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Abstract: This current paper investigates a predator-prey model from Holling-II type and Leslie Gower modified with
diffusion and two time delays in dimension three. Firstly, we demonstrate that its solutions are positive and globally bounded.
Secondly, we study the local stability of six equilibria points of from one is located within the relevant domain. Under certain
conditions, it reveals that among the equilibria points, some are locally stable. Finally, we focus on the global stability of the
positive interior equilibrium point. We show that the global stability set out due to the lack of time delays is kept until a certain
threshold value of time delays above which a change in the stability is observed. Thus, the global convergence analysis towards
the positive interior equilibrium point demonstrate the importance and impacts of the time delay in the stability of our model.
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1. Introduction % = 8,AU (S, X) + (ao — boUy (S, X)

In the tropic network, the predator-prey link is characterized - %) Uy (S, X),
by the. dynam.ic. intera(,ttion betweer} prey and predator WX _ o ay S50+ (—ay + V.U (S,X)
populations. This interaction that can bind three and probably as 25528 1T U(s.x)+d,
many species is the extension of the one that links two species — M) Us(S, X), (1)
[1]. This study deals with three-species food chain model. It is Uz(SX)+d,

. . . . . aUz(S,X) _ 5-AU (5 X) + (C _ v3Us(S.X) )U (S X)
a dimension three model describing a population of preys U;; s 9380305, 3 T Lexrd) 3 A
tha.t constitutes the oqu food Qf the? predators’ population U,. U1(0,X) > 0,U,(0,X) > 0,U3(0,X) > 0,
This predator called intermediary is also the prey of another s _ 0z _ s _ o 10 +oo[x 00
upper predator named super predator Us;. on on  on

The model takes into account the diffusion in predator-prey

interactions and reflects the opportunity for each species Where

present to move in a given space. For mathematical and

simplification reasons, we select a limited open set (1, from Xe05>0

which we assume that the migration flows towards its (@0, @y, by, 3, do, dyy ds, Vo, V3, Vg, ) € (RG)LL are

boundary dQ is null. Predators and preys density is also
supposed null from the exterior of the chosen domain. We get
the following model by adding the term of diffusion to the
given model in the article [2]:

ecological parameters [2],

U,(S,X), Uy(S,X) and U;(S, X) respectively indicate not
only the densities of both prey and intermediary predator but
also that of the super predator at instant S and position X,
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dUL(SX) dUz(SX) o 0 dU3(SX)
s ’ ds
of prey, intermediaries predators and that of super predators
increase at instant S and the position X depending on the
following ecological parameters:
8, is the prey diffusion coefficient U,
8, is the predator diffusion coefficient U,,
85 is the super predator diffusion coefficient Us,
A is the operator of Laplace.

respectively designate the rate

In two dimensions, this schema was subject to many studies.

There is a lot of articles about it [1, 3]. However, in dimension
three, fewer works have been done. Aziz [7] studied a similar
model to (1).

Nindjin and al [2] included the term —b,U,(S) in the
dynamics of the predator U,. They studied the impact of
certain time delays on the dynamic of these three species. This
insertion permits to take in to account the internal competition
between the members of this population especially in the
research of food, procreation or occupation of the space.

Indeed, in the instantaneous case, most of them require the
considered system to satisfy the so-called negative
instantaneous diagonal feedback dominance condition. In the
delayed system Lotka-Volterra-type, Kuang and Smith [8]

U, _au, _ @

on on on

Where X € Q, S >0, 6 € [—7; 0] with
r= max{fl; 772}

In (2), the focus has not only been on the Laplacian operator
which expresses the diffusion but especially, the time delays
7; and 7, which indicate respectively a time of recruitment
for the prey U; and the intermediary predator U, [2]. In other
words, the length of time necessary for these species to take

showed that if, for every specy, the instantaneous intraspecific
competition (instantaneous negative feedback) dominates the
total competition due to delayed intraspecific competition and
interspecific competition, then, the positive equilibrium point
of the system remains globally and asymptotically stable.
Most of the global stability or convergence results appearing
so far for delayed ecological systems, require that the
instantaneous negative feedbacks dominate both delayed
feedback and interspecific interactions. Such requirement is
rarely met in real systems when feedbacks are generally
delayed. The model studied by Nindjin and al did not have any
term of diffusion [2,7]. Therefore, the issue of mobility of the
species in  has not been tackled. This approach is not
always consistent with both ecological and biological realities.
We introduce a term of diffusion to take into account the
mobility of species to complement their works. The resulting
model seems to be more realistic.

2. Presentation of the Model

Thus, this study is based on the following model:

AU (S,X)
10_5 = 61AU1(5,X) + (ao
_ U: (S,X)
=boUs(S = 70, X) = 12 = Us (S, X),
OUL(S.X) _ _ v1U1(S.X)
= 8,AU,(S,X) + (—a, + TG e
_ U: (S,X)
=byUs(S = T, X) = 22 U5 (S, X),
AU3(5,X)
3;’—5 = 63AU3(S,X)
__ v3U3(S.X)
{+(e UZ(S,X)+d3)U3 (S, %), (2)

Ul(g") = ¢1(6")' UZ(H') = ¢2(6")' U3(0') = ¢3(6:')'
U1(0,.) > 0,U,(0,.) > 0,U5(0,.) > 0,
¢ = (¢1, b2, P3) € C([—750] X O; R®),

22 -0 on ]0;+oo[x 09,

part in the research of food, the procreation or occupation of
space.

Furthermore, the insertion of both time delays and the term
of diffusion is a relevant approach, because, it is more realistic
and more interesting in the research for a better dynamic
interaction comprehension between a predator and its prey.
Considering the following variable changes:

1
t= a8, x = (G2K, Wi(t,2) = 22U (T, X), Wy(t,x) = "2 Up(T, X)W (8, x) = 222 U3 (T, X),
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S 1 v apb
:—2, 0'3 :—3’ C:—l’ e = 071
81 81 ao

LI
ao 9 aO, 2

vobg’

we get the following completed model which is subject to our
study:

TAED = AW, (6, 2) + (1= Wyt —13,%)
_ Wz(f,x)
Wl(t,x)+a)W1 (t' x)'
oW, (tx) _ cWy(tx)
e 0, AW, (t,x) + (—b + Watr)ie
_ _ _ Wt
eW,(t — 1y, x) Wz(t’x)er)Wz(t,x),
% = O—3AW3 (t, x)
+(p — 22w (1, ), (3)

Wy (t,x)+s

W1(8,x) = ¢1(8,x), W,(0,x) = ¢,(0,x),
W3(0' X) = (],’)3(6,)6),

W, (0,%) > 0,W,(0,x) > 0, W;(0,x) > 0,
¢ = (1, 2, ¢3) € C([-7; 0] x Q; R?),
oWy _ oW, _ oWy

2 _ .
o P P 0 on ]0;4+o0o[x 0Q,

Where x € Q,t > 0,0 € [—r; 0] with
r = max{ry; 1, }

In this paper, our goal is to find out the natural, realistic and
easily verifiable conditions under which, the global stability
established in the instantaneous model remains the same. To
achieve this aim, we set up an appropriated Lyapunov’s
functional. But, long before that, we showed the solutions
boundedness by using methods employed in article [9]. Then,
locally we analysed the equilibrium points of the system (3).

