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Abstract: In this paper, a three-dimensional spatial-temporal decomposition modelling method is proposed to build the 

alkali-surfactant-polymer (ASP) flooding model, in which a new dynamic recurrent wavelet neural network (DRWNN) is 

presented to identify the temporal coefficients. At first, the detailed mathematical model of ASP flooding is described which is 

a complex distributed parameter system. Then a three-dimensional spatial-temporal modelling method is inferred based on 

Karhunen-Loeve (K-L) decomposition to decompose the water saturation of reservoir into a series of spatial basis functions 

and corresponding temporal coefficients. Furthermore, the recurrent wavelet neural network is used to acquire the 

identification model, in which the injection concentrations of ASP flooding and temporal coefficients are taken as the input and 

output information. In order to improve the capability of dynamic modelling, DRWNN is proposed through adding feedback 

layers and setting the different weights with time to achieve dynamic memory of the past information. Considering the gradient 

descent method for the neural networks training easily leads to local minimum and slow convergence speed, the spectral 

conjugate gradient method is introduced to optimize the weights of DRWNN. At last, DRWNN is used to build the relation 

between the moisture content of production wells and the water saturation of the corresponding grids. Thus, the final 

approximate model of ASP flooding is finished. The accuracy is proved by model with four injection wells and nine production 

wells through data from the mechanism model. 

Keywords: ASP Flooding, Karhunen-Loeve Decomposition, Dynamic Recurrent Wavelet Neural Network,  

Spectral Conjugate Gradient Method 

 

1. Introduction 

With the old oil fields entering the later period of 

development, moisture content of reservoir is increasing, and 

the oil production is reducing [1]. How to update the technical 

means to ensure oil recovery is one of the most important 

measures to stabilize oil production. ASP flooding is an 

important tertiary oil recovery technique which is widely 

studied [2]. It can enhance the oil production evidently by use 

of the interaction among alkali, surfactant and polymer to 

improve the physicochemical property of reservoir. However, 

there is lack of a uniform mathematical model description 

because of the uncertainty of alkali reaction. It is important to 

build an accurate and easily to be applied model in the 

research of ASP flooding. 

In addition, since the mechanism model of ASP flooding is 

a complexed distributed parameter system, it is hard to carry 

out optimal control strategies for the oil production, because 

of the features of infinite dimensions, spatial-temporal 

coupling and complex nonlinear behavior. The inputs of ASP 

flooding are the injection concentrations of alkali, surfactant 

and polymer; the output is the water cut of production wells. 

The state variables of ASP flooding contain water saturation, 

pressure and grid concentrations. In applications, different 

methods are used to search the injection concentrations of 

ASP flooding to get the best performance index. One of 
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common ways is to solve the mechanism equations of ASP 

flooding, such as fluid equations and seepage equations, etc. 

[3] However, the method based on mechanism model usually 

involves a lot of math operations, and the process of 

mathematic treatment always needs a fair amount of 

calculation. Though many people have done researches on 

modelling of ASP flooding, nearly all the works are about 

improving or enriching the primary model. The main work 

they have done is to consider more influencing factors or 

inductive researches; the model is still complex and difficult to 

be applied. So it is important to consider using model 

identification method to approximate the ASP flooding system 

so as to simplify the mathematical operation process, and it 

will be helpful to improve the computational efficiency and 

reduce the computational complexity of the algorithm [4]. 

Traditional system identification methods do not consider 

spatial information [5]. To model the spatial-temporal 

dynamics, spatial information is a very important part of 

system. Spatial-temporal decomposition technology [6, 7], 

which comes from Fourier series expansion, is a very useful 

modelling method for distributed parameter systems. It can 

reflect the information in time domain and space domain of 

the system by decomposition. A spatiotemporal variable can 

be expanded into an infinite number of spatial basis functions 

and corresponding temporal coefficients. Generally speaking, 

the first few primary spatial basis functions can reflect the 

maximal inner information of the system, which provides a 

good approximation because of their separation properties [8]. 

In this way, the spatial-temporal method can obtain a 

finite-dimensional model. 

An important condition of modelling is to guarantee the 

accuracy of model which is highly dependent on the choice of 

spatial basis functions. In particular, Karhunen-Loeve (K-L) 

decomposition, which is called proper orthogonal 

decomposition and principal component analysis [9, 10], is a 

popular spatial-temporal decomposition approach to find 

principal spatial structures and reduce the dimension of the 

data. Among all linear expansions, K-L expansion is the most 

efficient in the sense that, for a given approximation error, the 

number of K-L bases required is minimal. As a result, K-L 

decomposition can help to reduce the model dimension and 

the number of estimated parameters. 

Once the spatial basis functions are designed properly, the 

corresponding states can be determined by projecting the 

spatiotemporal data onto these spatial basis functions. To 

model the input-state dynamics, the relationship between 

inputs and temporal coefficients should be identified. In the 

process of modelling, the dynamic recurrent neural network is 

a good way for the system with unknown nonlinearity. The 

recurrent wavelet neural network (RWNN) [11, 22] 

combining wavelet transform with dynamic neural network 

can get better modelling capability. It is widely used in 

nonlinear dynamical modelling problems because of the 

advantages of neural networks such as reliable theory basis, 

explicit practical sense, simple algorithm realization and 

strong adaptability, etc. 

In order to improve the dynamic modelling capability of 

RWNN, a new dynamic recurrent wavelet neural network 

(DRWNN) is proposed, in which the feedback layers are 

added for the network and different weights are set for 

feedback layers which is decreasing with time to make the 

network have the dynamic memory function. However, the 

gradient descent method is commonly adopted to train the 

parameters of network, which may cause the local minimum 

solutions and slow convergence speed. Especially in large 

search space for multimodal function, the function usually 

can’t find out the global optimal value [12]. 

