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Abstract: An elegant and powerful technique is Homotopy Perturbation Method (HPM) to solve linear and nonlinear 
ordinary and partial differential equations. The method, which is a coupling of the traditional perturbation method and 
homotopy in topology, deforms continuously to a simple problem which can be solved easily. The method does not depend 
upon a small parameter in the equation. Using the initial conditions this method provides an analytical or exact solution. From 
the calculation and its graphical representation it is clear that how the solution of the original equation and its behavior depends 
on the initial conditions. Therefore there have been attempts to develop new techniques for obtaining analytical solutions 
which reasonably approximate the exact solutions. Many problems in natural and engineering sciences are modeled by 
nonlinear partial differential equations (NPDEs). The theory of nonlinear problem has recently undergone much study. 
Nonlinear phenomena have important applications in applied mathematics, physics, and issues related to engineering. In this 
paper we have applied this method to Burger’s equation and an example of highly nonlinear partial differential equation to get 
the most accurate solutions. The final results tell us that the proposed method is more efficient and easier to handle when is 
compared with the exact solutions or Adomian Decomposition Method (ADM). 

Keywords: Homotopy Perturbation Method, Burger’s Equation, Nonlinear Partial Differential Equations,  
Approximate Solutions, Adomian Decomposition Method 

 

1. Introduction 

To investigate of the numerical and exact solutions for 
nonlinear partial differential equations (NLPDEs) plays an 
important role in the study of nonlinear physical phenomena 
[1]. Nonlinear wave phenomena appear in various scientific 
and engineering fields such as fluid mechanics, plasma 
physics etc. The dispersion, dissipation, diffusion, reaction 
and convection of nonlinear wave phenomena are very 
important in nonlinear wave equations [2]. In the past several 
decades, there have been significant improvements in study 
of exact solutions. Recently many researcher mainly had paid 
attention to obtain solutions of NLPDEs by applying various 
methods [3-5]. The main purpose of this paper was to apply 
homotopy perturbation method (HPM) to Burger’s equation 
[6] and also a highly nonlinear partial differential equation 

compared with Adomian Decomposition Method (ADM) [7]. 
Burgers’ Equation is nonlinear partial differential equation 
which is used in various fields of physical phenomena such 
as boundary layer behavior, shock weave formation, 
turbulence, the weather problem, mass transport, traffic flow 
and acoustic transmission. The Burger’s model of turbulence 
is a very important fluid dynamic model and the study of this 
model and the theory of shock waves have been considered 
by many authors, both to obtain a conceptual understanding 
of a class of physical flows and for testing various numerical 
methods [8]. The general form of Burger’s equation is the 
simplest mathematical formulation of the competition 
between nonlinear advection and viscous diffusion. 

The Homotopy Perturbation Method was first introduced 
by the Chinese researcher Dr. Ji Huan He in 1998 [9] for 
solving linear and nonlinear differential and integral 
equations. This method is the combination of the traditional 
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perturbation and the homotopy method [10, 11]. So it takes 
the full advantage of both methods. In this method the 
solution is considered as the summation of an infinite series 
which usually converges very rapidly to accurate the 
solutions [12]. The HPM is a universal one which can solve 
various kinds of nonlinear equations [13-15]. This method is 
a hefty mathematical tool which is such a useful promising 
method that can solve any linear or nonlinear PDE of 
fractional order [16, 17]. The HPM has been used by many 
mathematicians, engineers, authors and researchers to solve 
various functional equations. Some examples, Ji-Huan He in 
1999 [18] used the HPM for solving nonlinear ordinary 
differential equations (NODEs) of the first and second orders, 
J. He in 2003 [19] solved the NODEs with nth order, J. He in 
2004 [20] by HPM found out the solution of the oscillator 
equation, J. He studied the HPM for finding the periodic 
solutions and bifurcations of delay-differential equations, in 
2005 [21]. Also this method is successfully applied to 
boundary value problems [22], the system of coupled 
Burger’s equation [23] and to other fields. In addition it does 
not need small parameters in the equations so that the 
limitations of the traditional perturbations can be eliminated 
and the calculations involved in HPM are very simple and 
straight forward. On the other side it is analyzed that, in the 
aforementioned method (ADM) [24, 25, 26], first Adomian 
polynomials are calculated, which is a bit difficult task and 
time consuming process and the fact that the HPM solves 
nonlinear problems without using Adomian’s polynomials is 
a clear advantage of this technique over the Adomian 
Decomposition Method (ADM). The comparative study 
between these two methods shows that the results obtained 
by using Homotopy Perturbation Method (HPM) with a 
special convex constructed Homotopy is almost equivalent to 
the results obtained by using Adomian Decomposition 
Method (ADM) for these types of nonlinear problems [27, 
28]. Also when we compare between the exact solution and 
the approximate solution, we see that the difference between 
these two solutions is very small. i. e., the approximate 
solutions obtained by HPM are most accurate and smooth. 
Also we get the better exact solutions using HPM and that 
approves the proficiency of this method for exact and 
approximate solutions. In the following, we shall illustrate 
the HPM introduced by J He and its applications. This paper 
is arranged as follows: In section-2 the basic ideas of HPM is 
presented. The efficiency of this method is verified by the 
numerical results for two examples in section-3 and the 
conclusion will appear in section-4. 