3. Global Boundedness of Solutions

Let us determine the sufficient conditions that ensure the
global boundedness of the solutions of model (3). For that,

oW, (t,x)
at

According to lemma 3.1,

limsup;_, ;,maxgW, (t,x) < e™ and
. b (e
limsup,_, 4 comax,cgW, (t, x) < CTe(C bz,

Thus, Ve > 0,3T; > 0,T, > 0/Vt > max(Ty, T,),
Wi(t,x) <e™ + ¢ and

c—b

W,(t, x) < e 4 ¢ vx € Q

In that case, one gets : W;(t,x) < M; and W,(t,x) < M,
with M, > 0 because ¢ > b.

d,vobg _C3 __ U3 _ d3vobg _ — _ —
“—— p=—,q=—,5S=——— 1 =qyfy and 1, = ay7,
ag ag vy ag

for smallest and positive €, let us define the following
numbers:

My =em+g M, ="2elD" 4+ g M, = 2(M; +5) +

S _pKrq .
g m3=%—€,m=Ke(1e KTy m; =m—¢ with

M B —eBr2
K=1-=% and m, =_el=c"*)0"

M3 cmy
d a+My’
Then, considering the domain

—¢&, with B=—-b —

D = [my; My] X [mg; Mp] X [m3; M3] of R®, (4)

Theorem 3.1 : If ¢ >b, elcDr <% and

a+e’1

;;q (a +s) so, the system (3) is globally bounded and any
solution of this system stays in the domain D.
In order to prove the theorem (3.1), let us state the following

lemma.
Lemma 3.1 : Let us consider the system

dv((;t’X) = oAv(t,x) + v(t,x)g(w(t —1,x))
ov
% =0 on [0;+0o[x 90 %)

[v(s,x) 20 Vs € [-r;0]

\

Where t >0, x € Q

If v(0,x) # 0, then, we have:
it gw) <a(l- %v) so, any solution v of (5) verifies
limsup;_,smaxgv(t,.) < de?®,
if glv) = ea(1 —%v) then, any solution v of (5) verifies
liminf,_, , ,mingv(t,.) = de4®" with A =1 — e,

Proof : See the reference [9].

Now, let us prove theorem (3.1).

Proof : The two first equations of model (3) permit to lead
to the two following inequations:

oW, (t,
D < AWt x0) + (1 = Wi (t = 110, 0) Wi (8,2) (6)

< 0, AW, (t,x) + (¢ — b — eW, (t — 13, %))W, (¢, x) (7

So, the third equation of (3) leads to:

OWs(tx) < 0 AWL(t,x) + (p — qW3_(t,x))W3 (tx) (8
_a My+s

By proceeding like previously: 3T; > 0/Vt > T,
W5(t, x) < M;. Consequently, W,(t,x) <M, , W (t,x) <
M; and W5(t,x) < M3, Vt > max{T;,T,, T3}, Vx € Q.

Let us seek the lowest values.

The first equation of (3) gives:
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WD) > AW, (¢, x) + (1 . rl,x)> W, (¢, x) ©)

at - a

x €Q, t>max{T; +1,T,}

By posing K =1 — % and applying the lemma 3.1 to (7),
we show that
3T, > 0/Vt > T, W, (t,x) = Ke@¢"™kn _ ¢ yxe Q. It
is clear that K > 0. So, for the smallest ¢, m; >0 and
Wi(t,x) = my.

A similar approach permits to conclude that

ATs>0/Vt>Ts, myg <Ws(tx), Vx € Q.

Taking into account the lowest values of W5 and W;, the
second equation of (3) is:

AW, (¢, x)

T = 0, AW, (t,x) + (B — eW,(t — 1y, x))W, (L, x)

Thus, 3 Tg >0 / Vt > Tg Wy(t,x) = Ze(e"8r2 —
e. Then, W, (t,x) = m,.

Let us demonstrate that m, > 0. For that, we only have to
prove that B > 0.

p
E(Mz +s)+¢ cmy

We have, B = —b — . Considering the
d atell+e

two first conditions of theorem 3.1 and by decaying & toward

Zero, one gets:

a S cm

B>-c-2-24
dq dq

Whereas

ate’’

cm

r
>dq(a+s),so,B>0

a+e’l

We conclude that m, > 0. Hence the result.
Remark 3.1 : When =0 and r, =0, we get the
following values:

M1=1+€, MZ=%+€, M3=§(M2+S)+€, ms =
?+£, m1=1—%+e and m2=§+£ with

B=— —%4- cmy

da a+Mq

(10)

In that case, the conditions to have the boundedness are:
ae m_ P
c>bh,1 <5 and . >dq(a+s).
Remark 3.2 : In all the following work, we assume that the
model is globally bounded.

4. The Equilibria Points
The system (3) has trivial equilibria points which are:
ps
So = (0,0,0), S =(1,0,0), S, = (0,0, 7)

yoz—[ea3+(de+§

On the plan W, = 0, there is no equilibrium point.
On the plan W, = 0, one has only a trivial equilibrium

point which is S; = (1,0,%5).

On the plan W5 = 0, one has only a non trivial equilibrium
point which is S, = (W, (1 — W)(W; + a),0) where Wy
is eventually a positive root of

Pi(x) = y3x3 + y,x% + y1x + y, with

Yo=—ab+e)y,=c—b—acy,=ea—1),y;=e.

The polynomial P; admits at least a real root because it has

an odd-degree.

Moreover, the product of these roots is @ > 0.

So, P; at least has a strictly positive root noted W;". This
must verify the condition.
ab %
— <Wi <1 1y
for S, to be a constant equilibrium point.
We have the following result relative of the interior
equilibrum point.

PS i ba
q

Theorem 4.1 : If <a and c¢>

—Ge+6c—4b—%—bd

bd . .
max(b,3e + % + 7), then, the system (3) admits a positive
constant interior equilibrium point.

Proof : The system (3) admits a constant interior
equilibrium point

Sy = (W, W, W3™) if and only if (W™, W™, W5™) is
the following system solution:

W**
1-WH——2—=
1 Wi +a ’
W Wi
—b+—L——eW,*——32—=0
2
{ wi*+a Wy*+d ! (12)
aws"
P Witts

By setting W,* and W5™ according to W;™ in (12), W)™
becomes a root of the polynomial P,.

Py (x) = sts + V4x4 + V3x3 + szz +V1X + Yo
With

s
)az +%a + bda + baz],

y, = —e(—=2a® + 3a%) — (de + 2) (2a—a?) — pq_s+ cd + ac — bd — b(2a — a?)
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¥ =—e(a3—6a2+3a)—(de+§—b)(1—2a)+c(1—a)

y3=—e(3a2—6a+1)+<de+§)—c+b

Ya = —eBa—2)ys = —

As the degree of P, is odd, the polynomial P, admits at least a real root.

We get P,(0) =y, <0 and

S
Pz(l)=y5+y4+y3+y2+y1+y0=a[—6e+2c+4(c—b)]—(a+1)(%+bd)

One has P,(1) > 0 because ¢ > 3e and

a

ps
=~ +bd
q-‘r

a+1

>—6e+20+4(c—b)

As P, is continuous, under the conditions of theorem 4.1, at least,one of these roots which belong to ]0; 1[ noted W;™.

Hence S5 exists and showed under the following form:

55 — (W**, WZ**’ Wg**) — (W**, (1 _

5. Local Stability

In this subsection, we study the local stability in the
neighborhood of S;, where k=0,...,5. We have two cases. One
of them is the instantaneous system and the other is the system
with delays.