Many researchers have studied the optimization methods, 

which can be divided into five classes in general: gradient 

descent methods, Newton methods, conjugate gradient 

methods, heuristic optimization methods and Lagrange 

multiplier methods [13]. But the gradient descent method has 

slow converge speed, the Newton method needs to storage and 

compute the Hessen matrix which has huge computing 

complexity, the results of heuristic optimization method has a 

certain uncertainty, and the Lagrange multiplier method is 

often used to deal with multi-objective optimization problems. 

While the conjugate gradient method, which balances the 

convergence speed and computing complexity, has good 

stability and with no need of any extraneous parameter. It is 

widely used in nonlinear optimization. PRP method is viewed 

as one of the most effective conjugate gradient (CG) methods, 

but the convergence property is not so good [14]. Reference 

[15] gave an improved PRP method which can also be named 

as NPRP method. By modifying the step-length parameter, the 

sufficient descent property and global convergence are 

guaranteed on the condition of strong wolf line search. To 

improve the performance of numerical methods further, on the 

basis of [15] a new spectral NPRP (SNPRP) conjugate 

gradient method was presented through adding the spectral 

parameter and revising the step-length [16]. The author also 

gave the proof about global convergence and fast descent. On 

account of these advantages, the SNPRP conjugate gradient 

method is adopted to train the weights of DRWNN. 

In this paper, a new model of ASP flooding is obtained in 

terms of spatial-temporal decomposition. K-L decomposition 

is used to model the state parameters of reservoir (water 

saturation) into a series of temporal coefficients and spatial 

basis functions. To get the relation between the injection 

concentrations of ASP flooding and temporal coefficients, the 

DRWNN is proposed in which different weights decreasing 

with time are added for feedback layers to improve the 

dynamic modelling capability and the weights are trained by 

the SNPRP conjugate gradient method. Furthermore, build the 

model between the grid water saturation and the moisture 

content of production wells with DRWNN. Then the final 

model of ASP flooding is finished with the injection 

concentrations as the inputs and the moisture content as the 

outputs. 

This article is organized as follows: The mechanism model 

description of ASP flooding is described in section 2. In 

section 3, the Karhunen-Loeve decomposition of 

three-dimensional state of ASP flooding is introduced. In 

section 4, a new dynamic recurrent wavelet neural network, 
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named DRWNN, is proposed to identify the relationships in 

the modelling. Besides that, in order to improve the ability of 

DRWNN, the SNPRP conjugate gradient method is adopted to 

train the weights. Section 5 gives an illustrative simulation 

example. Finally, a few conclusions are presented in section 6. 

2. Mechanism Model Description of ASP 

Flooding 

Suppose that the region of the reservoir is ( , , )x y z ∈ Ω ,
3RΩ∈ , the main five components of ASP flooding are oil, 

water, polymer, surfactant, alkali. The mathematical model of 

ASP flooding can be described as: [19, 20] 

The flow equation for oil phase: 

( ) ( )1
.ro

o

w
o o

oo
o

SKk
p gh q

B t B

φ
ρ

µ
 −  ∂∇ ⋅ ∇ − + =    ∂     

  (1) 

The flow equation for water phase: 
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The flow equation for polymer phase: 
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The flow equation for alkali phase: 
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The flow equation for surfactant phase: 
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The initial conditions: 

0 0
0 0

0
0

( , , , ) | , ( , , , ) | ,
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The boundary conditions: 

0,  0,  0.wS cp

n n n

Θ

∂Ω ∂Ω ∂Ω

∂ ∂∂ = = =
∂ ∂ ∂

         (7) 

Polymer can improve the viscosity of pore water, so it can 

be represented as: 

( )2 3
0 1 2 31 ,sp

w w p p p sepap C ap C ap C Cµ µ  = + + +
 

    (8) 

where 0wµ  is the viscosity of pure water; 1ap , 2ap , 3ap , sp  

are empirical constants; sepC  is the salinity of reservoir. 

Alkali can react with substances in the reservoir to produce 

new substances and cause alkali consumption. This process 

also influences oil-water interfacial tension, and the concrete 

mathematical description is 

( ) ( ) ,wo wo s st aC A Cσ σ=              (9) 

where ( )wo sCσ  is oil-water interfacial tension when oil 

displacement agent is only surfactant. 

The different oil displacement agents can affect the strength 

of the rock adsorption and can be described as: 

( ), , , ,
1

l l
rl

l l

a C
l a s p

b C
Γ = =

+
          (10) 

where lla , b  are adsorption parameters. 
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Because the alkali will lower adsorption of polymer and 

surfactant on the surface of the pores of rock, the adsorption 

should be recalculated when alkali is injected to reservoir, and 

the formula for calculation can be described as: 

( ) ( ), , ,rl l ad aC A C l s pΓ = =           (11) 

where ( )ad aA C  is adsorption coefficient. 

The other parameters and model explanations can be found 

in the appendix. 

3. The Three-Dimensional 

Spatial-Temporal Decomposition 

Modelling Method for ASP Flooding 

ASP flooding system is a complex distributed parameter 

system which is very difficult to be modeled in general 

method. In this paper, a new three-dimensional 

spatial-temporal model method is proposed based on 

Karhunen-Loeve decomposition method [8]. During the 

modelling process for ASP flooding, the main problem is to 

identify an appropriate spatial-temporal model according to 

the input, output and system state data. The whole model for 

space/time separation of ASP flooding can be divided into 

three stages: 

(1) Decompose the states of ASP flooding into spatial basis 

functions and temporal coefficients; 

(2) Identify the relationship between the injection 

concentrations and the temporal coefficients; 

(3) Model the moisture content of production wells and 

corresponding grid states. 

