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Abstract: The Hermite-Bieler theorem played key roles in several control theory problems including the proof of 

Kharitonov’s theorem and derivations of elementary proofs of the Routh’s algorithm for determining the Hurwitz stability of a 

real polynomial. In the present work, we explore the stability of complex continuous-time systems of differential equations. 

Using the theory of positive paraodd functions, we obtain Hermite-Bieler like conditions for the Routh-Hurwitz stability of 

such systems. We also look at the problem of stability of discrete-time systems of difference equations. By using suitable 

conformal mappings, we also establish Hermite-Bieler like conditions for the Schur-Cohn stability of these systems. In both 

cases, the conditions are necessary as well as sufficient. 
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1. Introduction 

The Routh–Hurwitz criterion for the stability of 

continuous-time systems of differential equations, and the 

Schur-Cohn criterion for the stability of discrete-time 

systems of difference equations have long been treated. The 

Routh-Hurwitz criterion settles the stability of continuous-

time systems with real coefficients. The Extended Routh 

Array (ERA) which proved to be a natural extension of the 

Routh Array was introduced [13]. The ERA settles the 

asymptotic stability of systems with complex coefficients 

which arise in modern communication, information theory, 

signal analysis and detection. The main argument in the 

construction of the ERA dwells on the use of positive para-

odd functions which continue to play a highly effective role 

in the stability of complex continuous-time systems. The 

Schur-Cohn criterion settles the stability of discrete-time 

systems, see for example [2]. Using conformal mappings, 

explicit relationships between the Routh-Hurwitz and the 

Schur-Cohn criteria were established, [14]. Recently, further 

connections between the two stability types were explored, 

[10]. Postnikov gave rich contributions in these directions, 

including Cauchy indices, Sturm chains, amplitude-phase 

interpretation of stability, principle of the argument, 

continued fractions, and the Hermite–Biehler theorem [6]. 

Kharitonov’s famous theorem relied heavily on the 

Hermite-Bieler theorem [4]. That led to tremendous interest 

in the latter which also provided elementary derivations of 

Routh’s algorithm for determining the Hurwitz stability of a 

real polynomial. A version of the Hermite-Bieler theorem 

was used to determine the set of all stabilizing proportional-

integral PI controllers [1]. Using similar approaches, results 

on the stability of fractional order polynomials are obtained 

[7]. By means of the square transform, a class of symmetric 

indefinite Hermite-Bieler functions was obtained from 

positive definite ones [5]. The Hermite-Bieler theorem was 

also used to study the real-rootedness of Eulerian 

polynomials of different types [8]. Some of the author’s 

contributions were done in the spirit of Kharitonov’s theorem 

[11, 12]. 

In this paper, we provide further characterizations of the 

Routh–Hurwitz and the Schur-Cohn stability criteria in terms 

of the Hermite-Bieler theorem. 

2. Routh-Hurwitz Case 

We recall the definitions of [9]. 

Definition 2.1 
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A non-constant polynomial is a Hurwitz polynomial if all 

its roots have negative real parts. 

Definition 2.2 

The paraconjugate of a rational function ( )f z  is defined 

by ( ) ( )f z f z∗ = − , where z  denotes the complex conjugate 

of z. 

For example, if  

1 2
1 2 1( ) n n

n n nf z z a z a z a z a−
− −= + + + + +⋯           (1) 

Then 

1 1 2
1 2 1( ) ( 1) ( 1)n n n n

n n nf z z a z a z a z a∗ − −
− −= − + − + + − +⋯  

Definition 2.3 

A rational function g is said to be positive if Re ( ) 0g z >  

where Re 0z > . 

Definition 2.4 

A rational function h is called para-odd if it satisfies 

h h∗ = − , where ∗  denotes paraconjugation. 

Therefore, if h is positive and satisfies h h∗ = − , we say 

that h is positive para-odd. 

Let ( )f z
 
be as defined in (1) and let it represent the 

characteristic polynomial of a continuous-time system of 

differential equations. 