2. Basic Ideas of Homotopy Perturbation 

Method (HPM) 

To illustrate the basic ideas of the method we consider the 
following ordinary or partial differential equation of order n. 

A (u) – f (r) = 0, r∈Ω, where u = g (x, t)             (1) 

with the boundary conditions: 

B (u, 
∂	u
∂	n) = 0, r ∈Γ                            (2) 

and initial conditions: 

∂λ

∂tλ
 u (x, 0) = Ѱλ(x), λ = 0, 1, 2, ……. n –1.          (3) 

where A is a general differential operator, u is an unknown 
function, f is a known analytical function. x and t denote 
spatial and temporal independent variables respectively. B is 
the boundary operator, Γ is the boundary of the domain Ω. 
The operator A can be decomposed into two operators L and 
N; i.e, A = L + N, where L is a simple part which is easy to 
choose and it is also linear part and N contains the remaining 
part of A; the part N may be linear or nonlinear part of A. 

Equation (1) can be rewritten as follows: 

L (u) + N (u) − f (r) = 0                        (4) 

By the homotopy technique we construct a Homotopy (H) 
as V:	Ω	×	[	0,	1	]⟶R defined by 

H (V, p) = (1 – p) [L (V) − L (u�)] + p [A (V) – f (r)]  (5) 

where R is the set of real numbers. 
The above homotopy (5) satisfies the following equation: 

H (V, p) = (1 – p) [L (V) − L (u0)]  

+ p [ A (V) – f (r) ] = 0                           (6) 

Equivalently (6) can be rewritten as follows: 

L (V) − L (u0) + p [ N (V) + L (u�) − f (r) ] = 0       (7) 

where p∈[ 0, 1 ] is an embedding parameter and u0 is the first 
initial approximation guess for the solution of (1), which 
satisfies the given initial or boundary conditions. 

Obviously from (6) we will have, 

H (V, 0) = L (V) – L (u0) = 0                   (8) 

and 

H (V, 1) = A (V) – f (r) = 0                  (9) 

On changing the value of p from zero to unity, V changes 
from u�	to u. In topology it is called the deformation and also 
L (V) – L (u0) of (8) and A (V) – f (r) of (9) are called the 
homotopic. According to HPM we can assume that the 
solution of (6) or (7) as a following power series in P. 

V = i
i

i 0

p V
∞

=
∑  = V0+ pV1 + P2V2 + p3V3 + p4V4 +……  (10) 

The embedding parameter p∈[0, 1] is considered as an 
expanding parameter and the solution of (1) for p = 1 can be 
expressed as: 

u = 
p 1
LimV

→
 = V0 + V1 + V2 + V3 + V4 + V5 + ········ (11) 

The following opinions are suggested by J. He to ensure 
that the convergence of the infinite series given by (11). The 



336 Amanat Ali Khan and Musammet Tahmina Akter:  Solving Highly Nonlinear Partial Differential  
Equations Using Homotopy Perturbation Method 

series (11) is convergent for most cases but the rate of 
convergence depends on the nonlinear part N(u) [12, 18, 29]. 