3.1. Three-Dimensional Spatial-Temporal Method Based on 

KL Decomposition 

For the system of ASP flooding, suppose that the output of 

system is ( ){ } , , ,

1, j 1, 1, 1
, , ,

x y zN N N L

i j k
i k t

Y x y z t
= = = =

 which is sampled in 

time and space, where 1, 2, ,⋯t L=  denotes L  sample 

points of output in time domain, 1,2, ,… xi N= ,

1,2, ,… yj N= , 1, 2, ,… zk N=  is x y zN N N× × sample 

points in space domain. 

According to the theory of Fourier series, the 

spatial-temporal output ( ), , ,Y x y z t  can be decomposed into 

a series of orthonormal spatial basis functions and temporal 

coefficients. So the decomposition form can be expressed as: 

( ) ( ) ( )
1

, , , , ,i i

i

Y x y t x y z T tϕ
∞

=
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where ( ){ }
1

, ,i i
x y zϕ ∞

=
 represents the orthonormal spatial 

basis functions and ( ){ }
1i i

T t
∞

=
 represents the temporal 

coefficients. 

In engineering applications, ensuring the accuracy of the 

approximation, the model output is usually truncated to the 

finite form: 

( ) ( ) ( )
1
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n i i
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where n  denotes the order of model, it mainly depends on 

the system spatial basis functions which reflect the dynamic 

characteristic of system. 

As the description above, it is clear that the main problem of 

modelling is to get the dominant spatial basis functions 

( ){ }
1

, ,
n

i i
x y zϕ

=
 among the system output 

( ){ } , , ,

1, j 1, 1, 1
, , ,
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. The problem can be converted 

into a minimization problem as the following objective 

function: 
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where ( ) ( ) ( )( )1/2
, , , , , , ,f x y z f x y z f x y z=  denotes norm, 

( ) ( )
1

1
, , , t , , ,

L

t

f x y z f x y z t
L =

= ∑  denotes the mean value of 

a set. 

Because the spatial basis functions are unit orthogonal, they 

are submitted to the below equation: 

( ) ( )( )
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Thus, the temporal coefficients can be described as: 

( ) ( ) ( )( ), , , , , , , 1, 2, , .…i iT t x y z Y x y z t i nϕ= =    (16) 

Considering the orthonormal constraint ( ), 1i iϕ ϕ = , 

through Lagrangian function construction method, the 

constrained optimization problem in equation (14) can be 

structured in the following form: 
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     (17) 

Combine the known conditions and do the transformation to 

equation (17), then take the variation with respect to 
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The necessary condition of extreme value for this functional 

problem is 0Jδ = . Since ( ), ,i x y zϕ  can be an arbitrary 

function, the below equation can be developed. 
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Substitute ( )iT t  into (19), then 
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where ( ) ( )( ) ( ) ( ), , , , , , , , , , ,R x y z Y x y z t Y tξ ζ ς ξ ζ ς=  is 

the correlation function between two points in the space. 

Considering the mutual independence of value for 
1, ,⋯i n= , to make sure that (20) is always equal to zero, if 

and only if (21) is true. This is the necessary condition of 

extremum for (14). 
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3.2. Snapshots Method 

In this way, the original optimization problem is 

transformed to the solution of integral equation (21). However, 

in normal conditions, this equation is hard to solve. When the 

number of time samples is less than space samples, the 

snapshots method [17] is a good way to solve (21). This 

method can significantly reduce calculation quantities. The 

snapshot is obtained from sampling for each position point in 

discrete time. For an example, ( ), , ,3Y x y z , 1,2, ,… xx N= , 

1,2, ,… yy N= , 1, 2, ,… zz N=  and x y zN N N N= ⋅ ⋅  

denotes one snapshot at 3t = . 

When time nodes are less than space nodes, suppose the 

spatial basis function ( ), ,i x y zϕ  can be expressed as a linear 

combination of snapshots as follows: 
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1

, , , , , .

L

i it

t

x y z Y x y z tϕ γ
=

=∑           (22) 

For eigenvalue problem of equation (21), below equation 

can be got. 

( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

( )
( )

( )

( )

( )

, , , , , , , , ,

1
, , ,1 , , , , 2 , , , , ,

, , ,1

, , , 2
, ,

, , ,

, , .

…

…

i i i

i

i i

R x y z d d d x y z

Y x y z Y x y z Y x y z L
L

Y

Y
d d d

Y L

x y z

ξ ζ ς ϕ ξ ζ ς ξ ζ ς λ ϕ

ξ ζ ς

ξ ζ ς
ϕ ξ ζ ς ξ ζ ς

ξ ζ ς

λ ϕ

Ω

Ω

=

=

 
 
 

× 
 
 
 

=

∫∫∫

∫∫∫

 (23) 

Substitute (22) into (23), at the same time, and let 
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Define ( ) ( )1
, , , , , ,

T
C Y t Y k d d d

L
ξ ζ ς ξ ζ ς ξ ζ ς

Ω

= ∫∫∫ , so 

( ) ( ), , z, 0
T

i i iY x y t Cγ λ γ− =          (25) 

In this way, N N×  eigenvalue problem in equation (21) is 

converted to the L L×  problem: 

,i i iCγ λ γ=                   (26) 

where iγ  is the thi eigenvector, and iλ  is the 

corresponding eigenvalue. The matrix C  can be obtained 

from the output samples, so the spatial basis functions can be 

computed through equation (26). Because C  is symmetric 

and positive semidefinite, the computed eigenfunctions are 

orthogonal. 