Define the function 

if  odd

( )

if  even

f f
n

f f
h z

f f
n

f f

∗

∗

∗

∗

 −


+= 
+

 −

                        (2) 

Obviously, h can be written as 

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

Im Re Im Re
( )

Re Im Re Im

n n n n n

n n n n

z i a z a z i a z a z
h z

a z i a z a z i a z

− − − −

− − − −
+ + + + +=

+ + +
⋯

⋯

 (3) 

This function is sometimes referred to as the test fraction, 

[3]. 

The following theorem was established in [13]. 

Theorem 2.1 ([13, Theorem 3.1]) 

The polynomial 1 2
1 2 1( )

n n
n n nf z z a z a z a z a

−
− −= + + + + +⋯  

is Hurwitz if and only if the test fraction h can be written in 

the partial fraction expansion form 

11 2
0 0

1 2 1

( ) n

n

dd d
h z a d z

z iw z iw z iw

−

−
= + + + + +

− − −
⋯  

Where 0Re 0a = , and 0jd >  for 0 1j n≤ ≤ − . 

Let N(z) and D(z) denote respectively the numerator and 

denominator of h(z) as defined in (3). 

Lemma 2.1 

The function 1/g is positive if and only if g is positive. 

Proof 

For any nonzero complex number z, it is clear that 

2

1 z

z z
= . 

Therefore, for such z, Re (z) and Re (1/z) have the same 

sign, from which it follows that 1/g is positive if and only if g 

is positive. 

The following is a new version of the Hermite-Bieler 

theorem in the Routh-Hurwitz stability context. 

Theorem 2.2 

The polynomial 1 2
1 2 1( )

n n
n n nf z z a z a z a z a

−
− −= + + + + +⋯  

is Hurwitz if and only if 1Re 0,a >
 
and the zeros of N and D 

are simple and lie on the imaginary axis. Furthermore, the 

zeros of N interlock with those of D. 

Proof 

Assume that f is Hurwitz, then by Theorem 2.1 above, h(z) 

can be written as  

11 2
0 0

1 2 1

( ) n

n

dd d
h z a d z

z iw z iw z iw

−

−
= + + + + +

− − −
⋯  

Where 0Re 0a = , and 0jd >  for 0 1j n≤ ≤ − . 

Obviously, 0 0a d z+ is the quotient obtained upon division 

of N by D. It follows that 0 11/ Red a=  which in turn implies 

that 1Re 0.a >
 Also the partial fraction expression of h(z) shows that the 

zeros of D (denominator of h) are simple and imaginary. 

By Lemma 2.1, h is positive if and only if 1/h is positive. 

Therefore, and for a similar reason, the zeros of the 

denominator of 1/h, i.e. the zeros of N are also simple and 

imaginary. 

We may assume that 0 0.a = Otherwise, we define the 

function 0 ,k h a= − and we continue with k.

  Let r(t) = −ih(it), then r(t) can be written as 

11 2
0

1 2 1

( ) n

n

dd d
r t d t

t w t w t w

−

−
= − − − −

− − −
⋯  

It follows that 

11 2
0 2 2 2

1 2 1

( )
( ) ( ) ( )

n

n

dd d
r t d

t w t w t w

−

−

′ = + + + +
− − −

⋯  

leading to ( ) 0for .kr t t w′ > ≠  

Furthermore, on each interval 1( , )k kw w +  the function r(t) 

increases from −∞ to ∞. 

It follows that the equation r(t) = 0 has only one root on 

each such interval and that completes the first part of the 

proof. 

Conversely, assume 1 2, , , nit it it…  are the roots of N(z), and 

1 2, , , niw iw iw…  the roots of D(z) such that. 

1 1 2 2 1 1n n nt w t w t w t− −< < < < < < <⋯  

Consider the partial fraction expansion of h 
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11 2
0 0

1 2 1

( ) n

n

dd d
h z a d z

z iw z iw z iw

−

−
= + + + + +

− − −
⋯  

Obviously 0 11/ Re ,d a=
 

and since 1Re a  is now assumed 

to be positive, it follows that 0 0.d >
 Again, we may assume that 0 0.a =

 Reconsider the function 

11 2
0

1 2 1

( ) ( ) n

n

dd d
r t ih it d t

t w t w t w

−

−
= − = − − − −

− − −
⋯  

From the set of inequalities 

1 1 2 2 1 1n n nt w t w t w t− −< < < < < < <⋯  it follows that 0kd >  

for k = 1,…, n. 

