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Abstract: Research in impulsive delay differential equations has been undergoing some exciting growth in recent times. 

This to a large extent can be attributed to the quest by mathematicians in particular and the science community as a whole to 

unveil nature the way it truly is. The realization that differential equations, in general, and indeed impulsive delay differential 

equations are very important models for describing the true state of several real-life processes/phenomena may have been the 

tunic. One can attest that in most human processes or natural phenomena, the present state is most often affected significantly 

by their past state and those that were thought of as continuous may indeed undergo abrupt change at several points or even be 

stochastic. In this study, a special strictly ascending continuous delay is constructed for a class of system of impulsive 

differential equations. It is demonstrated that even though the dynamics of the system and the delay have ideal continuity 

properties, the right side may not even have limits at some points due to the impact of past impulses in the present. The integral 

equivalence of the formulated system of equations is also obtained via a scheme similar to that of Perron by making use of 

certain assumptions. 
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1. Introduction and Statement of 

Problem 

The theory of impulsive delay differential equations (IDE) 

is based on the behaviour of processes or phenomena which 

undergo abrupt changes in their state and past events affect 

the current behaviour (delay). These kinds of processes are 

best described by coupled systems of differential equations, 

either starting with delay differential equations and adding 

impulses or starting with impulsive differential equations and 

adding delay arguments. Whichever is the case, a coupled 

problem is obtained and the structure is radically changed. 

Several of the properties of solutions in ordinary, delay, or 

impulsive differential equations are no longer sustained. 

The theory of impulsive delay differential equations have 

been relatively less developed because of significant technical 

and theoretical difficulties, and as such only a few pieces of 

literature are available [1-2]. However, interest is on the 

increase largely due to the fact that a lot of everyday 

phenomena in Sciences, Economics, Engineering, Space 

sciences, and control systems are modeled by impulsive delay 

differential equations [1, 3-5]. In particular, Ballinger’s Ph.D 

thesis and his subsequent work provide a good working tool 

for further research work in this area, especially, as it relates to 

existence, uniqueness, boundedness, continuation, and stability 

of solutions of Impulsive Delay Differential Equations (IDDE) 

[3]. This happens to be a fusion of two areas – Delay 

Differential Equations, and Impulsive Differential Equations. 

Several evolution processes in Sciences, Engineering, 

Technology, Economics, etc., are modeled by impulsive 

differential equations with delays [1, 3-6]. 

In ordinary or delay differential equations, the solutions are 

continuously differentiable, at least once or more, whereas 

impulsive differential equations possess non-continuous 

(piecewise continuous) solutions. Intuitively, it is expected that 

the coupled problems of impulsive delay differential equations 

should possess piecewise continuously differentiable solutions. 

To some extent, our intuition may be true if the delays are 

discrete. When continuous delays interplay with impulses, the 
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story may become significantly different. This surge in the 

number of discontinuous points creates several problems as it 

pertains to existence, stability/instability of solutions, just to 

mention a few. Since the continuity properties of the solutions 

play fundamental roles in the analysis of their behaviour, the 

techniques used to handle the solutions of impulsive delay 

differential equations are basically different from those of 

Ordinary Differential Equations, Impulsive Differential 

Equations and Delay Differential Equations. However, some 

basic concepts are still valid. 

In this study, a system of first-order impulsive differential 

equations with continuous time-dependent delays and fixed 

moments of impulse is formulated. Some recent results in 

impulsive delay differential equations with constant 

impulsive jumps can be seen in [7-14]. 

2. Preliminaries 

The theory of impulsive systems was developed not long 

ago as an independent area of mathematical analysis. The 

development arose out of curiosity to develop a mathematical 

framework that truly describes physical and biological 

processes as they occur in nature. Prior to this noble 

development, scientists had often made an underlying 

assumption that the behaviour of physical and biological 

systems described by ordinary differential equations is 

continuous and integrable in some sense. It was observed that 

the state of a system is susceptible to changes, and in some 

processes, these changes are often characterized by short-

time perturbations (impulses) whose durations are negligible 

when compared with the total duration of their entry time 

evolution [15, 3, 16-18]. 