The dimension of the model largely determines the 

modelling accuracy and complexity. When deciding the 

number of the dimension n , the eigenvalues are arranged in 

descending order. The eigenfunctions corresponding to the 

first several eigenvalues are the most advanced representative 

in the system output. So the proper number of spatial basis 

functions can be selected. Generally speaking, the larger the 

number of dimension n  is, the more accurate the accuracy of 

modelling will be. However, the modelling complexity will 

increase with the increasing model order. As long as the 

proper order of model is chose, the modelling complexity and 



 American Journal of Applied Mathematics 2017; 5(6): 154-167 159 

 

accuracy can be guaranteed, and the ideal mathematical model 

would be achieved. 

Define that the total energy of system is equal to the sum of all 

eigenvalues. Then the bigger the value is, the more energy the 

basis function reflects. For every eigenvalue iλ , the proportion 

that the energy it reflects account for the total energy is 

1

.
⌢

i
i K

j

j

E
λ

λ
=

=

∑                   (27) 

Generally speaking, when the proportion is more than 

99% , we think these bases can reflect most energy, the 

corresponding n  is the needed dimension. Then the spatial 

basis functions and temporal coefficients are obtained. 

4. Dynamic Recurrent Wavelet Neural 

Network Modelling Based on SNPRP 

Conjugate Gradient Method 

In order to establish the relationship between the temporal 

coefficients ( )T t  and the input ( )u t , suppose that the 

dynamic between ( )T t  and ( )u t  can be expressed by a 

nonlinear autoregressive with exogenous input (NARX) 

model [18]: 

( ) ( ) ( ) ( ) ( )1
ˆ ˆ ˆ ˆ1 , , , 1 , , ,⋯ ⋯i i i T uT t F T t T t n u t u t n − − − − =  (28) 

where un  and Tn  are the maximum input and output lags, 

respectively. The modelling process of NARX model which is 

black-box model doesn’t need to know its internal mechanism, 

and the mathematical model can be established based on its 

input and output data. Because the neural network has good 

nonlinear approximation capability, powerful operation ability, 

strong fault tolerance and robustness, so it is widely used in 

the field of nonlinear system identification. 

Dynamic neural networks can directly reflect the system 

dynamic characteristic, and is widely used in the dynamic 

system modelling. To improve the capability of dynamic 

modelling, in this paper, the feedback layers for dynamic 

recurrent wavelet neural network is added and different 

weights for them in chronological order are set. A new 

algorithm which called dynamic memory feedback wavelet 

neural network (DRWNN) based on the above-mentioned idea 

is proposed. Considering the weakness of the traditional 

gradient descent method for the neural networks training, the 

SNPRP conjugate gradient method is used to optimize the 

weights of DRWNN. 

4.1. The Network Structure 

Considering the conventional dynamic neural networks can 

only memory the output of last hidden layers, by adding the 

multi-layer of feedback to DRWNN, it can memory several 

dynamic feedback of hidden layers. In the structure of 

DRWNN, the number of feedback layers reflects the memory 

of the historical data, as shown in Figure 1. 

 

Figure 1. The structure chart of DRWNN. 

The structure of DRWNN consists of four layers: the input 

layer, the hidden layer, the output layer and the feedback layer. 

The network contains n  input neurons, an output neurons, 

m  hidden layer neurons, Q  feedback layers. ( ) n
ix t R∈  is 

the input with n  dimensions for the time t ; ( )y t R∈  is the 
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output; ( ) m
iH t R∈  is the output of hidden layers; 

( ) n
cx t R∈  is the output of feedback layers. 

Through adding Q  feedback layers to the hidden layers to 

dynamically memory the output of hidden layers. Suppose the 

data of the qth  feedback layer is ( )H k q− , and its weight is 

1 2,[ ], ,⋯q q q mqWb wb wb wb= , ,1( )0wb ∈ . In order to make 

the network achieve dynamic oblivion function, iqwb  is set 

as q
iwb . Because of the weights ranging from 0 to 1, q

iwb  

will be smaller with time which can gradually forget further 

information. Suppose α  is the feedback gain, the output of 

feedback layer can be computed by the following formula: 

( ) ( )( )
1

.

Q

ci iq i

q

x t wb H t qα
=

= ⋅ −∑           (29) 

The dynamic equations of DRWNN can be expressed as: 

( )

( ) ( ) ( )
( )

( ) ( ) ( )

1

1

2

1 1 1

( ) ,

1
,

1

1 ,

m

i i

i

i i
i

i

Qn m

i ij j ik iq k

j k q

y t W H t

h t b t
H t

a t

h t W x t v wb H t q

ϕ

α

=

= = =


 =



 − −
=    −  


 = − + −


∑

∑ ∑∑

 (30) 

where 1
iW  is the linked weight between the hidden layer of 

neuron i  and output layer of neuron; 
2

ijW  is the linked 

weight between the input layer of neuron j  and the hidden 

layer of neuron i ; ikv  is the linked weight between the 

feedback layer k  and the hidden layer of neuron i ; ( )iH t  

is the output of the hidden layer of neuron i . ( )ϕ ⋅  is Morlet 

wavelet function which can be described as: 

( ) ( ) 2 2cos 1.75 ,tt t eϕ − ′′ = ′              (31) 

where 
( ) ( )

( )
1

1

i i

i

h t b t
t

a t

− −
′ =

−
, ia  is dilatation coefficient and 

ib  is translation coefficient. 

