have 2r−periodic
solutions when q = p−1. lemma 4.1 If l = 4s−1, k = 4t+1,
then the equation(2) has 4−periodic solutions when q = p−1,
where s and t are positive integers.

Proof. If l = 4s − 1, k = 4t + 1 and q = p − 1, then any
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solution of Eq. (2) can be expressed in the following forms
according to the subscripts

y2m−1 =
py2m−1−4s+y2m−1−(4t+2)

p−1+y2m−1−(4t+2)
,

y2m =
py2m−4s+y2m−(4t+2)

p−1+y2m−(4t+2)
,

m = 1, 2, · · · .

That is, the even items and odd items of the solutions are
independent each other. Let zm = y2m, wm = y2m−1, then
we have wm+1 = pwm−2s+1+wm−2t

p−1+wm−2t
,

zm+1 = pzm−2s+1+zm−2t

p−1+zm−2t
,

m = 0, 1, 2, · · · .

Therefore, these two equations both have 2−periodic
solutions by Theorem 4.1. Suppose that {a1, b1, a1, b1, · · · }
and {a2, b2, a2, b2, · · · } are 2−periodic solutions of above
equations about zm and wm respectively, where bi =
ai
ai−1 , ai > 1, i = 1, 2, and at least one of a1 and a2 is
not equal to 2, then {a1, a2, b1, b2, a1, a2, b1, b2, · · · } is the
4−periodic solution of original Eq. (2).

For example, taking l = 3 = 4− 1, k = 5 = 4 + 1, then

{2, 3, 2, 3

2
, 2, 3, 2,

3

2
, · · · },

{3, 4, 3

2
,

4

3
, 3, 4,

3

2
,

4

3
, · · · },

and
{3, 3, 3

2
,

3

2
, 3, 3,

3

2
,

3

2
, · · · }

are all periodic solutions of Eq. (2) with period 4.
Using the same method, we may prove the theorem below.
Theorem 4.3. If q = p−1 and l = 2rs−1, k = 2rt+2r−1−

1, then Eq. (2) has 2r−periodic solutions, where s, t and r are
positive integers.

Proof. Clearly, Eq. (2) has 2r−periodic solutions for
r = 1 and r = 2 by Theorem 4.1 and Lemma 4. We prove
the theorem by induction on r (r = 1, 2, 3, · · · ). Suppose the
theorem is proved for positive integer r, then for the positive
integer r + 1, we have

y2m−1 =
py2m−1−2r+1s+y2m−1−(2r+1t+2r)

p−1+y2m−1−(2r+1t+2r)
,

y2m =
py2m−2r+1s+y2m−(2r+1t+2r)

p−1+y2m−(2r+1t+2r)
,

m = 1, 2, · · · .

Denoting the odd and even items by zm = y2m, wm =
y2m−1 respectively, we get

wm+1 =
pwm−(2rs−1)+wm−(2rt+2r−1−1)

p−1+wm−(2rt+2r−1−1)
,

zm+1 =
pzm−(2rs−1)+zm−(2rt+2r−1−1)

p−1+zm−(2rt+2r−1−1)
,

m = 0, 1, 2, · · · .

By assumption, these two equations both have 2r−periodic
orbits {a0, a1, · · · a2r−1} and {b0, b1, · · · , b2r−1}. Then
{a0, b0, a1, b1, · · · , a2r−1, b2r−1} is the 2r+1−periodic

solution of original Eq. (2).
Using Theorem 3.1 and Lemma 4, we get following

interesting result.
Theorem 4.4. If l = 2sd − 1, k = (2t + 1)d − 1, then Eq.

(2) has 2d−periodic solutions for q = p − 1, where s, t and d
are positive integers.

Proof. When l = 2sd − 1, k = (2t + 1)d − 1, the general
item yn of any solution can be expressed in the following forms
according to the subscript n

ymd =
py(m−2s)d+y(m−(2t+1))d

p−1+y(m−(2t+1))d
,

ymd−1 =
py(m−2s)d−1+y(m−(2t+1))d−1

p−1+y(m−(2t+1))d−1
,

...

ymd−(d−1) =
py(m−2s)d−(d−1)+y(m−(2t+1))d−(d−1)

p−1+y(m−(2t+1))d−(d−1)
.

m = 1, · · · .