IDEs are adequate mathematical models for the description 

of evolution processes characterized by the combination of 

continuous and jump changes of their state. For the continuous 

change of such processes, ordinary differential equations are 

used, while the moments and the magnitude of the jumps are 

given by the jump conditions [15, 19-21]. Impulsive systems 

are systems whose states are characterized by small 

perturbations (impulses) in the form of jumps [22-24]. 

These equations are classified into two categories: those 

with fixed moments of impulsive effects (moments of jumps 

are previously fixed), and those with unfixed moments of 

impulsive effects (moments of jump occur when certain 

space-time relations are satisfied) [15, 18, 20, 25]. 

IDEs are usually defined by a pair of equations - an 

ordinary differential equation to be satisfied during the 

continuous portion of the evolution, and difference equations 

defining the change of state at the discrete impulsive points. 

This is the main formulation of early scholars such as Bainov, 

Simeonov, Lakshminkatham, Gopalsamy, Zhang, among 

others. Solutions are usually considered to be piecewise 

continuously differentiable functions with discontinuities 

occurring at the impulsive times [3, 26]. 

Impulsive differential equations with fixed moments of 

impulsive effects have the form: 

k k k k

x ( t )= f ( t ,x( t )), t T \ S

x( t )= f ( t ,x( t )), t S ,∆
′ ∀ ∈

 ∀ ∈  

where 
nT R, ( t ,x ) R RΩ⊂ ∈ ⊂ ×  and the real numerical 

sequence k k=1S={t }∞
 increases and has no finite 

accumulation point. In the case of unfixed moments of 

impulsive effects, the impulse points may be time and state 

dependent. That is, k kt :=t ( t ,x( t )) . When the function kt  

depends on the state of the given system, it is said to have 

impulses at variable times. This is reflected in the fact that 

different solutions will tend to undergo impulses at different 

times. However, if the functions kt  are all constants, the 

system is said to have impulses at fixed times which implies 

that all solutions undergo impulse actions at the same time. 

It is observed that the question of the existence of solutions 

of the system is non-trivial when impulses occur at variable 

times. The precise notion of what a solution is must be 

carefully stated. It is fairly clear that solutions should be 

piecewise continuous and in fact piecewise continuously 

differentiable (or piecewise absolutely differentiable when 

considering generalized types of solutions). A solution will 

undergo simple jump discontinuity when it intersects impulse 

hyper-surfaces. Even after focusing on a particular class of 

relations t( s,x( s ))=0  given by impulse hyper-surfaces, 

impulsive differential equations still exhibit some unusual 

behaviour [3]. In this study, focus will be placed only on 

those equations with fixed moments of impulse effects. 

Be as it may, to obtain or discuss the solution of an 

impulsive differential equation, certain peculiarities of the 

model must be taken into cognizance. It assume that for 

t T \S∈ , the solution x( t )  of the earlier stated equation is 

determined by the ordinary differential equation 

x ( t )= f ( t ,x( t )).′  For t S ,∈  a change by jump of the solution 

x( t ) occurs so that k kx( t )= x( t )−
and k k kx( t )= x( t ) x( t )∆+ +

k k k= x( t ) f ( t ,x( t )).+  After the jump, at the moment kt=t , 

the solution x( t )  of the system coincides with the solution 

( )y t  of the initial value problem [15]: 

k k 1

k k k

y ( t )= f ( t , y( t )), t <t t

y( t )= x( t ), t=t S .∆
+

+

′ ≤


∈
 

This simply means that after the jump at kt=t , a new 

function y( t )  takes over control from x( t ) . 

Let T R⊂  be a set of time points and let our processes 

take place in 
n

R .  Also, let these processes be described by 
nx :T R→  state functions, assuming that they may be 

influenced by past events defined by delay functions 

jh :T R .+→ The properties of these functions will be 

specified later as progress is made. 