5.1. Local Stability of the Instantaneous System

The model with no time delays looks as follows:

TALD = AWy (tx) + (1 — Wy (t,x)
Wy (t.x)

“mamiad V16X,
oW, (¢, x) cWy(tx)

or o, AW, (t, x) + (—b + WitAta
_ W3 (tx)

eW,(t,x) — T, x)+d)W2(t X), w
% o3AW;(t, x)

qws(t.x)

+ = 2D w1, ),
W,(0,.) > 0,W,(0,.) > 0, W5(0,.) >0,
oWy _ W, _ Wz _ .
= = 5 = an = 0,0n ]0; +00[x 00

For that, let us consider (u;, ¢;)i=, the set developed by
the eigenvalue and eigenvector pairs of the operator —A on ()
with homogeneous Neumann boundary conditions such as

0=po<p <pz <

FL(Wy(t, %), Wy (t, x), Ws(t, x)) = (1 — Wy (t, %) —
fo(Wy (8, x), Wy (t, x), Wa(t,x)) = (—b +

f3(W1(t' X), Wz(f. X), WS(t' X)) = (p -

W)Wy + a),§(1 —Wi)(Wi™ +a)) (13)
Let us note
= {((wv,w) € (C?@)°/2=2=2"=0} . Given

E (#1) the space of the eigenvectors corresponding to the
eigenvalue p; for all

i=0;1;2..,
{¢ij,j =1;...;dimE(y;)} is an orthonormal basis of
E(w). Xij = {c¢yj,c € R®}

X is a set that can be decomposed as a direct sum @2, X
where

X, 6chms(m) X,

The operator resulting from the linearized system to the
neighborhood of an equilibrium point is as follows:

/A+A(k)1d AW, A®1,

K k k
_ [ A®1, ab+ A%, AR, | s

k K K
KAggzd AW, 03A+Ag3>1d /
with A% =2mC -} —o 5 . 1=1,..3 and
ow,

m=1,...,3. A Laplacian operator and I; the identity of
C%(Q).

Where

wWo (t,x)

Ty LACEY (16)

Wy (tx) Ws (t,x)
Witore eW,(t,x) — Wz(t,x)+cl)W2(t' x) (17)
LCD (8, ). (18)

Wy (tx)+s
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For any fixed i = 0, X; is invariant under K. Thus, the K matrix in X; becomes:

K k K
/_lii + A§1) Agz) A§3) \
(k) (F) (F)
Azq —Oxli + Ay Ayg (19)
K K K
\Agl) Agz) —O3p; + Ag3)/

Our aim is to study the eigenvalues signs of (19) in order to establish the stability of the equilibria points S, where k =
1,...,5
a. Stability of S, = (0,0,0)
Onehas: A =1, 49 =0, 49 =0, 40 =0, 48) = —b, 4 =0, 40 =0, 47) =0, A7) = p.
The eigenvalues of (19) to the neighborhood of S, are 1 — y;, —o,u; — b and —o3u; + p. We get:
If max{f, 1} < u; then, S, is stable,
3

Otherwise, S, is unstable.
b. Stability of S; = (1,0,0)
1CO ® _ -1 ® _ 1 _ ® _ e 1 _ ® _ ® _ ® _
One has : Ay = -1, A}, = Az =0, 43 =0, A, = —b+m, A =0, 437 =0, 4;;, =0, A;5 =p. The
eigenvalues of (19) to the neighborhood of S; are —1 — y;, o,u; — b + ﬁ and —o3u; + p. We have:
1 CN. P .
If y; > max{a—2 (=b+ m), 03} then, S; is stable.
Otherwise, S; is unstable.
c. Stability of S, = (0,0, %)
We have: A7) =1, A7) =0, A7) =0, A7) = 0, A7) = —b— 2>, A7) = 0, A7) = 0, AF) = 0, A = —p.
The eigenvalues of (19) to the neighborhood of S, are 1 — p;, —o,u; — b — % and —osu; — p. We have:

If 1 < y; then, S, is a stable node.
Otherwise, S, is unstable.

d. Stability of S; = (1,0, %)

.23 _ e _ -1 3 _ 3 _ 3 _ ¢ ps (3 _ 3 _ G _p* 46 _
we have: All = —1, A12 = m, A13 = 0, A21 = 0, A22 =—b +E—E, A23 = 0, A31 = 0, A32 = ?, A33 = —Dp.

The eigenvalues of (19) to the neighborhood of S; are —1 — p;, —o,u; + Ag and —osu; — p. We get:

3)
A .
If % < u; so, S is a stable node.
2

Otherwise, S3 is unstable.
e. Stability of S, = (W), W,,0) and S5 = (W™, W™, W35™)
The eigenvalues of (19) are the solutions of the following equation :
B+aP2+a21+a =0
With
k k k k
ag ) = A+ 0, +03)y; — (Agz) + Agl) + Ag;)
k k k k k k k k) 4(k K) 4(k k) 4(k
) = (0,05 + 05 + a3)u? — (0,4% + ;4% + 4% + 4% + 6,4%) + 0,48 ) u; + AL AL + AR AL) + 4L A%
(k) 4 (k) (k) 4 (k)
—Ays Azy — Ajy Ayy
k k k k k) 4(k K) 4 (k K) 4(k K) 4 (k k) 4(k
(1(() ) = 0,037 — (A§1)0203 + Agz)% + Ag3)02)/“‘i2 + (Agl)Agz)% + Agl)Ag;az + Ag3)Agz) - Ag;Agz) - Agz)Agl)%)/“‘i
(k) (k) 4 (k) (k) 4 (k) 4 (k) (k) 4 (k) 4 (k)
_All A22 A33 + All A23 A32 + A21 A12 A33
Theorem 5.1 : Sy, is stable if and only if
>0, a8 >0 and afP x a > al? (k = 4;5) (20)

Proof : The eigenvalues of (19) are the solutions of the @ @ ®
following equation : Bta, P+a;"24+a;° =0 21

Whereas according to Routh-Hurwitz criterion, this
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equation admits some solutions with a real negative part only
if :

()

>0, a {0

>0 and a, @

(k)
a, X a;

> al (22)

Hence we have the following result.

Remark 5.1 : To get ags) >0, a(()s) >0 and ags) X ais) >
a((,s), we only have Agsl) < 0 and Agsz) < 0.

We already know that

©)] ok
A® =1 - 2w — =
11 1 (VVI** +a)2 VVI** +a

So, when W;™ > 1_Ta, one gets Agsl) <0.

In a similar way, when Wy™ < @ Agsz) <0.
c-b

Consequently a sufficient condition to have the local
o . - " b .
stability of Sg is 12—a< |74 <Ca_—b provided that
ps
c—b 7+bd
max(c+b ’ —68+60—4b—%—bd) <a

5.2. Local Stability of the System with Time Delays

Let us note (Wl(k), Wz(k), W3(k)) the equilibria points
components S, with k = 0;...;5 and let us pose V;(t,x) =
W, (t,x) — W, Vo(t,x) = Wy(t,x) =W, and
Va(t,x) = Ws(t,x) — Wy

The linearized system to the neighborhood of the equilibria
points Sy is forall x € Q and t > O:

aVla(tt,x) — AVl(t' x) + Ag’;)Vl(t, x)
+A9V, (8, x) + ARV, (t = 1,20,
oV, (tx) _ k) k)
J o0 = 0aAVa (6, %) + Ay Vi (%) + Ay, Va (£, %) o
+Ag§)V3 (t,x) + A;’Z)Vz (t —15,%),
V3 (t,x) K k
3at X = 03AV3(t, .x) + AgZ)VZ(t’ .x) + Ag3)V3(t’ x)’
(k) k) 0 @
ith A® =1 _w® __Wa' 0 __ M 400 — _yyo 00 _ _caw; 200 = _p oy W o
wi 11 1 (Wl(k)+a)2 > A1z Wl(k)+a > g 1 > Hpq (Wl(k)+a)_2 , Ayy + Wl(k)+a eW,
_awd o w0 400 - a? g 20w
e Ao = Tty A = meW T Ay =1 A TP m
5.2.1. Local Stability of the System with v{ # 0 and r, = 0
In this subsection, Ag’? = 0. The characteristic equation of the linearized model (23) is:
AV @, 1) = PO + QP e ™t =0 (24)

Where

POQ) = (A% = 21— )AL — 1 — o1 (AYY — 1 — a3) — ALY AT)] — AR AT (AY) — 1 — a3py)

And

k k k k k
QW @) = AW (AL — 2 — o) (AL — A — aa) — ALY AT

For the equilibria points S, and S,, A% = 0, the stability
study is realized as in the model with no time delays. Thus, we
have the same results like in the instantaneous case.
Consequently, the insertion of the time delay r; does not have
any impact on the stability of these two equilibria points.