Therefore, the polynomial 
1 2

1 2 1( ) n n
n n nf z z a z a z a z a−

− −= + + + + +⋯  is Hurwitz by 

Theorem 2.1 above. 

3. Schur-Cohn Case 

We make the following definitions 

Definition 3.1 

A non-constant polynomial is a Schur polynomial if all its 

roots lie inside the unit disc. 

Definition 3.2 

Consider the polynomial  

1
1 1( ) n n

n ng s s a s a s a−
−= + + + +⋯  

And let it represent the characteristic polynomial of a 

discrete-time system of difference equations.
 

The reciprocal of g is defined by 

1
1 1 0( ) (1 / )n n n

n ng s s g s a s a s a s aτ −
−= = + + + +⋯  

The Schur-Cohn counterpart to Theorem 2.2 is now given. 

A part of the proof is based on the techniques adopted in 

proving Theorem 3 of [9]. 

Theorem 3.1 

The polynomial 1
1 1( ) n n

n ng s s a s a s a−
−= + + + +⋯  is 

Schur-Cohn stable if and only if 1na < and the zeros of 

g gτ−  and g gτ+  are simple and lie on the unit circle. 

Furthermore, the zeros of g gτ−  interlock with those of 

g gτ+ .
 

Proof 

The conformal mapping 
1

1

z
s

z

+=
−

 maps the imaginary z-

axis onto the s-unit circle. 

In other words: Re 0z <   ⇔   1s <  

Introduce the function 
1

( ) (1 )
1

n z
f z z g

z

+ = −  − 
 

It follows that  

0

( ) (1 ) (1 )

n
k n k

k

k

f z a z z −

=

= − +∑
 

Since 
1

,
1

z
s

z

+=
−

 the polynomial f (z) is Routh-Hurwitz if 

and only if g(s) is Schur-Cohn. 

The paraconjugate of f is given by 

0

( ) (1 ) (1 )

n
k n k

k

k

f z a z z∗ −

=

= + −∑  

Therefore,  

0

1
(1 ) (1 ) (1 )

1

n
n k n k

k

k

z
z g a z z

z

τ −

=

+ − = + − − 
∑  

Leading to  

1
( ) (1 )

1

n z
f z z g

z

τ∗ + = −  − 
 

From the above expressions of f and ,f ∗  we get  

1 1
( ) ( ) (1 )

1 1

n z z
f z f z z g g

z z

τ∗  + +   + = − +    − −    
 

And 

1 1
( ) ( ) (1 )

1 1

n z z
f z f z z g g

z z

τ∗  + +   − = − −    − −    
 

The fact that Re 0z <  ⇔ 1s <  implies that the following 

two propositions are equivalent: 

P1: The zeros of f f ∗+  and f f ∗−
 
are simple, lie on the 

imaginary axis and interlock. 

P2: The zeros of g gτ+  and g gτ−
 
are simple, lie on the 

unit circle and interlock. 

It should be noted that f f ∗+  and f f ∗−
 
are respectively 

the numerator N and denominator D of h as defined in (2) in 

case n is even, and the other way round if n is odd. 

To complete the proof, we need to write the function f  in 

the following form: 

0

( )

n
n k

k

k

f z b z −

=

=∑  

Then by applying Theorem 3.1 with p = 1, or Theorem 3.2 

with p = n [14], we get 

1Re 0b <    ⇔   1,na <  

And that completes the proof. 

4. Conclusion 

Two important problems in stability theory were 
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considered, the Routh-Hurwitz stability problem for 

continuous-time systems of differential equations and the 

Schur-Cohn stability problem for discrete-time systems of 

difference equations. In both cases, we establish Hermite-

Bieler like conditions which guarantee the stability of the 

system. The conditions are necessary as well as sufficient. In 

the continuous-time case, we invoked the theory of positive 

para-odd functions which proved highly effective in stability 

analysis. In the discrete-time case, the use of suitable 

conformal mappings permits a smooth transfer of results 

from the continuous to the discrete case. 
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