4.2. The SNPRP Conjugate Gradient Method 

The SNPRP conjugate gradient method is a new conjugate 

gradient method which is presented in [16]. It has the 

sufficient descent property and global convergence property 

under the condition of strong line search. Furthermore, it 

needs less stored information which ensures the high 

computational efficiency. Then a brief introduction to this 

method is given as follows. 

Considering a general unconstrained optimization problem 

( ){ }min |x x
nf R∈ , where : nf R R→  is a one order 

continuously differentiable nonlinear function, and its 

gradient vector is ( ) ( )g x x≜ f∇ , ( )g g xk k= . For a general 

spectral conjugate gradient method [23], below equation is 

satisfied. 

1 ,x x dk k k kη+ = +                     (32) 

1

,                   1,

1
, 2.

g

d
g d

k

k
k k k

k

k

kβ
δ −

− =
= − + ≥


         (33) 

where dk  is the search direction, kβ  is the parameter, and 

kη  is the step-length factor. The spectral coefficient is 

defined as 

1 1
1 12

1

,
y

y g g
T
k k

k k k k

k

s

s
δ − −

− −
−

= = − .         (34) 

In SNPRP conjugate gradient method, the parameter kβ  is 

defined as 

2

1 1
1SNPRP

2

1

.

g
g g g

g

g

k T
k k k k

k

k

k k

δ
β

δ

− −
−

−

 
−  

 =
     (35) 

The corresponding convergence and stability has been 

proved in [16]. 

The algorithm process is as follows. 

Give the 1x
nR∈ , 0 ε≤ , 1 1d g= − , 1k = ; 

If gk ε≤ , then end the whole calculation; 

Compute the step-length factor kη ; 

Execute computation as (32), and let ( )1 1g g xk k+ += ; 

Compute the spectral parameter, SNPRP
kβ  and 1dk+  as 

equations (34), (35) and (33) separately. Let 1k k= + , then 

go to step 2). 

Then the SNPRP conjugate gradient method is used to train 

the weights of DRWNN. 

4.3. The Training Algorithm of DRWNN 

Suppose the ( )y t  and ( )ey t  denote the real output and 

the expected output at time step t , the error is 

( ) ( ) ( ).ee t y t y t= −               (36) 

The cost function is 

( ) ( ) ( )( ) ( )( )2 21 1
,

2 2
eE t y t y t e t= − =         (37) 

The total error function from the time step 1 to N  is 
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( ) ( )( ) ( )( )2 2

1 1

1 1
.

2 2

N N

e

t t

E y t y t e t

= =

= − =∑ ∑    (38) 

The training goal of DRWNN is to adjust the parameters to 

decrease E  gradually. From the chain rule of neural network 

on the basis of SNPRP conjugate method, the weights can be 

inferred as follows, 

( ) ( ) ( )
( )

( ) ( ) ( )

1 1 1 1 1
1 1 21 1

1

1 1 1 1
1 1 21

1

1
1

1

1
1 .

i i t t t

t i

i t i t t

t

E t
W t W t d

W t

W t e t H t d

η β
δ

η β
δ

− − −
−

− − −
−

 ∂ = − + − + 
∂ −  

  = − + − + 
  

 (39) 

Define ( ) ( ) ( ) ( ) ( ){ }2= , , ,Θi ij ik i it W t v t a t b t , then 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )

1 1 2

1

1
1 1 2

1

1
1

1

1
1

1

1 ,

Θ Θ
Θ

Θ

Θ

s s s
i i t t ts

it

is s s
t i t ts

it

i

E t
t t d

t

H t
e t W t d

t

t

η β
δ

η β
δ

− − −
−

− − −
−

 ∂ = − + − + ∂ −  

 ∂ = − − + ∂ −  

+ −

 (40) 

where , 1,2, , ,…i k m=  0,1, ,…j n= , 2,3, 4,5s =  

corresponds to the variables ( ) ( ) ( ) ( )2
, , ,ij ik i iW t v t a t b t , 1

s
tη −  

is the learning coefficients of 1 2, , , ,W W v a b . 

( )
( )

( )
( )

1

1 2

1

,                 t 1,2,
1

1
, 3,

1

Ψ

Ψ

i

t

s s
t ts

it

E t

t
d

E t
d t

t
β

δ

−

− −
−

 ∂
− = ∂ −= 

∂− + ≥ ∂ −

    (41) 

where ( ) ( ) ( ){ }1= ,Ψ Θi i it W t t , 1s =  corresponds to the 

variable ( )1
iW t . 

For the equations above, 

( )
( )

( )
( )

( ) ( ) ( )
( )

2

2
1 1

1

1 1 .
1

i

i i

iij

Qm
k

j ik iq

ijk q

H t H t

h tW t

H t q
x t v t wb

w t q
α

= =

∂ ∂
=

∂∂ −

 ∂ −
 − + −
 ∂ − − 

∑∑
 (42) 

( )
( )

( )
( )

( ) ( ) ( )
( )

1 1

1

1 1 .
1

i

i i

ik i

Qm
k

k ik iq
ikk q

H t H t

v t h t

H t q
H t v t wb

v t q
α α

= =

∂ ∂
=

∂ − ∂

 ∂ −
 − + −

∂ − −  
∑∑

 (43) 

( )
( ) ( )

( )
( ) ( ) ( )

( )
1 1

1

1 .
1 1

i

i

i

Qm
k

ik iq
i ik q

H t
t

a t

t H t q
v t wb

a t a t q

ϕ

α
= =

∂
= ′ ′

∂ −

 ∂ ′ ∂ −
 + −

∂ − ∂ − −  
∑∑

 (44) 