Concerning the study of other equilibria points, we use the
results relative to the systems stability study in the article [5].
Thus,

(). P®) and Q™ (1) do not have any common
imaginary root. Indeed if it was the case, this root should be
equal to o3p; — Ag’?, which is impossible.

. k k k

(). PO0) +QW(0) = (A — s + AT)(AF -

k k) ,(k k) (k) ;oK
Uzﬂi)(Ag; - O—3111') - Agz)Ag;] - Agz)A;B(Ag; - 0—3#1')

For each cases, we explain the conditions to obtain
P®0)+Q®™(0)+#0 to the neighborhood of each
equilibrium point.

(iii). It is clear that P®(—jy)=P®(jy) and
QMI(=j) = Q(Gy), with 2 = -1,
(iv). we have limsup{|g(T3;|/M| — +oco and Re(4) =
e®w

0} = 0. So, limsup{|
1

(v). Let pose FO(y) = [POGy)|* = Q¥ y)I?. The
function F® could be under the following form

i, /1Al = +e0 and Re(2) = 0} <
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k
FO(y) = y© +n80y* + n{9y2 + n§

Where:

(k). 2 (k) (25)

k K k K K) (k) ¢ 4k K) (k) ¢ 4k
77(() ) = [(A§1) - lli)(Agz) - .“iaz)(Ag3) — Wi03) — Agz)Ag3)(A§1) - ”i) - Agz)Agl)(Ags) - :“iUS)]Z

k k k k k
—(A¥2[(A%) - 10,) (A — wios) — 4545912,

(9]
n, = =248 = w + A — oy + AL — o) [(ATY — ) (A5 — o) (A — wios) — A5 A% (AT — o)

k k k k k k k k k k
AR AP (AY) — wio)] + [-(A% — u)(AY — wo, + AY) — wos) — (Y — wo) (A% - o) + A% ALY

k k
+A%0 48012 — A%2[AY) - pios)? + (AL — wioy)? + 248048,

k Kk k k k) ,(k K) ;(k k
775 ) = (Agl) —u)? (Ag3) — W03)? + (Agz) — Wop)? + ZAEZ)AEI) + ZAgz)Ag; - (ALB)Z

The analysis of the local stability of (3) to the neighborhood
of S, is based on the existence of a positive root of F®), It is
apparent that:

F® admits a positive root if n(()k) <0.

If Ul(k) >0,0l=0,1,2, then, F® does not admit any
positive root.
Remark 5.2 :
1 Ay
If u; <— and y; # -2 so,
o3 gy
P(l)(o) +QW (0) # 0 and FD admits at least a positive
root.

1 AW
If p; < —and p; # % then,

3 2
P®(0) +Q®(0) # 0 and F® allows at least a positive
root.

[CORAC)]
4) A A
If u; > {Agl);f;gi:} and

(437 — ) (457 — oa) — AL AZ) < AT (453 — o)

Then, P®(0) + Q(0) # 0 and F® admits at least a
positive root.

(5)
If u;, > {Agsl);%} and

5 5 5 5) ,(5) [ 4(5 5) ,(5) (45 5 5 5 5) 45
(A§1) - -“i) (Agz) - ‘72-“1') (Ag3) - -“i) - Agz)Ag3) (A§1) - Ni) - Agz)AgB (Ag3) - ‘72-“1') - A§4)[(A§1) - lli)(Agz) — Opli;) — Agz)Ags)] >0

So, P®(0)+Q®(0) # 0 and F® admits at least a
positive root.

Let us find out 5(r1(")) _ sign{dRe(/l)

dry
sign of a solution A from the characteristic of the equation

A(k) (A'l I’lil rl(k)) = 0
Lemma 5.1 : Let us take account A as a positive solution of
the characteristic of the equation A® (4, y;, 1) = 0.

|1=jy} the real part

Let us name y; = y(rl(k)) the positive root of F®) and
rl(k) the associated time delay verifying, for all n € N, the
dRe(2)

dry

§(r) = sign{

Whereas 9n 1, so,
dry

80 = sgnBoD* + 20 N2 + ().

Remark 53 : 1. If ngk) >0 and ngk) >0 where
% — 127" < 0 so, 6(r") > 0.

2.1f 2 =120 > 0, 1% > 0, %9 < 0 then,
if y; €10; X [UIYXs; +oo[ s0, 601" > 0,
if y; €lyXy;/Xzl so, §(r%?) <0, with X, .and X, the
solution of the equation 3X?2 + Zr]gk)X + nik) =0.

3.1f 1992 — 1209 > 0, 1% < 0 then,
if y; €]/Xq; +00[ so, 5’ >0

following relation: Sn(rl(k)) =0 with Sn(rl(k)) = rl(k) —

P (jy1)
(k) (y _ 1 mQ®GyY | | 2nn
a,(r;"") and a,(r;"") = = arctan T ® iy "
Vi ReCpld | i
e®yyy
. P®yD)
if Re )+ 0
(Q(")(jyi))
. 2
Otherwise, a;, (rl(k)) =—+4+=
2y Y1

Let us pose

— k)N’ * dSp
=y} = Sgn(FOY DSgnCI, _,0)-

if y1 €]0;/Xo[ then, §(n*) < 0
with X, the positive solution of the equation 3X2 +
28X + {9 = 0.

Let us state out the following theorem.

Theorem 5.2 : Let us assume that the stability hypothesis in
the instantaneous case are verified. Thus, for k = 1,3,4,5

1. there is no change in the stability of the equilibria points
Sy 1in the following case: nl(k) >0, [=0,1.2.

2. We notice the following stability changes:

In the case where & (rl(k)) > 0.

If for r, =0, S, was stable, it remains stable when

0=n< rl(k) and becomes unstable if r; > rl(k).
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If for ; = 0, S, was unstable, it remains for ; > 0. Remark 5.4 : When 7, # 0 and 7, = 0 then, Ag’;) =0
(F)

In the case where §(1;) < 0. and A # 0. In that case, by using a similar process to the

If for r;, = 0, S, was stable, it stays stable when r; > 0. case 1, #0 and 7, =0, we study the stability of the

If for r; = 0, S, was unstable, it remains unstable when equilibria points Sj.

0=n< rl( ) and becomes stable if r; > rl(k).

Proof : 1. If n, > 0,1 =0,1,2 so, F® defined by (25) 5.2.2. LocalStability ofthe System with Ty # O0and 1, 0

In this part, the two time delays are considered as non null.
We focus on the impact of one of them meanwhile the other
one is viewed as a parameter.