(i). The second derivative of N (u) with respect to u must 
be small. 

(ii). The norm of L-1 ∂	N
∂	u  must be smaller than one so that 

the series converges. 

3. Applications 

In this section we apply HPM for two examples and 
compared our results with exact and ADM solutions 
respectively. The errors between exact and homotopy 
solutions are denoted by 

nφ  = 
n 1

i
i 0

φ
−

=
∑ , where nφ  are the approximate solutions 

obtained by the HPM. 

3.1. Example-1 

Consider the following nonlinear Burger’s equation [6] 

∂

∂t
u	-	δ ∂2

∂x2 u	+	u ∂

∂x
u	=	0,                         (12) 

with the boundary conditions: 

u(0, t) = 0 and ux�0,	t�	=	 1

t
-

π2

2δt2
.                 (13) 

The exact solution is given by 

u(x, t) = 
x

t
	-	 π

t
tanh �πx

2δt
�.                      (14) 

According to the homotopy perturbation method let us 
consider the following homotopy 

H(V, p) = 	1-	p
 �	 ∂2

∂x2 V	-	 ∂2

∂x2 u0� 	+	p 
 ∂2

∂x2 V�x,	t�	- 1

δ
V�x,	t� ∂

∂x
V�x,	t�	-	 1

δ

∂

∂t
V�x,	t�� =	0 

or, 
∂2

∂x2 V-
∂2

∂x2 u0	+	p ∂2

∂x2 u0	- P

δ
V

∂

∂x
V	-	 P

δ
V

∂

∂t
V	=	0,                                                         (15) 

where u0 is the first initial approximation for the solution of 
(12), which satisfies the given boundary conditions (13) and 
selected by 

L�u�	=	 ∂2

∂x2 u,	N�u�	=	u ∂

∂x
u	-	δ ∂2

∂x2 u�x,t�	&	f�r�	=	f�x,t�	=	0. 

We can assume that the solution of (15) according to HPM 
can be expressed as a power series in p as follows: 

V = 
i

i
i 0

p V
∞

=
∑  = V0 + p V1 + p2 V2 + p3 V3 + p4 V4 + ……  (16) 

By the HPM, the approximate solution of (12), therefore 
can be readily obtained by 

u =
p 1
LimV

→
 = V0 + V1 + V2 + V3 + V4 + V5 +········ (17) 

Taking the solution of (15) similar to the form (16) and 
substituting (16) into (15) and equating the coefficients of the 
like terms with the identical powers of p leads to the 
following equations: 

p0:	 ∂2

∂t2
V0	- ∂2

∂t2
u0	=	0                         (18) 

p1:	δ	 ∂2

∂x2 V1+	δ ∂2

∂x2 u0	-V0
∂

∂x
V0	- ∂

∂t
V0	=	0         (19) 

p2:	δ	 ∂2

∂x2 V2	-	 ∂

∂x
(V0V1)	- ∂

∂t
V1	=	0         (20) 

p3:	δ	 ∂2

∂x2 V3	-	 ∂

∂x
(V0V2)	-V1

∂

∂x
V1=	 ∂

∂t
V2         (21) 

p4:	δ	 ∂2

∂x2 V4	- ∂

∂x
(V0V3)	- ∂

∂x
(V1V2)	- ∂

∂t
V3	=	0      (22) 

pn:	 ∂2

∂x2 Vn	- ∂

∂t
Vn-1	= 

n 1

r n r 1
r 0

V V
x

−

− −
=

∂
∂∑            (23) 

and so on. 
Solving above differential equations (19-23) and finding 

the unknown solution u(x, t), we take the following initial 
guess u0(x, t) which satisfies the boundary conditions (13) of 
(12). 

V0 = u0 = 
x

t
-

π2x

2δt2
 

Now under the boundary conditions Vn (0, t) = Vnx(0, t) = 
0, 1 ≤ n ∈N for all equations(19-23), we get from (19),  

V1 = 
π4x3

24δ3t4
 

Similarly we get from the above equations (20-22): 

V2 = -
π6x5

240δ5t6
, V3 = 

17π8x7

40320δ7t8
, V4 = -

31π10x9

725760δ9t10. 

