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Abstract: In this paper, a compartment model has been built, presented and investigated the dynamics and spread of zika virus 

in both human and mosquito populations. It is focused to study the impact of symptomatic and asymptomatic infective 

immigrants on the spread of zika virus. A new mathematical model ������ for human and �� model for vector population has 

been designed and presented. Here ��  is symptomatic infective and ��  is asymptomatic infective human populations. The 

present model is developed making some reasonable modifications in the corresponding epidemic ��� model by considering 

symptomatic and asymptomatic infective immigrants. Susceptible vectors get infection either from symptomatic or 

asymptomatic infected human populations. The basic reproduction number is derived using the next generation matrix method. 

Disease free equilibrium point is found and endemic equilibrium state is identified. It is shown that the disease free equilibrium 

point is locally and globally asymptotically stable if the reproduction number takes a value less than one unit and unstable if it 

is more than one unit. Simulation study is conducted using MATLAB ode45. 
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1. Introduction 

Zika is a viral infection that is usually spread in human 

population by the bite of an infected mosquito. Zika was first 

discovered in 1947 in Uganda [12]. During the period 1960 – 

80, human infections, typically accompanied by mild illness, 

were found across Africa and Asia. The first large outbreak of 

disease causing Zika infection occurred in the Island of Yap, 

Federated States of Micronesia in 2007, indicating that the 

virus had moved from South – East Asia across the Pacific. 

During 2013 - 14 outbreaks in French Polynesia the 

neurological disorder of Guillain-Barré syndrome or GBS 

was found to have links to Zika infection. In South America, 

initially it was reported that the locally transmitted infection 

came from Brazil in 2015. In 2015 Brazil reported an 

association between Zika virus infection and GBS disease. 

From 1 April 2015, to 31March 2016 a total of 164,374 

confirmed and suspected cases of Zika virus disease and 

1474 cases of the GBS were reported in Bahia, Brazil, 

Colombia, the Dominican Republic, El Salvador, Honduras, 

Suriname, and Venezuela [16]. More cases of suspected 

Microcephally temporally linked with Zika outbreak [14]. In 

February 2016, as infection moved rapidly through the range 

occupied by Aedes mosquitoes in the Americas, WHO 

declared that Zika infection associated with Microcephally 

and other neurological disorders constitutes a Public Health 

Emergency of International Concern (PHEIC). 

By the start of 2016, local transmission of Zika infection 

had been reported from more than 20 countries and territories 

in the Americas, and an outbreak numbering thousands of 

cases was under way in Cabo Verde, western Africa. 

Approximately 500 million people in Latin America and the 

Caribbean are at risk for Zika virus infection [16]. 

Aedes aegypti mosquitoes live in tropical, subtropical, and 

in some temperate climates. These mosquitoes live near and 

prefer to feed on people. They are considered highly efficient 

at spreading these diseases. 

There is no evidence that Zika spreads through touching, 

coughing, or sneezing. There is no vaccine or specific 

treatment for Zika virus infection. The most common 
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symptoms of Zika are fever, rash, joint pain, conjunctivitis or 

red eyes, muscle pain, and headache. Patients zika virus 

infected are advised to drink plenty of fluids to replenish 

fluid lost from sweating, vomiting and other insensible losses 

[13]. 

Many communities along with national agencies initiated 

the process to implement control measures that ranged from 

vector control and the use of repellents to the suggestion of 

avoiding pregnancies for two years [3]. In addition to 

Microcephaly the other problems found in pregnancies, 

among fetuses and infants infected with Zika virus before 

birth such as: miscarriage, stillbirth, absent or poorly 

developed brain structures, defects of the eyes, hearing 

deficits, and impaired growths [3]. 

Due to association between Zika virus infection and 

Microcephaly, the epidemic trajectory of this viral infection 

poses a significant concern for nearly 15 million children 

born in Americas each year [6]. 

The impact of migration of population on the distribution 

and spread of zika virus disease is required to be analyzed 

properly and must be understood clearly. Migration and 

immigration of the people from one country to another 

country due to different reasons play a crucial role in the 

evolution and spread of zika virus. 

The main objective of the present study is to understand 

the role of infective immigrants on the dynamics of zika 

virus, and also to develop effective solutions and strategies 

for its prevention and control and eventually to eradicate it. 

Symptomatic infected human: The symptomatic infective 

humans are those who have already been infected by the 

disease and they show the symptoms of the disease and can 

transfer the disease to susceptible vector. 

Asymptomatic infected human: The asymptotic infective 

humans have already infected by the disease but they do not 

show any symptoms of the disease. However, they can 

transfer the disease to susceptible vector. It has been 

estimated that about 80% of persons infected with zika virus 

are asymptomatic [3]. 