. . (k)
assoc1f<1ted. to the time delay ;7. From the reference [5], and The characteristic equation of (23) to the neighborhood of
by taking into account the remarks (5.2) and (5.3), we have the Sy, for all k=0;...5, is:

stability of S;.m

does not admit any real root.
2. If 7y < 0 then, F® admits at least a positive root y;

A = RP ) + RP e + (RP (1) + RP (e A)e 24 = 0 (26)
Where
R{O@) = (A1 = 1= m)[(AY5 = A= opu) (A5 — = o)) = A 4551 = AP AT (AS) — A = o)
RO = AFAY = 2= 031 (A = 2= o5u) - Aé’?A(’”]R(")(A) AZY AL = 2= u) (AT = 2 = o311
Rz(Lk) W) = A(k)A(k) (A(k) — oal)
When 7; is the parameter and 7, the variable, (26) Indeed, if P (1) and Q¥ (1) have common imaginary
becomes: pi—a®
roots jy, y would verify the relation cosryy = A(")ll'
Ae(A i 11,13) = PO + QW0 RDe™ =0 (27) ne "

« i Which is impossible because | (k) L] >1.
with P®Q) = R + RO (Me 4 and QW) =

R Q) + R (e, 3. hmsup{lp(k)ﬁﬁ |/12] > +0 and Re(2) = 0} = 0. So,
However, if r, becomes the parameter and 7; the variable, B 1)
(26) is: z ! limsup{| & P<k)(/1) |/|1A] = +o0 and Re(A) > 0} < 1.

4.1F AY — ;< 0, AL — o0 < 0 and A% — oy, < 0
so, PI(0) + Q¥ (0) # 0.
with PO = R® ) + R®De "% and ® (1) = Let us consider the function defined on R by
R(k)()l) + R( (k)) (/1)el_rzg )It sh30ul(d)be noticed tha? fo(r )the FOG) = IPOGyI? - QU The function F
2 VT T - P ’ @ could be under the following form:
equilibria points S, with k = 0,1,2,3, A;, = 0 or A}, = 0. p(k)(y) — G(k)(y) + H(k)(y) with
So, the stability study to the neighborhood of these equilibria

Ay, r1,13) = POQ) + QO Me™ =0 (28)

points refers to the previous case . H®(y) = 2H® (y)cos(ry) + 2HP (¥)sin(ry),  (29)
This is why, we only study the system stability to the
neighborhood of the equilibria points S, for k = 4,5. GOy =y°® + ngk)y”‘ + n(k)yz + n(()k), (30)
We are interesting in the impact of the time delay 7, by . . . .
keeping r; as a parameter. Considering the characteristic of Hl( )(y) = & )y‘* +&; Wy2z gl (31)
the equation (27) we have: @ (k) ; @ @
1. PO (—jy) = P®(jy) and QW (—jy) = Q¥ (jy) with Hy ") =v, Y +v ¥ +v, (32)
Jo=-1 Where

2. If |“l po |>1 so, P® (1) and QM (1) have no

common imaglnary roots.
(k) _ (E(k))z + (E(k))z + (E(k))z + ZD(k) + ZD(k) + (D(k))z (ngk))z
—ZDE")EE")EZ(") - ZDé")Eé")Eé") + (Dé’”Eé’”)Z + (Dé")ES‘))Z + zwé’”)ZDé") - (Di")Ef’”)z - (Di’”Eé’”)Z

k k
~(0;”D:y?
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no” = (B (BB — D) — E{“D{) + [D3F (B;V B — Dy))” — (0,9 BV E)? — (09D By
ék) _ D3(k) El(k)
{9 = 20D EY) - DD + DB (E): + D (E)? ~ DI B 0L
{0 = DB 0RO - DD EDEL — DODOEOEY: + DD DWES — DODOED N EY
+D§ (D{)2E{” — (0{)2 DS BV (E{")?
y(k) D(k)
' =200 + DD + DIV (E{")? + DIV ()2 — (05)2D5"
}/(k) D(k)D(k)D(k) ZDz(k)Dék)Ez(k)Eék) + Dék)(Dz(k))z + Dék)(E?Ek)Ez(k))z + D?Ek)Dl(k)(E?Ek))z _ (Dik))zng)(Egk))z
with
E1(k) — Ag’? — Ez(k) — Ag’;) —u, R — Agk) -, po — A(k)Agkl), D(k) A(k)Ag;), D(k) Ag‘? and Dik) — Ag’?.

The following result reveals the existence conditions of a positive root from F®) to the neighborhood of Sj,.

Proposition 5.1 : Let us note
z® = ‘/(Hf"bz + (H{)? (33)

K k) . (k
ﬁ — )2 (k)—é)—ng)gi)and
1 (k) [©) [©)
fz fz

k) £ (k k) £ (k
fcg )S(() 1) Wc())fé)

Bo=— Mo — K
& 2
k) £ (k K) 2 (k) (k) (K K) £ (k
1. IfV1( )E()—Vz( )f( ), % )5() ()f()
(k)
F® admits a positive root B(k) if Bof1 < 0.
F® does not admit any root if not.
2. Let us assume that |G ® (y)| < |Z2®) (y)].
Let us pose Vn € N,
HO), 1 GO,  2nm

Yvn(y) =y — —arctan(H(k) (y)) Earccos(— Z(T(y)) + T
If n exists such as the equation ¥,(y) =0 admits a Whereas Vl(k)fék) =y2(’<)§1(k) , Vék)fz(k) (k)s((k) 50,

positive solution y, so, F%) admits y, like a positive root (k) ) =0

for any time delay ;. 2 '
3. IF |GPW)| > 128 (y)| so, F® does not admit any

positive roots.

In that case, F® is reduced to G,
. k Ky -
Let us replace again y* by —(—k)(f( Dy2 4 &0y in GO,

Proof: We have we have: G (y) = B,y + B,. So, when B, and f, are all
) 0 non null and have the same sign then, G does not admit any
H@y)=0sy*= f(k) &y +E ) positive root.
2

(k)

. —Bg
When we replace y* by If B; and [, are opposite signs so, B(k) becomes a

(GI) (F)y - (k) .
("‘) Gy +407) in Hy™, we get: unique positive root of G, and F®,

0.0 Let us suppose that |G%)(y)| < |Z®(y)| so, cos(r,y —

(k) £(
K o relk K Y . 6%
1-1( d(y) = vy, (k) _ 72 O )y +y ( ) _ P R @,) = cosf; with 6; = arccos(— z<k)g§)'
2 2

Hence riy = ¢ + 0, + 2nm
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Let us pose
1 H” ) ®(y). | 2nm
=y— —arctan — —arccos(— + —
n() =y ( e o Czm5y

If n exists and the equation ¥, (y) = 0 admits a positive
solution y, then, F®¥)(y) = 0 admits y, as a positive root
for all time delay 7.

If 7,>0 and |G ()| > |Z®(y)| so, F® does not
admit any positive roots. m

Remark 5.5 : If A% + 459 > 0, we have

k) ¢ (k k) (k) (k) £ (k
71( )52()_],2()1()'],0( )5()

=g =

(k)f(k)
0

o E® —EM

k k k k
e U + 41 -0) = @AY - a1 + ).
We know that Ag? = —p, Agsl) > 0 and Agsz) >0, so, in
order to have

A5 + 48 - 03)—(A(5)—A(5))(1+02) it s

§(r¥) = sgn { ()

However, %= 1, so, if Sgn(F®)'(y*) >0 and that
2
r, = 0 the equilibrium point Sk is stable so, when r, €
[0; rz(k)], it stays stable. If 1, > rz then it becomes stable.
Contrariwise, if it is unstable, it remains.
If Sgn(F®)'(y*) < 0 and that, r, = 0, S5 was stable, it

stays. But if it was unstable, it remains until rz(k). Then, for

T, > rz( ). it becomes stable.

If F w0 does not admit any positive roots, there is no
stability change.
Proof : See the reference [5].

6. Global Stability of the Instantaneous
System

necessary that 1 — g3 > 0.