Similarly using (23) for n = 5, 6, 7, 8, 9, we get 

V5 = 
691π12x11

159667200δ11t12, V6 = -
5461π14x13

12454041600δ13t14, V7 = 
929569π16x15

20922789888000δ15t16, V8 = -
3202291π18x17

711374856192000δ17t18, V9 = 
221930581π20x19

486580401635328000δ19t20 

and so on. 
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Therefore using (17) and the components of Vn, we get the approximate solution of (12) in a series form: 

uapp = V0 + V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 

= 
x

t
-

π2x

2δt2
 + 

π4x3

24δ3t4
	- π6x5

240δ5t6
 + 

17π8x7

40320δ7t8
	- 31π10x9

725760δ9t10 + 
691π12x11

159667200δ11t12 	- 5461π14x13

12454041600δ13t14  

+ 
929569π16x15

20922789888000δ15t16 	- 3202291π18x17

711374856192000δ17t18 + 
221930581π20x19

486580401635328000δ19t20.                                   (24) 

Which is the approximate solution of the nonlinear partial 
differential equation (12) for the boundary conditions (13). 
Also which is the same solution of nonlinear Burger’s 
equation (12) that was achieved by Adomian Decomposition 
Method (ADM) for the same boundary conditions (13) [6]. 
Now we will compare the approximate solution (24) with the 
exact solution (14). Here the exact solution (14) can be 
verified by direct substitution into the Burgers’ equation (12) 
for the boundary conditions (13). Here expanding the exact 
solution u(x, t) in ascending powers of x, we see that every 
successive term of expansion of u(x, t) is the same 
component of every successive portion of the approximate 
solution in ascending powers of x respectively. 

3.1.1. Tables 

Table 1. HPM, Exact solutions and absolute errors of u(x, t) at the time t = 

1.1 and the parameter δ = 4.45. 

xi Solutions by HPM Exact Absolute Errors 

0.1 -0.0007077540555861589-0.00070775405558613782.11×10-17 

0.2 -0.001227145398962856-0.00122714539896282 3.6×10-17 

0.3 -0.001371357222003755-0.0013713572220037661.1×10-17 

0.4 -0.000956637642045808-0.0009566376420457327.6×10-17 

0.5 0.00019623424279746440.00019623424279741064.38×10-17 

0.6 0.00226055978522254 0.002260559785222438 1.02×10-16 

0.7 0.00540243197234158 0.005402431972341581 10-18 

0.8 0.00977956577694062 0.00977956577694061 10-17 

0.9 0.01554026377149192 0.01554026377149065 1.27×10-15 

1.0 0.02282252944701319 0.02282252944700169 1.15×10-14 

Table 2. HPM, Exact solutions and absolute errors of u(x, t) at the time t = 1 

and the parameter δ = 3.5. 

xi Solutions by HPM Exact 
Absolute 

Errors 

0.1 -0.04089976095412922 -0.0408997609541292 2×10-17 

0.2 -0.0812338191297997 -0.0812338191297997 0 

0.3 -0.1204455204484999 -0.1204455204484998 10-16 

0.4 -0.1579960023888962 -0.1579960023888961 10-16 

0.5 -0.193372342772688 -0.193372342772688 0 

0.6 -0.2260948599420596 -0.2260948599420599 3×10-16 

0.7 -0.255723356676044 -0.255723356676052 8×10-15 

0.8 -0.2818621563825582 -0.2818621563826897 1.315×10-13 

0.9 -0.3041638411547831 -0.3041638411563245 1.5414×10-12 

1.0 -0.3223316626775547 -0.3223316626914399 1.38852×10-11 

3.1.2. Graphical Representations 

The various exact solution and corresponding approximate 
solutions’ figures are given below for the real values of the 
parameter δ. We divided the graphs into two kinds; first kinds 
are three dimensional and other kinds are two-dimensional. 

 

Figure 1. Exact Solution x ∈[-1.3, 1.3] and t∈[1, 1.1]. 

 

Figure 2. Approximate Solution x ∈[-1.3, 1.3] and t∈[1, 1.1]. 