Now, let 1 2 mg :=( g , g , ... , g ) , 
mĝ :=( g , g, ... , g ) R∈  and 

1 2 mf̂ x :=( f ( x ), f ( x ), ... , f ( x ))�  it then follows that: 
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1 2f ( t , x( t ),x( t h ( t )), x( t h ( t )),...− −
m

ˆ ˆˆ...,x( t h ( t )))= f ( t,x( t ),x ( t h t )).− −� �                                      (1) 

In the course of this work, it shall be assumed that 

( a,b ):=T R⊂  is a non-empty open subset of R. For 

asymptotic investigation, at least b= ∞  is assumed. Let 

k k=1S:={t }∞
 or k k=S:={t }∞

−∞  be an increasing sequence of 

numbers (to be referred to as impulse times or points) with at 

most two condensation points. Let * nD := S R×  and 

( m 1) nD:=T R + ×× . Also, let 
nf :D R→  and 

* * nf :D R→  be 

continuous functions fulfilling Lipschitz condition in x D∈  

and *x D∈ , respectively, at each fixed t T∈ . Let ih :T R+→  

be continuous ascending delay function such that 

ih ( t ) t a, t T , 1 i m≤ − ∀ ∈ ∀ ≤ ≤ . Then from the notation in 

equation (1), a system of first-order impulsive differential 

equations with continuous delay is of the form: 

1 m

*
k k k k k k

x ( t )= f ( t ,x( t ),x( t h ( t )),...,x( t h ( t ))), t T \S

x( t )= x( t 0) x( t 0)= f ( t ,x( t )), t S.∆

′ − − ∀ ∈


+ − − ∀ ∈
   (2) 

From the notation in (1), it can be written in a more 

compact form as: 

 ′ − ∀ ∈


∀ ∈
*

k k k k

ˆ ˆx ( t )= f ( t ,x( t ),x ( t h t )), t T \S

x( t )= f ( t ,x( t )), t S.∆
� �

              (3) 

Let 
n nf : R , T RΩ Ω→ ⊂ ×  be continuous and x at least 

once differentiable. Let jh C(t )∈  be continuous delay 

functions, 1 j m≤ ≤  and 1 2 m
ˆh t =(h (t ), h (t ), ..., h (t ))�  be a 

continuous delay vector, then j
1 j mt ( a,b )

r= sup max{ h ( t )}
≤ ≤∈

 is called 

the delay constant (where the delays are discrete, that is, 

j
1 j m

r= max{ h }
≤ ≤

 ). 

Let equation (2) or equation (3) be given subject to the 

initial or history function 

0 0
x( t ) ( t ), t r t t ,ϕ= − ≤ ≤                               (4) 

where k kx( t )= x( t 0)−  and 
*

k kf ( t ,x(t ))  prescribes the 

jump at each impulse point kt S∈ , then equation (2) or (3) is 

called a first-order impulsive delayed differential equation 

with continuous delays. Subject to equation (4) it is called an 

initial value or function problem. 

Let A and B be real n by n matrix functions with 

components in C(a, b); let g
�

 be a vector with n components 

in C(a, b) and kAɶ  be an n by n matrix function on S, then a 

system of linear impulsive differential equation with 

continuous delays is defined as: 

 ′ + − + ∀ ∈
 ∀ ∈ k k k k

ˆ ˆˆx ( t )= A( t ) B( t )x ( t ht ) g, t T \S

x( t )= A x( t ), t S.∆

�
�

ɶ
            (5) 

If g
�

 is identically zero, equation (5) is called a 

homogeneous equation and is given by: 

 ′ + − ∀ ∈
 ∀ ∈ k k k k

ˆ ˆˆx ( t )= A( t )x( t ) B( t )x ( t ht ), t T \S

x( t )= A x( t ), t S.∆
�

ɶ
        (6) 

3. Main Results 

Consider the system of equations given by 

( )
*

k k k k

x ( t )= f t ,x( t ),x( t h( t )) , t T \S

x( t )= f ( t ,x( t )), t S∆

′ − ∀ ∈


∀ ∈
              (7) 

which is similar to the system (6). This system assumes that 

for t T \ S∈ , the solution x( t )  is determined by the delay 

differential equation ( )ˆ ˆx ( t )= f t,x( t ),x( t h ( t ))′ − �  and for 

t S ,∈  a change by jump of the solution x( t )  occurs so that 

k kx(t )=x(t )−
 and 

*
k k k kx(t )=x(t ) f ( t ,x( t ))+ +  [1-5]. 