( )
( ) ( )

( )
( ) ( ) ( )

( )
1 1

1

1 .
1 1

i

i

i

Qm
k

ik iq
i ik q

H t
t

b t

t H t q
v t wb

b t b t q

ϕ

α
= =

∂
= ′ ′

∂ −

 ∂ ′ ∂ −
 + −

∂ − ∂ − −  
∑∑

 (45) 

where ( ) ( ) ( )2 22 21.75sin 1.75 cos 1.75t tt t e t t eϕ − ′ − ′′ ′ = − ′ − ′ ′ ,

( )
( )1i

t

a t

∂ ′
∂ −

 and 
( )
( )1i

t

b t

∂ ′
∂ −

 can be calculated by 

( ) ( )
( )

1

1

i i

i

h t b t
t

a t

− −
′ =

−
. 

The initial training value is ( ), 0c ix t = , 
( )

( )2
0

1

i

ij

H t

W t

∂
=

∂ −
,

( )
( ) 0

1

i

ik

H t

v t

∂
=

∂ −
, 

( )
( ) 0

1

i

i

H t

a t

∂
=

∂ −
, 

( )
( ) 0

1

i

i

H t

b t

∂
=

∂ −
, , , ,i j k∀

1t = . 

With the method above, the final DRWNN is determined. 

4.4. Experimental Results and Analysis 

In order to verify the modelling ability of the proposed 

DRWNN, A single input single output dynamical nonlinear 

system is used for the testing. The dynamic equation is 

described as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( )

2

2 3

1 1 ,

3 6.2 2 1 2 ,

,

1.0 0.6sin(2 50) 0.4sin 2 5 .

yy t f t g t t

f t y t y t y t

g t u t u t

u t k k

ω

π π

 + = + + +

 = / + − + −

 = +


= + / + / 7

(46) 

where ( )u t  is the input, ( )y t  is the output, ( )y tω  is a 

zero mean white noise. 

In this section, the neural network used for testing contains 

6 hidden layers, 1 input layer, 1 output layer, and the number 

of feedback layers of DRWNN is 3. ( )u t  and ( )y t of the 

first 200 time steps are taken as the training samples. The 

training signal is shown in Figure 2. In order to compare the 

performance, the RWNN is introduced to model with the same 

training way [11]. The training number of both RWNN and 

DRWNN is 200 times. 
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Input signal 

 

Output signal 

Figure 2. Training signals. 

The simulation results are shown in Figure 2. To explain the 

results better, the maximal absolute error mE  is defined, the 

mean error E  and the root-mean-square error 1RMSE  as 

follows, 

*max , 1,2, , ,…m i iE y y i N= − =         (47) 

*

1 ,

N

i i

i

y y

E
N

=

−
=
∑                  (48) 

( )2
*

1
1 ,

N

i i

i

y y

RMSE
N

=

−
=
∑          (49) 

where *
iy  is the real value, iy  is the calculated value, and 

N  is the number of samples. The training results are shown 

as Table 1. 

Table 1. The error of training samples. 

— RMSE1 Em E 

RWNN 0.2549 3.1343 0.3729 

DRWNN 0.1924 2.9806 0.3249 

It can be shown that no matter for the maximal absolute 

error, the mean error or the root-mean-square error, the results 

of DRWNN is always less than that of RWNN, and the model 

output curve of DRWNN is closer than that of RWNN. So 

DRWNN has better modelling ability. 

Table 2. The error of testing samples. 

— RMSE1 Em E 

RWNN 0.1700 1.2023 0.2599 

DRWNN 0.1075 1.0082 0.3167 

In order to verify the generalization ability of DRWNN, the 

input signal ( )u t  from the time step 201 to 400 is served as 

the testing signal ( )ɶu t , and the output ( )ɶy t  is obtained. 

The training signal is shown in Figure 3 and the corresponding 

errors are shown in Table 2. These results demonstrate that the 

output of DRWNN is much closer to the real output, which 

verifies the DRWNN has better model generalization ability. 

Using the SNPRP conjugate gradient method to optimize the 

weights of DRWNN is effective. 

 

Input signal 

 

Output signal 

Figure 3. Testing signals. 
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5. Modelling for ASP Flooding with 

Proposed Spatial-Temporal Separation 

Method 

5.1. Reservoir Description 

Suppose that the reservoir of ASP flooding consists of four 

injections and nine production wells. All wells distribute 

uniformly; there is one injection well at the center of every 

four production wells. The distribution of wells is shown in 

Figure 4. 

 

Figure 4. The distribution diagram of well position. 

As for this reservoir, the length is 630m; the width is 630m, 

and the thickness is 19.990m. There are 7 layers in all; the 

thickness of each layer is 2.857m; and the net thickness is 

1.4286m; the depth of upper surface is 2420m; the porosity 

of every layer is 0.3, and the pore volume is 1.1097 × 106m3. 

The initial grid concentration of ASP is 0 g/L. The initial 

water saturation is shown in Figure 5. The grids of reservoir 

are divided in three directions , ,x y z . The grids in x  and 
y  are divided into 21 units, respectively, and the grids in z  

are divided into 7 units. The total number is 21×21×7. 

 

Figure 5. The distribution diagram of initial water saturation. 

The water injection rate of each injection well is 83 m3/d. 

The rate of production wells is as defined in Table 3. Using 

reservoir simulation software CMG, the whole oil production 

process can be obtained by simulation. The whole production 

time lasts for 96 months, and sampled output can be got by 

the snapshots method. The injecting time of ASP is served as 

the initial time, so the total time nodes are =97L  and the 

total space nodes are 21 21 7N = × × . 