 

Figure 3. Error Solution x ∈[-1.3, 1.3] and t∈[1, 1.1]. 

 

Figure 4. Exact Solution x ∈[-2.5, 2.5] and t∈[1, 1.1]. 
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Figure 5. Approximate Solution x ∈[-2.5, 2.5] and t∈[1, 1.1]. 

 

Figure 6. Error Solution x ∈[-2.5, 2.5] and t∈[1, 1.1]. 

Now various two-dimensional graphs for exact solution, 
corresponding approximate solution and error solutions are 
given below for the real values of the parameter δ = 4.45 and 
δ = 3.5. 

 

Figure 7. x ∈[-1.3, 1.3]. 

 

Figure 8. x ∈[-1.3, 1.3]. 

 

Figure 9. x ∈[-1.3, 1.3]. 

Figures 7, 8 and 9 show exact, approximate and error 
solutions for t = 1 and for the range x ∈[-1.3, 1.3] with δ = 
4.45. 

 

Figure 10. x ∈[-1.3, 1.3]. 

 

Figure 11. x ∈[-1.3, 1.3]. 

 

Figure 12. x ∈[-1.3, 1.3]. 

Figures 10, 11 and 12 show exact, approximate and error 
solutions respectively for t = 1.1 and for the range x ∈[-1.3, 
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1.3] with δ = 4.45. 

 

Figure 13. Shows the combined curves of the exact (solid curve) and the 

approximate solution (dotted curve) for t = 1.05 and x ∈[-2.5, 2.5] with δ = 

3.5. 

 

Figure 14. The result in the interval x ∈[-2.5, 2.5] obtained for error 

solution for the t = 1.05 and δ = 3.5. 

3.1.3. Results and Discussions of the Solutions of the 

Example-1 

We have taken first ten terms for approximate solution and 
we will verify that the tentative approximate solution is very 
closed to the exact solution and we will find absolute errors 
numerically comparing between the exact and the 
approximate solution by the above tables for different values 
of the parameter δ. Table 1 shows absolute errors | u–uapp | for 
the value of parameter δ = 4.45 for t = 1.1 and table 2 shows 
the data for δ = 3.5 and t = 1. 

In these above tables, we have computed the absolute 
errors for the approximate solution at some values of x & t. It 
seems that we can decrease the errors involving more terms 
with the approximate solution for other values of x and t. 
These errors are for only a few terms in our approximation. 
So it is not a big problem. In this case we know the required 
solution is a closed form of a series, that is the solution is the 
sum of the infinite terms of components of approximate 
solutions, so if we involve more terms with the approximate 
solution uapp, we overcome this above problem and in spite of 
taking equal or unequal values of x and t, we will get very 
small errors which shows our choice is efficiency. Using this 
procedure for sufficiently large values of n, we get a better 
approximation for the exact solution. 

Figure 1, Figure 2 and Figure 3 show three-dimensional 
plots of the exact, the approximate and the error solutions 
respectively for space variable x belonging to the space 
interval [-1.3, 1.3] and for time variable t belonging to the 