Lemma 5.2: Let us consider A as a pure imaginary solution

of the characteristic of the equation (27). Given y* = y(rz(k))

as a positive root of F®) whose time delay is associated to

(k) 0 (ry)+2nm
A —_—=—
z y(r2)

Uy . — 10 (PP
—Re(Q(k)(],y)) and sinf(r,) = Im(Q(k)(],y)).

So, /Lr(rz(k)) =y*j and l_(Tz(k)) =-y'J.

(k)
We have rz(k) = %
.

solution of 1, = such as cosO(ry) =

¥(

) (jy*
1m0

)
Thus, ) = = arctan —% 422
y Re (P Uy* )) y
QB (jy*
P (iy"
if Re(Q(k)(j *))
Otherwise, r( ) Ty
Tyt oy
hazjyr = Sgn(F®)' (y* )Sgn( )/ (k))
Ci=—1+—4+24°
2 a 2a
M; 1 c 1 pM;
Cr=—et ot =
2 d2 ' 2a 2d ' 2s
and C; = —p +pM3 + X

Where M, and M3 are up to set in the global boundedness
part of the solutions.

Theorem 6.1 : Let us assume the theorem 4.1 and the
hypothesis C; < 0 for i = 1,2,3 so, the interior equilibrium
point Ss is globally and asymptotically stable in R3.

Proof : Let us suppose that the theorem 4.1 is checked and
the model (14) admits a unique interior equilibrium point
S = (W™, W5*, W5™) and it is bounded. Let us pose

Let’s pose:
L3 (W, Wy, W3)(6,%) = [Wa(6,x) = Wi = Wi In "e2) o+ W (6,2) — W3 = W3 In 20 4+ W5 [Wa ) — W5
ok W3 (t x)
W;'In 22 (34)
The function l; admits zero for the global minimum reached in (W™, W™, W3™).
Let us pose
Ly (Wy, Wo, W3)(t, %) = [ L (Wi, Wy, W3)(t, x)dx (35)
Let us demonstrate that the function L as developed is a Lyapunov’s function for the system (14).
1. We have : L, (W™, W™, W5*) = 0.
2. For any solution (W;, W,, W3) positive of (14), L, (W;, W,, W5) is positive.
3. Let us prove the following inequality : % < 0. We have:
dLy _ Ay (W (£,0), W, (£,), W3 (£,%))
—= o dx (36)

dt

Jat
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Therefore,

dL1 f[all(Wl,Wz,Wg)(t,x)6W1(t,x) 0L Wy, Wa, Wa) () W, () | 0l (Wa, W, W) (&,3) OWs (6,)]
X

oW, (t, x) at oW, (t, x) ot oW, (t, x) ot
_ Wy (t,x)-Wyi™ 0W1(t x) W, (t,x)-Wy™* 0W2(t x) o W3 (t,x)-W3™ 0Ws(t,x)
- fﬂ [ Wy (tx) ] dx + f [ Wy (£,x) ] dx + Ws fﬂ [ W3 (£,x) at ldx (37

By using (12), (14) turns into :

0Wy(tx) _ AWy (tx)

- Wit x) —Wi™)

wi(tx) | Wi(tx)
1 Kk
e (W (t,x) = W)
WZ(trx) _ *%
(Wi*+a) (Wi (t.x)+a) (W6, x) = Wi™),

d:Wo (t,x) 0 AW, (t,x)

= —e(Wa(t,x) — W)

W (tx) Wy (tx)
ca _ L (3 8)
+ Wy +a) (W (6,0)+a) (Wit x) = Wi™)
W3 (trx) _ *%
(wz**+d)(wz(t x)+d) (Wa(t,x) = W27)

e (W) — W),
0eWa(tx) U3AW3(C,X)

(W5 (t,x) — W3™)

Wa(tx)  Ws(tx) W**+s
qW3(t,x) ok
W enrs (26X = W)
So,
aly(Wy, Wy, W5) AW, (¢, x)
TR T B dx = | Wit x) — W[ — (Wi (t, x) — Wy W, (t, x) — Wy
| T = | WA ) — W A — W) — e (W)~ W)
Wa(t x) AG W) ldx + | [Wa(t w228 e w;*
T T m Wi ~ Wi+ [ Waen) —wi I e - w57)
ca . W5 (t,x) "
B AT A E T R RN () (A s I AUCICRORE )
L Wt ) — Wi+ wi [ W) — wyr At (Ws(t,x) — W5)
T (W0 = Wil + W3 [ W) W e~ o (Wt = W
qW3(t'x) *ok
W (V2(6X) = WiDldx %)
By posing
W, (t, x)

Wt g Wa(t,x) —W;") + (W1 (¢, x)

I, = fﬂ [W1(t, %) = Wi ][=(Wi(t, x) = Wi™) — W T

W™ + a) (Wi (8, x) + a)

ca
W™ + a)(Wi (L, x) + a)

—Wi)]dx + fn W2 (t, x) = Wy [[—e(W,(t, x) — W;") + W1 (e, x) — Wy™)

Ws(t,x) 1% w;* L w Ws9ld
+(VI/'2**+d)(W2(t,x)+d)( Z(t"x)_ 2 )_m( 3(t'x)_ 3 )] X
P o Wa(t,) = W3 T s W (6,0) = Wa™) + (e B2t (Wa (6,%) — W5 )]dx (40)

And

a,(Wo (£,)-Wy™)
W (t,x)

a3(W3(tx)-W3")

Wy (t,x)-Wi™*
T, = [, [ AW, (¢, x) + =

A AW, (t, x) + W3

AW, (t, x)]dx (41)
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2
We have T, + T, = [, ll(Wl(t"‘)'V';zt(t’x)’W3(t’x)) dx.

Let us transform T,. Per Green’s formula and considering Neumann’s condition
owy _ ow, _ 0w

Gn = on = an = O Weget

*k |VW1(tx)| *k |VWZ(tx)| *% |VW3(tx)|
T, = =Wy fg W, (622 dx — o,W; fg W (t)2 o3(W3 ) fg Wa(tx) dx (42)

Let us compute the supremum value Tj;.

_— L Wa (¢, x) w i, Wy W Wz
1= L[[_ + (VVl** + a)(Wl(t,x) + a)]( l(t'x) - 1 ) + [_e + (VVZ** + d)(Wz(t,x) + d)]( Z(t'x) - 2 )
qW** W W** 2 1 ca W W** W W**
W( 3(t x) 3 ) + [_VVl** +a+(VVl** +a)(W1(t,x)+a)]( Z(t'x) - 2 )( l(t'x) - 1 )
! W3 Ws (6, x) w. W) (W wi1d
+[—W2**+d (Wz**+5)(Wz+S)]( 2 (tx) — W) (Ws(t,x) — W5™)]dx
M; 1 c 1 pM; . 1 M, c "
< L[[_e+ﬁ+2 +—+E+T](W2(t,x) - W2+ [-1 +%+?+%](W1(t,x)—wl )?
+H—p + B2+ (W (t,x) — W) dx. (43)

So,
o

74
0-3_ |VW3(t x)|2dx + f Cl(Wl(t .x) Wl**) d.x

ok

dLl W** W ,
R R U ACEI RYC SIACSYRoY |

+ fn C,(Wo(t,x) — Wo™)%dx + fn Cs(Ws(t, x) — W5*)%dx (44)

So, under the conditions of theorem 6.1, < 0.
Consequently, the equilibrium point Sg = (W**, W5*; W3™) of the system is globally and asymptotically stable. m

7. Global Stability of the System with Time Delays

Theorem 7.1 : Let us assume the hypothesis of the theorems 4.1 and 6.1. Then, ry; and 1y, exist such as, for all (ry,1,) €
[0; 791] X [0; 7p,], the interior equilibrium point Sg is globally and asymptotically stable in R3.