Table 3. The liquid volume quantity of production wells. 

wells S1-1 S1-2 S1-3 S2-1 S2-2 S2-3 S3-1 S3-2 S3-3 

m3/day 20.75 41.5 20.75 83 41.5 41.5 20.75 41.5 20.75 

5.2. Modelling and Verification for ASP Flooding 

Given the ASP flooding above, the approximate model is 

built with the method proposed in this paper. In order to 

sufficiently motivate system, the simulation is run on the 

software CMG for 50 times. The software randomly generates 

different injection strategies for every month, and the process 

of injection totally lasts for 48 months. Then the 

three-dimensional spatial-temporal modelling method is used 

to get the spatial basis functions and the temporal coefficients 

of the 50 sets of grid saturation. So as to get the best structure 

to represent the ASP flooding system, use one group of the 

spatial basis functions to reconstitute the system with other 49 

groups of temporal coefficients and calculate the average 

mean square errors of all sampling points for these 49 times. 

After executing this process for 50 times, a group of spatial 

basis functions with the smallest mean square error is served 

as the spatial basis functions for modelling. The relationship 

between injection concentrations of ASP and temporal 

coefficients is get by DRWNN, then combine the spatial basis 

functions to build the model between grid water saturation and 

injection concentrations of ASP. At the same time, build the 

model between the grid water saturation and moisture content 

of production wells with DRWNN. The mathematical form 

can be described as follows, 

( ) ( ) ( ) ( ){
( )}

2
ˆ ˆ ˆˆ 1 , , , 1 ,

ˆ, ,

⋯

⋯

w

s

w w w w

w

f t F f t f t n S t

S t n

= − − −

−
   (50) 

where wn  is the lag of moisture content, sn  is the lag of grid 

water saturation. 

Then the model between the injection concentration of ASP 

and moisture content of production wells can be built after 

integrating the models above, which can be expressed as 

equations (13), (28) and (50). 

In order to compare the influence of the number of the 

spatial basis functions, the performance indictor is defined as 

follows: 

( )2
, , ,

,
e x y z t dxdydz

RMSE
dxdydz t

=
∆

∑∫
∑∫

      (51) 



164 Shurong Li and Yulei Ge:  Spatial-Temporal Separation Based on the Dynamic Recurrent Wavelet Neural  

Network Modelling for ASP Flooding 

where ( ) ( ) ( )ˆ, , , , , , , , ,w we x y z t S x y z t S x y z t= − . 

Generally speaking, the more the number of the spatial 

basis function is, the more information of system the model 

reflects, and the higher accuracy the model has. But at the 

same time, the model will be sensitive to the external 

disturbance and the generalization ability will decrease. 

Besides, the dimension of the model increases. On the other 

hand, the less quantity the spatial basis function is; the model 

will reflect less information and the error can be very big. It 

is important to choose the proper amounts of the spatial basis 

functions. In order to test the influence of different numbers 

spatial basis function on the accuracy of modelling, different 

numbers of spatial basis functions is chose to reconstruct the 

system with the temporal coefficients and calculate the 

average RMSE which is shown in Table 4. 

Table 4. RMSE for different number of spatial basis functions. 

n 1 2 3 4 5 

RMSE 0.0751 0.0502 0.0296 0.0209 0.0197 

From Table 4, the accuracy of model increase with the 

number of spatial basis functions. However, when the 

number is over 4, the RMSE of model will not increase 

which indicate that the spatial basis functions can reflect the 

whole reservoir, so the number of spatial basis functions 

adopted in this paper is 4. Besides that, the number of 

feedback layers of the DRWNN networks for injection 

concentrations and temporal coefficients is 3; the 

corresponding hidden layers is 6; the lags of temporal 

coefficients is 4Tn = ; the lags of injection concentrations is 

3un = . The number of feedback layers of DRWNN networks 

for moisture content of production wells and the 

corresponding grid water saturation is 2; the hidden layers is 8; 

the lags of moisture content is 3wn = ; the lags of grid water 

saturation is 2sn = . 

Model for the ASP flooding with the spatial-temporal 

separation method based on DRWNN which is proposed in 

this paper. The errors for this model are that the mean RMSE  

for grid water saturation is 0.0285, and the mean RMSE  for 

moisture content of production wells is 1.1378%. This 

demonstrates the good modelling ability. 

In order to verify the generalization ability, the injection 

concentrations of ASP flooding are given randomly:

( )2.7,1.4,1.1 ,Pu =  kg/m ( )3.7,2.8,1.3Au =  kg/m3, 

( )2.9,1.3,0.6Su =  kg/m3. The displacing agent injection 

totally lasts for 48 months which are divided into 3 slugs 

uniformly, and the rest time is water flooding. The specific 

injection can be found in Figure 6-a. Because the whole 

system is five-dimensional considering the time and value of 

water saturation, it can’t be plotted in the picture directly. In 

order to illustrate clearly, the 21 grids ranging from ( )1,11,3  

to ( )21,11,3  at the third layer is chose. The result and error of 

modelling are shown in Figures 6 and 7. 

 

The injection mass concentration 

 

The output of real system 

 

The output of modelling 

Figure 6. The comparison diagram of water saturation. 