time interval [1, 1.1]; i. e. x ∈ [-1.3, 1.3] and t ∈ [1, 1.1] for 
real value δ = 4.45 and similarly Figure 4, Figure 5 and 
Figure 6 show the exact, the approximate and the error 
solutions respectively for space variable x ∈ [-2.5, 2.5] and 
time variable t ∈ [1, 1.1] for real value of δ = 3.5. Here in 
every cases the approximate solution is similar to the 
corresponding exact solution in their intervals. Outside of the 
aforesaid intervals the solutions are difference mutually. It is 
because of involving few terms with approximate solution. In 
the range x∈[-1.3, 1.3] Figure 7, Figure 8 and Figure 9 show 
two-dimensional graphs for exact, approximate and error 
solutions respectively for the values of t = 1 and δ = 4.45. 
The value t = 1 is lower limit of the aforementioned range t ∈ 
[1, 1.1] and the above value of δ = 4.45 is referred to in Table 
1 and the aforesaid three-dimensional plots. The figures 7 
and 8, exact and approximate solutions respectively, are 
decreasing near the intervals [-0.91887, 0.91887] and 
increasing out of the interval [-0.91887, 0.91887] in the 
domain x ∈[-1.3, 1.3]. Similarly In the interval x ∈[-2.5, 
2.5], the Figure 13 shows the combined graph of exact (solid 
curve) and approximate (dotted curve) solutions for t = 1.05 
which is the mid-point of the aforesaid interval [1, 1.1] while 
the curves in Figure 13 are decreasing near the intervals [-
1.30162, 1.30162] and increasing out of the interval [-
1.30162, 1.30162]. Also the combined curves coincide near 
the interval [-2.5, 2.5]. One can see they are almost same 
over this interval and those has no difference between the 
exact and the approximate solutions because of their most 
similarity. Figures 10, 11 and 12 show the plots for exact, 
approximate and error solutions respectively while one can 
see the figures 10 and 11 are the same near the interval [-1.3, 
1.3] for the upper limit of t∈[1, 1.1] with δ = 4.45. All the 
figures show that the results of the homotopy perturbation 
method are in approximate agreement with ADM. In figures-
7, 8, 10, 11 and 13 the global maximums or amplitudes of 
oscillations are near 0.0658149, 0.0658149, 0.05501, 
0.05501 and 0.272105 respectively and the global minimums 
are near -0.0658149, -0.0658149, -0.05501, -0.05501 and -
0.272105 respectively. 

3.2. Example-2 

Consider the following nonlinear partial differential 
equation [7] 

∂u

∂t
	+	eu ∂u

∂x
	− �∂u

∂x
�2
−	 ∂2u

∂x2 −	e−u	�1	+	x	+	t�	=	0,    (25) 

subject to the initial condition 

u(x, 0) = lnx.                           (26) 

According to the homotopy perturbation method let us 
consider the following homotopy 

H(V, p) = (1– 

p)�	 ∂

∂t
V-

∂

∂t
u0�+	p �∂

∂t
V	+	eV ∂

∂x
V- � ∂

∂x
V�2

-	 ∂2

∂x2 V-	e-V�1+	x	+	t��=	0 

∂

∂t
V	- ∂

∂t
u0+	p ∂

∂t
u0+	peV ∂

∂x
V-	p � ∂

∂x
V�2

-	p ∂2

∂x2 V-	pe-V�1	+	x	+	t�	=	0, (27) 
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where u0 is the first initial approximation for the solution of 
(25), which satisfies the given initial condition (26) and 
selected by: 

L�u�	= ∂u

∂t
,	N�u�	=	eu

∂u

∂x
- �∂u

∂x
�2

-
∂2u

∂x2 	-	e-u�1	+	x	+	t�	 
& f(r) = f(x, t) = 0. 

We can assume that the solution of (27) by HPM can be 
expressed as a power series in p as follows: 

V = i
i

i 0

p V
∞

=
∑  = V0 + p V1 + p2V2 + p3V3 + p4 V4 +……..  (28) 

By the HPM, the approximate solution of (25), therefore, 
can be readily obtained by 

u = limp→1 V	= V0 + V1 + V2 + V3 + V4 + V5 + ····· (29) 

Now substituting (28) into (27) and equating the 
coefficients of the like terms with the identical powers of p 
leads to the following equations: 

p0:	 ∂

∂t
V0	- ∂

∂t
v0	=	0                                (30) 

p1:	 ∂V1

∂t
+	eV0

∂V0

∂x
- � ∂

∂x
V0�2

-
∂2V0

∂x2 -	e-V0�1	+	x	+	t�	=	0         (31)	

p2:	 ∂V2

∂t
+	eV0 �∂V1

∂x
+V1

∂V0

∂x
� -2

∂V0

∂x
.

∂V1

∂x
-

∂2V1

∂x2 	+	e-V0�1+	x	+	t�V1	=	0.                                      (32) 

p3:	 ∂V3

∂t
	+ 1

2
eV0 �2

∂V2

∂x
+	2V1

∂V1

∂x
	+	V1

2 ∂V0

∂x
+	2V2

∂V0

∂x
� -	2 ∂V0

∂x
.