Proof : Let us assume that the theorem 4.1 is verified. Then, the model (3) admits a unique interior point
S = (Wi, Wy, W5™) and it is bounded. Let us set

G (W, Wo, W3)(t,x) = (L,(Wy, Wy, W3) + 2)(t, x) (45)

With,
r,M,e?

VW2 (s,x)|?dsdy + >

W,

t
f Wi (s,2) — W;*)?ds
t—1;

1 t t
X(t,x) = —f f
2 t-r Jy

M, [t [t M
+—f f Wy(s — 1y, x) — Wi)Hdsdy +
2 t Yy

t—-1,

2

t t
f f Wi (s = 13, %) — W5*)2dsdy
t-r2 vy

t

+ot f Wi (s,%) — Wy*

Wi)%dsdy
2a t-r1 7’y !

t—-1r1

M,ec
2a

*%\ 2 M M3e ‘ ‘ *%\ 2
f f (Wy(s,x) — W™)*dsdy + a2 f f (W5 (s, x) — W;)*dsdy
t-17 t-12 vy

+ 2 [ (Was,x) = Wi Rdsdy + 22 7 (Wa(s,x) = Wy™)2ds (46)

And
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s,k % 1( ) . o W2 (t, x)
lZ(Wl(t' x), W (t, x), Ws (¢, x)) = Wy (¢,x) — W™ — Wy W + |Wo(t,x) — W5™ — W3 N
1 2
W3 [Ws(t,x) — W3 — Wy In 2200,

The function [, admits zero for the global minimum reached in (W™, W™, W5™).
So, G(Wy, W,, W3)(t,x) = 0, with G(W;™, W™, W;*) =0
Let us pose

L, (Wy, Wo, W5) (8, x) = fﬂ G (W, Wy, Ws)(t, x)dx

Let us show that the function L, as developed is a Lyapunov’s functional for the system (3).
1. We have : L,(W;™, W, W5*) =0

2. For any solution (W;, W,, W5) positive of (3), L,(Wy, W,, W5) is positive.

3. Let us prove the following inequality : —2 < 0. We have:

dly _ 0l (Wy,Wp,W3)(tx) 6Z(t x)
dat fﬂ at dx +f dx.

One gets:

f 0L, (W, Wy, W3)(t, x)dx
Q

f Ol (Wy, Wo, W3)(t, x) OW; (8, %) al, (W, Wy, W3)(t,x) aW,(6,x)  al,(Wy, W, W3) (8, x) dW5 (¢, x)
= + +
a oW, (¢t, x) at ow,(t,x) at aw,(t, x) at

Wy (£,)-W;™ aW; (£,x) Wy (tX)-Ws™* 0W2(tx) W3tx)— W3 6W3(tx)
_f Wi (tx) at dx +f Wa(tx) dx +f9- Wt ot dx.

By using (12), (3) becomes:

Wy (tx) _ AWy (tx)

W1(t 0 wiex) (Wi (t — 1, x) — W)
W**+ (W, (t, x) — Wy™)
) (Wi (t,%) = W)
L) _ ) gy, ) W)
Lt s Wit = Wi
*‘a;g?Igﬁiﬁi%;;;;;(PVé(t.X) — W5
W**+ (Ws(t,x) — W5™)
P = B W () — W)
#‘Zﬁm (Wz(t'X) - Wz**)-

So, by setting

(Wz (t,x) —w;")

T3 = L[Wl(t' x) = Wi [=(Wy(t — 1, %) — W) — Wt

W, (t, x)
W™ + a)(Wi(t,x) +a)

(W1 (t, x) — Wi™)]dx + fﬂ W2 (t, %) — W [—e(Wo(t — 13, %) — W57)

ca W W** W3(t' x)
T T oW @ O W e S W T @)

Wz (t,x) = W;")

(47

(43)

(49)

(50)

(51
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(Ws(t,x) — W3™)]dx + W5~ fﬂ [Ws(t,x) = W3 [= 3 Ws (t,6) — Ws™)

W ed T
qW3(t,x) _ ok
(W5* +5) (W3 (£,X)+5) (W (t, x) — Wz")]dx
And
_ Wy (tx)-Wy™ Wy (t,x)— W2 o Wa(t)-W3™
T, = [, [—W o AW, (L, x) + 2——= W) o AW, (£, x) + W. S a3 AW, (¢, x)]dx.
We have:
Ty + Ty = [, 0L, (Wy, Wy, W3)dx
Let us change T,. Based on Green’s formula and taking into account Neumann’s condition
oawy _ awy _ ows _
an  on  on
We have :
ok |VW1(tX)| ok |VW2(t,x)| _ sk 2 |VW3(tx)|
Ty =—-Wy fQ Wt0? dx — o, W; fn Wat0? dx — a3(W5™) fg Wa ()2

Let us transform Ts.
In view of the relation: for all i = 1,2, W;(t — 1, x) = W;(¢t, x) — f:_r
T; changes into:

oW ;(s,x)
ds d

Ty = fn[wl(t, x) = Wi [= (Wit ) = Wi™) = e (W (6, x) = W5™)

W**

W, (t, x)
HAEDIACHED)

(Wi (t,x) — Wi™)ldx + fn [W2(t, x) — Wy ][—e(W,(t, x) — W")

ca W W** W3(t' x)
T T oW @ G W e S W T @)

Wz (t,x) — W;")

(Ws(t,x) — W3™)]dx + W5~ fﬂ W (t,x) = W3 [= a5 Ws (t,%) — Ws™)

_M/Z**_l_d W**
b IBOD gy - wyeyde+ .1 " o - wn G,
,X) — X ,X) — ——————ds
(W, + s)(Ws(t,x) +5)° ° 2 0 Jir ! d

L, e(Wyt ) — w5 2280 gy,
Let us pose
T3 =T31 + T3y,

where

W g Wa(t,x) —W;")

T3 = fﬂ [W1(t, %) = Wi ][=(Wi(t, x) — Wi™) — W ¥

W, (¢, x)
N DIACHED)

Wy (t, x) — Wi™)ldx + fﬂ [W2(t, x) = W™ [[—e(W,(t, x) — W)

+ - Wy (t,x) — W) + Ws(t, ) (W, (t wy
W+ W0 + @ rEN W e Wt vy (2B T W2
— g (W6, 3) = W3l + W™ [ [W(62) = W= s (W (63) = W) o) (1) -

And
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(52)

(53)

(54

(55)

(56)

(57)

(58)

W;Hdx (59)
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Kk aW( ) *% W, (s,
Tir = Jo U, Wi(tx) W) 255ds + [1 e(Wy(t,x) — W5 ") 252 dsdx (60)

Let us compute the supremum value of T5. For that, first, let us compute the supremum value of T3; and T3,. Thus,

To= [ [ (e —wiawiis,mydsdx +oe [ [ Watex) = w5 aw, (s, x)dsdx
. t-11 Q t-1y
W, (s, x)
W+ W0 +

+ f f W4 (t, %) — W)Wy (5,500 [~ (Wi (s — 11, ) — Wi™) — Wy (s, %) — Wy

e W - wildsax [ [ W - W l-e s = ) ~ W)

cae
W™ + (Wi (s, x) + a)

(Ws(s,x) = W5™) + Wi (s, x) —Wy™)

e

eWs(s,x)
(Wz**+cl)(W2 (s,x)+d)

(Wy(s,x) — W;")]dsdx (61)

Finally, we have:

t t
1
EDF+3 f |vwl(s,x)|2ds+% f VW, (s, x)|2ds]dx

t—-1r1 t—1;

T3, < [§|VW1(t' )|+
Q

g (Wit x) = Wi™)2 + (W (s, x) — Wy™)?]