To analyze the generalization ability further, we compute 

the error with equation (48). The mean absolute errors for the 

moisture content of production wells and for the grid water 

saturation are 1.2970%  and 0.0318% , respectively. Figure 8 

compares the moisture content of modelling and that of the 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Time/month

T
h
e
 i
n
je

c
ti
o
n
 m

a
s
s
 c

o
n
c
e
n
tr

a
ti
o
n
 (

k
g
/m

3
)

 

 

Alkali

Surfactant

Polymer

0
5

10
15

20
25

0

50

100
0.4

0.5

0.6

0.7

0.8

0.9

1

Grid xTime/Month

W
a
te

r 
S

a
tu

ra
ti

o
n

0
5

10
15

20
25

0

50

100
0.4

0.5

0.6

0.7

0.8

0.9

1

Grid xTime/Month

W
a
te

r 
S

a
tu

ra
ti
o
n



 American Journal of Applied Mathematics 2017; 5(6): 154-167 165 

 

simulation software. It can be known that the error is very 

small, which verifies that the whole model has better 

generalization ability. 

From the above, the three-dimensional spatial-temporal 

separation modelling method based on DRWNN can model 

for ASP flooding well. It has good modelling accuracy and 

generalization ability. 

 

Figure 7. The error diagram of water saturation. 

 

Figure 8. The comparison diagram of moisture content of production wells. 

6. Conclusions 

In this paper, a three-dimensional spatial-temporal 

separation modelling approach is proposed to establish the 

identification model for ASP flooding. At first, spatial state 

(the water saturation) is expanded onto a series of dominant 

spatial basis functions and temporal coefficients. Then a new 

dynamic recurrent wavelet neural network, in which feedback 

layers are added and different weights are set with time to 

achieve dynamic memory of the past information, is 

proposed to build the relationship between the temporal 

coefficients and the injection concentrations of ASP flooding. 

To avoid the local minimum and low convergence, the 

SNPRP conjugate gradient method is adopted to train the 

weights of DRWNN. Besides that, DRWNN is also used to 

establish the model of the moisture content of production 

wells and the corresponding grid water saturation. The 

simulation of ASP flooding is carried out to show the 

effectiveness of this spatial-temporal modelling method. The 

result shows that the method proposed in this paper has good 

accuracy and generalization ability. It is suitable to be used 

for modelling for complex distributed parameter systems like 

ASP flooding. 
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Appendix 

For the mechanism model of ASP flooding, the specific 

meaning of parameters is as follows below [19, 20]: 

K  is the absolute permeability of rock; ,  ro rwk k  are the 

relative permeability of water and oil; ,  o wp p  are the 

pressure of water and oil; ,  o wS S  are the oil saturation and 

water saturation; ,  o wB B  denote the volume factors of oil 

and water; ( , , , )cowp x y z t  is the capillary force; 

{ }, = , ,c p s OHΘ Θ  are the concentrations of polymer, 

surfactant and alkali; ijc  is the mass concentration of 

component i  in solution j ; ,  o wµ µ  are the viscosity of 

water and oil; ,  ,  p sφ φ φ  are the rock porosity, reachable 

porosity of polymer and reachable porosity of surfactant; 

, ,p s a sfφ φ= , ,  a sf f  are the reachable porosity factors; kR  

is descending coefficient of relative permeability; aK  is the 

speed factor of the ion exchange and adsorption capacity; bK  

is the adsorption constant of surfactant; wv  is the seepage 

velocity; OHR  is the alkali consumption; ,  rp rsC C  are the 

adsorption quality of unit mass of rock of polymer, surfactant; 

,  o wr r  are the flow coefficients of oil and water; oq , wq  are 

the flow rate of oil and water in the standard state; ,  ,  c d eq q q  

are the transport velocity of shaft flooding agents; 

{ },  , ,iD i w o OH∈  is the diffusion coefficient; 

{ } { },  , ,  ,ijD i w o j s p∈ ∈  is the diffusion coefficient of 

component j  in solution i . 
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The flow terms are defined as follows: 

(1 ) , ( , , ) ,

0, ( , , ) ,

w out p

o
p

f q x y z
q

x y z

ψ
ψ

− − ∈=  ∉
 

, ( , , ) ,

, ( , , ) ,

0, ( , , ) ,∪

w out p

w in w

p w

f q x y z

q q x y z

x y z

ψ
ψ
ψ ψ

− ∈


= ∈
 ∉

 

, ( , , ) ,

, ( , , ) ,

0, ( , , ) ,∪

w p p

c w pin w

p w

q c x y z

q q c x y z

x y z

ψ
ψ

ψ ψ

 ∈
= ∈
 ∉

 

, ( , , ) ,

, ( , , ) ,

0, ( , , ) ,∪

w ws o os p

d w sin w

p w

q c q c x y z

q q c x y z

x y z

ψ
ψ

ψ ψ

+ ∈


= ∈
 ∉

 

, ( , , ) ,

, ( , , ) ,

0, ( , , ) .∪

w OH p

e w OHin w

p w

q c x y z

q q c x y z

x y z

ψ
ψ

ψ ψ

∈


= ∈
 ∉

 

The water cut is 
w

w
w o

r
f

r r
=

+
. 

The concentration of surfactant is defined as 

.w ws o os
s

w o

q c q c
c

q q

+
=

+
 

The alkali consumption is 

( )1 2 ,…a wR S r r
t

φ ∂= − + +
∂

 

where ir  denotes the alkali consumption per unit volume of 

reaction i . 

The oil and water relative permeability rok , rwk  can be 

described as 

B D
, A (1 ) ( C) .rw ro w wK S S= ⋅ − ⋅ −  

where A,B,C,D  are the identification coefficients, the 

specific method is shown in [21]. 

The descending of permeability is caused by the adsorption 

of polymer, it can be described as 

( )max

max

1
1 ,

k p

k

p

R q
R

q

− ⋅
= +  

where pq  denotes the adsorption quantity of polymer. 
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