Here, a special strictly ascending continuous delay for the 

system of equations in (6) is constructed. 

The construction will take several steps as shown below: 

Step 0: Let k k( t ,t 1)ρ∈ +  for a fixed k Z∈ . It is assumed 

here that k k 1( t ,t ) ( , )ρ π ρ π+ ⊂ − + , otherwise, k k 1( t ,t )+  will 

be replaced by k k 1 k k 1( , )=( t ,t ) ( , ).α α ρ π ρ π+ + ∩ − +  

Moreover, let s s kt S , t <t∈  be an impulse point in the past. 

Step 1: Let 0 k k 1:( t ,t ) Rϕ +
+ →  be defined by 

k k 1 0

0

1( t ,t ), ( ):= sin t
|t |( t ):=

0 , otherwise

ρ ϕ ρ ρρϕ +
 ∈ ∀ ≠ −


 

Remark 3.1. 0ϕ  has roots at 1t= , k N
k

ρ π± ∈ . 

Step 2: Let 
3

1 0 k k 1( t ):=|t | ( t ), t, ( t ,t )ϕ ρ ϕ ρ +− ∀ ∈ . Then 

its derivative is: 

2
01

13|t | ( t ) |t |cos , td ( t )
|t |=

dt
0 otherwise

ρ ϕ ρ ρϕ ρ
 − − − ≠ −


 

k k 1t , ( t ,t )ρ +∀ ∈ , which is bounded by 2
k 1 k3(t t )+ − . 

Remark 3.2 In addition to Remark 3.1, 1ϕ
 is continuously 

differentiable in k k 1( t ,t )+ . 

Step 3: Let us consider another function: 

2 2
2 k k 1 1 k k 1( t )=(t t ) ( t t ) ( t ), t ( t ,t ).ϕ ϕ+ +− − ∀ ∈

 

This is continuously differentiable in k k 1( t ,t )+ , its 
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derivative is 0 at kt  and k 1t + , and hence, it has a 

continuously differentiable extension to T. 

Remark 3.3 In addition to Remark 3.2, 2 ( t )ϕ  fulfils 

2 k 2 k 2 k 1 2 k 1( t )= ( t )= ( t )= ( t )=0ϕ ϕ ϕ ϕ′ ′+ + . Hence 

2 k k 1( t ) , t ( t ,t )
( t )=

0 , otherwise

ϕ
ϕ +∈




 

is a continuously differentiable extension of 2 ( t )ϕ  from 

k k 1( t ,t )+  to R. 

Step 4: Let us define yet another function by  

s 2 k k 1( t )= t ( t ) t ( t ,t )
M 1ε

εϕ ϕ ++ ∀ ∈
+

 and st S ,∈
 where 

{ }2 2
t [ t ,t ]

k k 1

M = max max | ( t )|,| '( t )| .ϕ ϕ
∈ +

 

Remark 3.4 In addition to Remark 3.3, εϕ
 fulfils the 

condition that
t [ t ,t ]

k k 1

max max{| ( t )|,| '( t )|}< .ε εϕ ϕ ε
∈ +

 

Step 5: Let 0.5> >0ε , 

h ( t )=1 ( t )=ε εϕ− ( )2 2 3
s k k 1 0 k k 1t t ( t t ) ( t t ) |t | ( t ) , t ( t ,t )

M 1
ε ρ ϕ+ +− + − − − ∀ ∈
+  

and st S ;∈  

then the following can be asserted: 

Remark 3.5 Based on Remark 3.4, h ( t )ε  is continuously 

differentiable in k k 1[ t ,t ]+  and its derivative is greater than 

1 >0ε− , hence it is strictly ascending. 