2

1 t
+—f Wi (s, ) [[(Wh (L, x) — Wi™)? + (Wi(s — 1y, x) — Wi™)P] + W T
QJt-r

W, (s, x)
W™ + a)(W,(s,x) + a)

[(W1(t,x) = Wi™)? + (Wi (s, x) — Wi™)?]]dsdx + ; f Wy (s, x)[e[(Wo (8, x) — W;™)?
QJt-ry

ca
W™ + a) (Wi (s, x) + a)

+(Wa(s — 1, 0) —W;")?] + [(Wa(t,x) — W5™)? + (Wi (s, x) — Wy™)?]

+ W3(S: x) [(W (t x) _ W**)Z —+ (W (S x) _ W**)z]
Wy 4+ YW, (s, x) + d) 2\h 2 2 (s, 5

+ o [(Wa (6 %) = W5™)? + (Wa(s, x) — W3™)?]]dsdx (62)

W**+d

So,

T‘1M1 1 Mz
T3, < f VW, (t, x)| (t, x)|%dx + f > 1+ P + ?)(Wl(t, x) — Wi™)%dx
Q

2 MZ M *% 2
+ (e + +ot )(Wz(t x) — Wy dx+ VW, (s, )| dst+— VW (s, )| dsdx
Q t—rq t—r;

t 1\/11 t MZeZ
+f f — (Wy(s — 1y, x) — Wy™)2dsdx + f f
QJt-r 2 QJt-r;

ff —(Wz(s x) — Wz**)zdex+ff 2 . (Wl(s x) — W) 2dsdx

L

—15,%) — W,*)2dsdx

Wi*)?dsdx +f f 2d2 (Wz(s x) — W5*)?dsdx

+, @(Wg(s,x)—wg*)zczsdx (63)

—T2 2d
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Tei = f [[-1+ Wa(t, x) (Wi (t,x) — W2 + [—e + Ws Wy (t, x) — W,y™)?2
T W+ W) +a) ' Wy + QW (6, x) +d) 2 ?
S L ek i - JW, (8, %) = W5 (Wa (&%) — W)
(W +s) W™ +a W™ +a)(Wi(t,x)+a)
+ ! WSWs (L) 0y W5*) (W (t W3)ld
[ Vl/z**_l_d (VVZ**+S)(W2 +S)]( 2( "x) 2 )( 3( "x) 3 )] X
M, w2 4 M; 1 c 2
SL[[ 1+%+—+ ](Wl(tx)—W )+ [— e+?+—+—+2d+2—](Wz(tx) w5
M *%
H—p + B2+ Sl Ws (6, x) — W5 2dx (64)
Let us pose T = fn Ol (W (), V‘gzt(fx) W3(tx))d
The relations (54) and (58) allow us to conclude that
r<f (=25 \ow, e Pdx + 0, (- 22+ €2) v, e x)|2]dx—f s 5 o (e, 1) Pdx
Tla w2 w2 o WE T
1 M, ¢ M, M, rMM 2
+f(1+2a+a2+2a > +2a+ 22)(W1(tx) Wi)“dx
My 1 ¢ 1 pM; me?M, recM, er,M,M; erzM2
ettt — W, (t, x) — Wy*)2d
+L(e+d2+2a+2a+2d+ 2s T2 T 2az T g )Wa(tX) W) dx
pM,
f (-p +—s+ 2d)(W3(t ,x) — W5*)2dx +f f —|VW1(S x)|*dsdx +f f —|VW2(s x)|*dsdx
f f —(Wl(s 11, %) — W) %dsdx +J- f —1y,%) — W;*)%dsdx
t-1q
f f —(Wz(s x) — W5 2dsdx+f f - (Wl(s x) —Wf*)zdsdx+f f ) 2dsdx
t— r1 t-rq 2 t—
M;Mze %2 t Mze Y
+ [, ft_rz - (Wa(s,x) — W) dsdx + Jo St v, 20 Wa(s,x) — W3™)?dsdx (65)

So, by using the lemma 5.1 of the article [1] | Q ai(t) dx becomes:

ox(t) 1 1 ¢ 7,0,
dx = f —r1|VW1(t,x)|2dx——ff |VW1(s,x)|2dsdx+f
o Ot a2 2)a )iy 0

VW, (s, x)|*dsdx

) eo, t
VW, (t, x)|*dx — —
2 QYt—r,
2

M
+f 7'12 1 -1, %) — Wy)2)dx — —f f (Wi (s — 1y, x) — Wy)?2)dsdx + — 1y %) — W) 2dx
Q t—7;
Mze My M, t
f f (Wa(s —72,x) = W5") dsdx + f W;*)?)dx — — f f (Wa(s, %) — Wy*)2)dsdx
e Q 2a 2a QJt-r
’ 1
MM M
r12 22 HUACHE Wy*)?)dx — i 1f f Wy (s, x) — W) H)dsdx +f 2228 (W, (8, %) — W) dx
[ 1
Mzec

r,M;M
f f (Wi (s, x) — Wy*)2dsdx + f L2 2;23 (Wy(t,x) — Wy*)2dx — 2 d2 f f (Wy(s, x) — Wy*)2dsdx
t-1y Q t-1,

+ erZMZ Ws(t, x) — W) Hdx — == f f (Ws(s,x) — W;*)?)dsdx + f

% Lt 1
- W2 - (Wi (t —1,x)

—Wy)?dx + |, #(Wz(t, x) = W) =22 (7, (¢ — vy, ) — W) dx, (66)
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To sum up,

% S fﬂ C4|VW1(t,x)|2dx + fﬂ C5|VW2(t, x)lzd.x + fﬂ C6|VW3(t,x)|2dx + fﬂ C7(W1(t, x) - Wl**)zdx + fﬂ Cs(Wz(t,x) -

W5™)?dx + [ Co(Ws(t,x) — W5™)2dx.

Where
€=~ 4 +7,C =0 (=i +em), (68)
Co = =03 5, (69)
Cr=C+ 22y My + D220 200 (70)
Co=Cy+mpe?M, + B2 L 2000 L R L I (7))
Co=Cs+ TZ:;V’Z. (72)

Under the hypothesis of the theorem 6.1, C; <0 for
i =1,2,3. Then, 1y, and 1y, exist such as, for all (ry,7,) €
[0;791] X [0;792], C; for i =4,...,9 are all inferior to zero.
In that case,

dL,
dt

<0 (73)

Consequently, the equilibrium S5 = (W;™; W5™; W5™) of
the system is globally and asymptotically stable. m

Remark 7.1: The global stability analysis shows that the
stability established in the model with no time delays remains
until the value of ry and r,. At the neighborhood of these
threshold values, there is a stability change. To get these
values, it suffices to resolve the system C; <0 for i =
4,...,9. So, we may conclude that the time delays have a real
impact on the stabilities study.

8. Conclusion

In this paper, we studied a food chain model with diffusion and
time delays which implies three species whose corresponding
densities are globally bounded. We demonstrated that, these
delays inserted in order to heed the internal competition between
preys and that of intermediary predators, lead up to a change of
the local stability of some equilibria points under certain
conditions. We are ending this study with the establishment of the
global stability of the interior equilibrium point Ss. So, the delays
r; and 1, have a real impact on the global stability of this
equilibrium point. Indeed, the stability established in the
instantaneous model remains up to a threshold value of delays
beyond which a change of global stability is observed. This
conclusion remains valid even if, we consider the internal
competition between preys for any species’ number in presence
and in interaction.
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