∂V2

∂x
-	( ∂

∂x
V1)

2
-

∂2V2

∂x2 -	 1

2
e-V0�1+	x	+	t�(V1

2-2V2)	=	0.          (33) 

p4:
∂V4

∂t
+

1

6
eV0 �6

∂V3

∂x
+6V1

∂V2

∂x
+3V1

2 ∂V1

∂x
+V1

3 ∂V0

∂x
+6V2

∂V1

∂x
+6V1V2

∂V0

∂x
+6V3

∂V0

∂x
� 

-	2 ∂V1

∂x
.

∂V2

∂x
-	2 ∂V0

∂x
.

∂V3

∂x
-

∂2V3

∂x2 +
1

6
e-V0�1+x+t�(V1

3-6V1V2+6V3)	=	0.                           (34) 

p5:
∂V5

∂t
+

1

24
eV0(24

∂V4

∂x
+24V1

∂V3

∂x
+12V1

2 ∂V2

∂x
+	4V1

3 ∂V1

∂x
+	4V1

4 ∂V0

∂x
+24V2

∂V2

∂x
 

+	24V1V2

∂V1

∂x
+12V1

2V2

∂V0

∂x
+12V2

2 ∂V0

∂x
+24V3

∂V1

∂x
+24V1V3

∂V0

∂x
+24V4

∂V0

∂x
) 

-2
∂V1

∂x
.

∂V3

∂x
-	2 ∂V0

∂x
.

∂V4

∂x
	- � ∂

∂x
V2�2

-
∂2V4

∂x2 +
1

24
e-V0�1	+	x	+	t�(V1

4-12V1
2V2+12V2

2+24V1V3-24V4) = 0              (35) 

and so on. 
Solving the above equations (31-35) and finding the unknown solution u(x, t), we take the initial guess V0(x, t) = u0(x, t) = 

lnx which satisfies the given initial condition (26) of (25) and using the initial conditions Vn = 0 at t = 0, 1≤ n ∈N for all (31-
35), we get from (31). 

V1 = 
1

2x
�2t	+	t2� 

Again putting the values of V0, V1 into (32), we get 

V2 = 
-1

24x2
�12t2	+	12t3	+	3t4	+	12t2x	+	4t3x�. 

Similarly, we get from the other equations (33-35), 

V3 = 
1

24x3 t3	8	+	12t	+	6t2	+	t3	+12x	+	10tx	+	2t2x	+	4x2	+	tx2
, 
V4 = 

-1

2880x4 (720t4	+	1440t5	+	1080t6	+	360t7	+	45t8	+	1440t4x	+	1920t5x	+ 

840t6x	+	120t7x	+	840t4x2	+	600t5x2	+	100t6x2	+	120t4x3	+	24t5x3), 

V5 = 
1

1440x5 (288t5	+	720t6	+	720t7	+	360t8	+	90t9	+	9t10	+	720t5x	+	1320t6x 

+	900t7x	+	270t8x	+	30t9x	+	600t5x2	+	720t6x2	+	280t7x2	+	35t8x2 

+	180t5x3	+	112t6x3	+	16t7x3	+	12t5x4	+	2t6x4), 

and so on. 
Therefore putting the values of V0, V1, V2, V3, V4, V5 into (29) and after arranging the terms as a power series to the order of 

tn where n = 0, 1, 2, 3, 4, 5, ……, we get an approximate solution in a series form of (25) 
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uapp = V0 + V1 + V2 + V3 + V4 + V5 + ⋅⋅⋅⋅⋅⋅⋅⋅⋅ 

= lnx + 
1

2x
�2t	+	t2� – 

1

24x2
�12t2	+	12t3	+	3t4	+	12t2x	+	4t3x� + 

1

24x3 t3�8	+	12t	+	6t2	+	t3	+	12x	+	10tx	+	2t2x	+	4x2	+	tx2� ‒
1

2880x4 (720t4	+	1440t5	+	1080t6	+	360t7	+	45t8	+	1440t4x	+	1920t5x	+	840t6x	+	120t7x		
+	840t4x2	+	600t5x2	+	100t6x2	+	120t4x3	+	24t5x3) + 