Theorem 3.1 The delay h ( t ) tε ≤  is a continuous strictly 

ascending function such that the composite function 

( )f t ,x( t ),x( t h ( t ) )ε−  has no limit at ρ  for 

s k k 1t <t <t <t + . 

Proof: Note that t h ( t )= ( t )ε εϕ−  and ( t )εϕ  passes st  at 

1t= , 0<k <
k

ρ π± ∞ . Hence x( t h ( t ))ε−  has a jump of the 

size of ( )*
s sf t ,x( t )  at each 

1t= ,0<k <
k

ρ π± ∞ . Thus 

( )f t ,x( t ),x( t h ( t ) )ε−  has no limit at k k 1( t ,t ).ρ +∈  

Discussion 3.1 By using continuous delays, the continuity 

of ( )f t ,x( t )x( t h( t ))−  can no longer be relied on as it is 

currently assumed in the literature since the delay maps the 

discontinuity of x at st  into the interval k k 1( t ,t )+  as an 

impact of the event at st  on the dynamics of 

( )f t ,x( t )x( t h( t ))−  at present. In other words, positive 

increasing continuous functions as delays can be found such 

that ( )f t ,x( t )x( t h( t ))−  is discontinuous/has no limit at 

some point(s) in k k 1( t ,t )+ . 

Furthermore, in this study, the integral equivalence of the 

formulated system of impulsive delay differential equations 

is to be obtained for the purpose of analysis of its qualitative 

properties. In order to achieve this, the following underlying 

assumptions are employed: 

Assumtion 3.1  

i) When t S ,∉ equation (2) reduces to a delay differential 

equation and solution is obtained from 

( )ˆˆx'( t )= f t , x( t ), x ( t h t ) , t T \S− ∈� � ; 

ii) f is continuous in Ω  - an open subset of 
( m 1) nT R + ×× ; 

iii) For each kt S∈ , x is left continuous at kt , i.e. 

k kx(t )=x(t )− , and there is a jump change at each of these 

impulse points given by 

*
k k k k k kx(t )=x( t ) x(t )=x( t ) f ( t ,x(t )).∆+ + +          (8) 

iv) After the jump at the moments k k 0,1,2 .t=t , ,..=
, the 

solution x(t) of equation (2) coincides with the solution y(t) 

of the initial function problem 

and

k k 1

*
k k k k k

ˆˆy'( t )= f ( t , y( t ), y ( t h t )), t < t t .

y( t )= x( t ), t <t y( t )= x( t ) f ( t ,x( t )).

+− ≤

+

� �
    (9) 

v) The function ( )f t ,x( t )x( t h( t ))−  is continuous in x 

for each fixed t in k k 1( t ,t )+  and measurable in t for each 

fixed x. 

To enable us follow the content of this work smoothly, it 

is necessary to define some basic terms, concepts, notations 

and lemmas that may be used in the sequel. 

Definition 3.1 Let A B⊂  be non-empty and 
f :B R→

, 

then Af | ( x )= f ( x ), x A∀ ∈
 is called the restriction of f to A. 

Definition 3.2 nPC[T, R ] n= f | f :T R ,→  ( t ,t ]
j j 1

f |
+

⊂  

n
j j 1C ( t ,t ], R+ ⇒   jf ( t 0) R < j<∃ + ∈ ∀ −∞ ∞ . That is, f 

restricted to 
j j 1( t ,t ]+

 is continuous. 

Definition 3.3 
[ ]

n n
a,b

PC[[ a,b ],R ]= f | : f PC T ,R ∈  
, 

where [ a,b] T .⊂  

Notation 3.1 Let 

i) j j j j j 1 j 1 j 2
a a

[ a,b ]= [ a,t ] [ t ,t ] [ t , t ] [ t , t ]+ + +∪ ∪ ∪ ⋯

j 1 j j
b b b

... [ t , t ] [ t , b ];−∪ ∪  

ii) j 1 j j j j 1 a b
a a

A = [ a,t ], A = [ t ,t ], j j< j− + ∀ ≤  and 

j j
b b

A = [ t ,b ]; .  

iii) n
jC[ A ,R ]  denote the set of continuous valuednR −  

functions on the closed and bounded interval jA ,  where 

a bj 1 j j− ≤ ≤
. 