That is, all items of solution are divided into d groups which
are independent each other.

Let z(i)
m = ymd−i (i = 0, 1, · · · , d− 1), then we have

z
(i)
m+1 =

pz
(i)
m−(2s−1) + z

(i)
m−2t

p− 1 + z
(i)
m−2t

, i = 0, 1, · · · , d− 1.

Obviously, every one in above d equations has 2−periodic
solutions by Theorem 4.1. Suppose that {ai, bi, ai, bi, · · · } is
a 2−periodic solution about z(i)

m , where bi = ai
ai−1 , ai > 1

(i = 0, 1, 2, · · · , d− 1) and at least one of ai is not equal to 2,
then

{a0, · · · , ad−1, b0, · · · , bd−1, a0, · · · , ad−1, b0, · · · , bd−1, · · · }

is a periodic solution of original Eq. (2) with period 2d.
In fact, Theorem 4.3 is a special case of Theorem 4.4 for

d = 2r−1.
Example 4.1. If l = 5, k = 8, then Eq. (2) has periodic

solutions with 6 for q = p− 1.
Proof. The conclusion follows because of 5 = 2×3−1, 8 =

3× 3− 1. For example,

{2, 2, 3, 2, 2, 3

2
, 2, 2, 3, 2, 2,

3

2
, · · · }

and
{2, 3, 4, 2, 3

2
,

4

3
, 2, 3, 4, 2,

3

2
,

4

3
· · · }

are two 6−periodic solutions.

5. Conclusion and Discussion

We summarize what we get in this paper.
1. The zero equilibrium of Eq. (2) is globally

asymptotically stable if q ≥ p + 1; it’s unstable if
q < p+ 1.

2. When p−1 < q < p+1, the unique positive equilibrium
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ȳ = p + 1 − q is locally asymptotically stable, and all
positive solutions converge to it as n→ +∞.

3. When q = p − 1, for any positive integer d, we could
construct one equation such that it has periodic solutions
with period 2d.

4. Eq. (2) may have unbounded solutions for 0 < q <
p− 1.

Corollary 5.1. The followings are true.
(a) If d = gcd(l+ 1, k+ 1) = 1, then any periodic solution

of Eq. (2) must be positive.
(b) If d = gcd(l + 1, k + 1) > 1, then Eq. (2) has d − 1

periodic solutions with period d for q < p+ 1.
Note The example 3.1 is a special case of Cor.5.1 when

d = l + 1.
Proof. (a) It follows from the Theorem 3.1 (i).
(b) Let k + 1 = sd, l + 1 = td, where s and t are positive

integers. Consider a group of initial values

{0, · · · , 0︸ ︷︷ ︸
d−1

, p+1−q, 0, · · · , 0︸ ︷︷ ︸
d−1

, p+1−q, · · · , 0, · · · , 0︸ ︷︷ ︸
d−1

, p+1−q}

That is, the initial values satisfy

yi =


0; i = −k,−k + 1, · · · , 0,

but i 6= −k + jd− 1, j = 1, 2, · · · , s;

p+ 1− q; if i = −k + jd− 1, j = 1, 2, · · · , s.

We easily obtain

y1 = y2 = · · · = yd−1 = 0, yd = p+ 1− q.

So, it is a periodic solution with period d.
Similarly, we can prove that the solutions with the initial

values

{0, · · · , 0︸ ︷︷ ︸
d−r

, p+ 1− q, · · · , p+ 1− q︸ ︷︷ ︸
r

, · · · ,

0, · · · , 0︸ ︷︷ ︸
d−r

, p+ 1− q, · · · , p+ 1− q︸ ︷︷ ︸
r

}

are all d−periodic solutions for r = 1, 2, · · · , d− 1.
Problems We have several problems unsolved. For example,

does there any positive odd-periodic solution exist? Is the
positive equilibrium of Eq. (2) stable for q ≤ p−1? How about
the stability of general positive periodic solutions? etc.[6, 15].
These are of challenging.
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