1

1440x5 (288t5	+	720t6	+	720t7	+	360t8	+	90t9	+	9t10	+	720t5x	+	1320t6x	+	900t7x 

+270t8x	+	30t9x	+	600t5x2	+	720t6x2	+	280t7x2	+	35t8x2	+ 

180t5x3	+	112t6x3	+	16t7x3	+	12t5x4	+	2t6x4) + ⋅⋅⋅⋅⋅⋅⋅⋅⋅ 

= lnx + 
1

x
t – 

1

2x2 t2 + 
1

3x3 t3 – 
1

4x4 t4 + 
1

5x5 t5 – 
1

6x6 t6 + ‧‧‧‧‧‧‧‧‧‧‧‧‧ 

Therefore the above approximate solution yields the closed 
form 

u(x, t) = ln(x + t)                                   (36) 

Which is the exact solution (36) and also which is the 
same solution of nonlinear partial differential equation (25) 
that was achieved by the Adomian Decomposition Method 
(ADM) [7] for the same initial condition (26). 

3.2.1. Graphical Representations 

We first represent some three-dimensional diagrams and 
later show two-dimensional diagrams for the exact solution. 

 

Figure 15. Exact Solution x ∈[-100, -50] and t∈[0, 100]. 

 

Figure 16. Exact Solution x ∈[-20, 20] and t∈[0.5, 0.7]. 

 

Figure 17. Exact Solution x ∈[-1000, -100] and t∈[200, 1500]. 

Now we show some two-dimensional plots of exact 
solution for t = 100, 0.7 and 1500. 

 

Figure 18. x∈[-100, -50] and t = 100 

 

Figure 19. x∈[-20, 20] 
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Figure 20. x∈[-1000, -100] and t = 1500 

3.2.2. Result and Discussions of the Exact Solution of the 

Example-2 

Various plots obtained by HPM are shown in Figure 15, 
Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20. 
Figure 15, Figure 16 and Figure 17 show three- dimensional 
plots for different ranges of x and t while Figure 18, Figure 
19 and Figure 20 show two- dimensional plots. Figure 15 and 
Figure 18 show three-dimensional and two-dimensional plots 
respectively for the same range of x∈[-100, -50] whereas 
Figure 15 shows the solution for t∈[0, 100] and Figure 18 
shows for t = 100 which is the end point of the interval t∈[0, 
100]. Figure 16 and Figure 19 show three-dimensional and 
two-dimensional plots respectively for the same range of 
x∈[-20, 20] whereas Figure 16 shows the solution for t∈[0.5, 
0.7] and Figure 19 shows 2D solution for t = 0.7 which is the 
end point of the interval t∈[0.5, 0.7]. Similarly Figure 17 and 
Figure 20 show three-dimensional and two-dimensional plots 
respectively for the same range of x∈[-1000, -100] whereas 
Figure 17 shows the exact solution for t∈[200, 1500] and 
Figure 20 shows 2D figure for t = 1500 which is the end 
point of the aforesaid interval t∈[200, 1500] of the Figure 17. 
We see that real solutions are not present at every lower limit 
of all ranges of x and the values of the solution of all three- 
dimensional figures in different ranges of x and t are 
maximum at the endpoints of every interval of x and t. In all 
two- dimensional figures for all ranges of x, we see that the 
solutions are increasing into the aforesaid intervals of x for 
the fixed values of t. In figures 18, 19 and 20 the local or the 
global maximums are 3.91202, 3.03013 and 7.24423 
respectively in their respective intervals. 

4. Conclusion 

In this thesis work homotopy perturbation method is used 
to solve nonlinear differential equation. Figures and tables 
show that the comparison between the exact and approximate 
solutions. It can be seen that the approximate solution 
obtained by HPM is closed to the exact solution. The HPM 
has an advantage over the ADM which is that it solves the 
nonlinear problems without using Adomian polynomials. Our 
earned results have been approved the efficiency and the 
ability of this method for solving these problems. This 
method solves the problem without any need for 
discretization of the variables. Therefore it is not effected by 
computation round-off errors and one is not faced with the 

necessity for large computer memory and time. In addition 
the calculations involved in HPM are very simple and 
straight forward. The method avoids the difficulties and 
massive computational work that usually arise from other 
classical methods. 
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