Lemma 3.1 If nf PC[T,R ]∈  and [ a,b ] T ,⊂  then 
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[ a,b ]
f ( )

x [ a,b ]

= sup f x
∈

� �  is a norm and the ordered pair, 

( ){ }n
[ a,b ]PC [ a,b],R , *� �  is a Banach space. 

Proof: 

i) Since [ a,b ] T⊂  is a closed and bounded interval such 

that 0 1 [ a,b ]s <a<b< s , S = [ a,b ] S∩  is a finite set since S 

has no condensation point in [a, b]. Let 

[ ] [ ] { } [ ]j
b

ja,b j= j
a 1

S = a,b S= t a,b T
−

∩ ⊂ ⊂ , then 

[ ] ( )
j 1
b

j j j 1 j
a bj= j

a

a,b = a,t t ,t t ,b

−

+

 
    ∪ ∪ ∪         

 
. 

ii) If a,b S∈ , then j
a

a=t and j
b

b=t . Hence, 

j j
a a

[ a,t ]={ t }⊂ j j 1
a a

[ t ,t ]+ and j j
b b

[ t ,b ]={ t }⊂  

j 1 j
b b

[ t ,t ]− . Otherwise, if a S∉ , then j
a

[ a,t ]  is a closed 

bounded interval and f (.)� �  is a continuous function on it. 

If b S ,∉  then j
b

[ t ,b ]  is a closed and bounded interval and 

( )f .� �  has a continuous extension on it by the existing right 

limit j
b

f ( t 0)+ . Finally, f (.)� �  has a continuous extension 

from j j 1( t ,t ]+  to j j 1[t ,t ]+  by the existence of the right 

limit j a bf ( t 0), j j< j .+ ∀ ≤  Thus 

iii)
( )j 1

a
x [ a,t ]

j
a

f = sup f x−
∈

� � � �
                  (10) 

and 

( )j
b

x [ t ,b ]
j
b

f = sup f x
∈

� � � �
                          (11) 

are finite by condition (ii). Again, 

( )[ a ,b ] j
j 1< j< jx [ a ,b ] a b

f = sup f x = max f .
−∈

� � � � � �      (12) 

iv) Since 
n nPC [ a,b],R L [ a,b],R∞   ⊂     and 

nL [ a,b ],R∞  
   is a Banach space with essential sup norm, 

It follows that [ a,b ].� �  is a norm, where nL [ a,b ],R∞  
   is 

called a Banach space. ∞∈ nf L [[a,b],R ]  with ∞f =0� �

⇒  =f 0  almost everywhere and not everywhere. Hence 

the real Banach space is the factor space 

nL [ a,b],R∞  
  with{ }nf | f L [[ a,b ],R ], f =0 .∞ ∞∈ � �   (13) 

However, 

{ }n nPC [ a,b],R f | f L [[ a,b],R ], f =0 ={0},∞ ∞ ∩ ∈  � �  

hence, the supremum so defined gives a norm on 
nPC [ a,b],R 

  which is a closed linear subspace of 

nL [ a,b],R∞  
  . 

Now, let the sequence { }j
j=1

f
∞

⊂ [ ] nPC a,b ,R ⊂   

[ ]∞  
 

nL a,b ,R  be convergent to [ ] nf L a,b ,R .∞  ∈    

Then from [ ] ( )a ,b
x [ a,b ]

h = sup h x =
∈

� � � �

j k a b
j j j
a b

max h h , j 1 k j
≤ ≤

≥ ∀ − ≤ ≤� � � � , it follows that

[ ] [ ]for inn
j a,b

f f L a,b ,R j .∞  → ∈ →∞  � �
 

[ ] inn
j k k a bf f C a,b ,R . j 1 k j ⇒ → ∈ ∀ − ≤ ≤  � �

. 

Hence the sequence of functions in 
nPC [ a,b],R 

   is 

continuous and convergent to f uniformly in each interval 

kA , and this proves that f is continuous on these intervals 

a bj 1 k j∀ − ≤ ≤ . Thus nf PC[[a,b],R ]∈ . 

Lemma 3.2 Let f n
1PC [T,R ].∈  Then 

(( )
j j 1

n
1 j j 1t ,t

f | C t ,t ,R
+

+ 
 

⊂   and ( ) ( )
j j 1

jt ,t
f | t = f t 0

+ 
 

+ ( )
t

'
j j 1

t
j

f s ds t ( t ,t ] ,++ ∀ ∈∫ < j< .−∞ ∞         (14) 

Proof: This follows from properties of indefinite integrals. Now, to establish the qualitative properties of equations (2) and 

(4) such as the existence of solution of the initial function problem, the continuous dependence of the solutions on the initial 

function (4) and stability of the solutions, the integral equivalence of the problem is adopted. 

Using Lemma 3.2 and notation (1.1) equation (2) is re-written as: 

( )
t

k

t
k

ˆ ˆ ˆ ˆx t = x( t ) f s,x( s ), x ( s h s ) ds+ − +∫� � �
*

m m

t t <t
m k

f ( t , x( t )),

≤
∑                                                (15) 

where *
m m m mf ( t , x(t ))= x(t ) x(t )+ −  is the prescribed jump at the impulse point mt S , k=1,2,3,∈ ∀ …  and kt>t . With the 
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formulation (15) above, some conditions are imposed on f and x to ensure the existence and uniqueness of solutions and the 

continuous dependence of solutions on the initial function. To obtain the stability of solutions, the problem is re-formulated 

slightly by separating the linear components of f from the non-linear component as follows: 

( ) ( )

( )

*

*
k k k

ˆ ˆ ˆ ˆˆ ˆx'( t )= f x( t ),x ( t h t ) f t , x( t ), x ( t h t ) ,

t T \S

x( t )= f t , x( t ) , t T \S ,∆

 − + −


∀ ∈


∀ ∈

ɶ � � � �

                                       (16) 

where fɶ  and *f  are respectively the linear and non-linear components of f. This formulation enables us to develop a scheme 

for stability of solutions similar to that of Perron. In his work [27], Perron discussed the stability and asymptotic stability of 

solutions of 

*x'( t )= f (t,x(t )) f ( t, x(t )),+ɶ                                                                           (17) 

with respect to the stability and asymptotic stability of the solution of the homogeneous linear system 

y'( t )= f ( t, y( t )).ɶ                                                                                    (18) 

In line with Perron’s formulation, in place of relation (16), the system 

*
k k k

ˆ ˆˆy'( t )= f ( t, y( t ), y ( t h t )) t T\S

y( t )= f ( t , y( t )) t S,∆

 − ∀ ∈


∀ ∈

ɶ � �
                                                                 (19) 

will be examined subject to the initial condition in equation (4), where *
k kf ( t ,y(t ))  prescribes the jump at kt . Therefore, the 

integral equivalence of this is: 

( )
t

k

t
k

ˆ ˆ ˆ ˆy t = y( t ) f s, y( s ), y ( s h s ) ds+ − +∫ɶ� � � ( )*
m m

t t <t
m k

f t , y( t ) .

≤
∑                                               (20) 

4. Conclusion 

The solutions of impulsive differential equations with the 

general concept of delays are, however, fundamentally 

different from those of ordinary differential equations. It is 

observed that the derivative of the solutions become 

discontinuous even at non-impulse points and so ceases to be 

differentiable. Also, the forcing function has no limit even 

when the delays are strictly ascending and continuously 

differentiable functions. Here, it has been shown that it is 

possible to define a continuous ascending delay function 

whose derivative exists everywhere on an interval kI

extendible to T , whereas the right-hand side of equation (2) 

does not have limits at certain other points which are not 

even impulse points. The integral equivalence of the 

formulated system of impulsive delay differential equations 

has also been obtained. 
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