2. Mathematical Formulation of the 

Model 

The mathematical model is expected to help to understand 

better the transmission and spread of zika. The spread of the 

disease modeled using ordinary differential equations ODEs 

where humans and mosquitoes interact and infect each other. 

For the purpose of this study the whole human population 

is classified in to four compartments: Susceptible 	�(�) , 

Symptomatic infected 		��(�) , Asymptomatic infected 	��(�) , 

and Recovered 	�(�). Similarly, the mosquito population is 

classified into two compartments: susceptible, and infected. 

Many mathematical models did not consider symptomatic 

and asymptomatic infected immigrants on the dynamics of 

zika virus [1 – 3]. To fill the gap and to account its impact the 

present study considers it. Thus, a new model that combines 

a ������	system for disease transmission in the human hosts 

and ��	model for disease transmission in the mosquito vector 

has been constructed. The variables used in the model and 

their physical interpretations are as follows: 

Table 1. The model variables and their representations. �
(�) Number of susceptible human population at any time t ��(�) Number of Symptomatic infected human population at any time t ��(�) Number of asymptomatic infected human population at any time t �
(�) Number of recovered human population at any time t ��(�) Number of susceptible vector population at any time t ��(�) Infected vector population at any time t 

The vector component of the model does not include an 

immune class as mosquitoes never recover from the 

infection. That is, their infective period ends with their death 

due to their relatively short lifecycle. Thus, the immune class 

in the mosquito population is negligible and death occurs 

equally in all classes. 

The model can be used for diseases that persist in a 

population for a long period of time. 

Susceptible human compartment: People will join the 

susceptible compartment by natural birth or by immigration. 

People go out from this compartment by natural death or go 

to the symptomatic or asymptomatic infected classes. The 

remaining people will stay in the compartment itself. Peoples 

in the susceptible compartment will get infection from 

infected vector. 

Infected human compartments: Into infected compartment 

some people will enter from susceptible after getting 

infection. Some others will enter by immigrations from other 

places. Some people of the infected human compartment will 

die with natural reasons or go to recovered class after 

developing immunity. 

Recovered compartment: Human populations in recovered 

class will go out of the compartment through natural death. 

Susceptible vector compartment: Vectors will join the 

susceptible class by natural birth and leaves the compartment 

through natural death. They go to the infected class after 

getting infection from symptomatic or asymptomatic infected 

humans. 

Infected vector compartment: The infected vector leaves 

the compartment through natural death because of short life 

cycle, but not of infection. 

In these model Ʌ


  and Ʌ�
�  represents the total 

recruitment rate of human and mosquito population 

respectively. 

The susceptible human population get infection by the rate �	Ф, where Ф is the rate at which susceptible human becomes 

infected because of infected vector and � is the biting rate of 

infected mosquito at which susceptible human becomes 

infected because of infected vector. The symptomatic 

infected immigrants come to the symptomatic infected 

human population by the rate ��  and the asymptomatic 

infected immigrants come to the asymptomatic infected 

human population by the rate �� . The symptomatic and 

asymptomatic infected human population goes to the 

recovered class equally by the rate �	 and from the 

compartment due to natural death by the rate �
�� and �
�� 

respectively. The recovered human leave the compartment 

due to natural death by the rate �
�
.  The susceptible 
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mosquito population get infection either from symptomatic 

or asymptomatic infected humans by the rate �  and �  

respectively, and leave the compartment due to natural death 

by the rate ��	��  and goes to infected mosquito compartment. 

Note that in this model we consider 	� 	 > 	� . That is, the 

probability of transferring the disease to susceptible vector by 

asymptomatic infected person is more than by symptomatic 

infected person. The infected mosquito population infects the 

susceptible human population by the rate Ф and leaves the 

compartment due to natural death by the rate	���� . 

Table 2. Description of variables and parameters. Ʌ
 Recruitment rate of human population �
 Natural death rate of human population � Biting rate of infected mosquito � Rate of infection of susceptible human because of infected vector �� Symptomatic infected human immigration rate �� Asymptomatic infected human immigration rate �	 Recovered rate of symptomatic and asymptomatic infected 

human population Ʌ� Recruitment rate of mosquito population �� Natural death rate of mosquito population � 
Rate at which susceptible vector get infection symptomatic 
infected human �  
Rate at which susceptible vector get infection from 

asymptomatic infected human � Rate at which susceptible human goes to symptomatic infected 1	 − � 
Rate at which susceptible human becomes asymptomatic 

infected 

2.1. Model Assumptions 

The present model has been developed based on the 

following assumptions: 

(i) Susceptible vectors can be infected by symptomatic 

or asymptomatic infected humans. 

(ii) Infected mosquitoes cannot recovery from the 

infection. Infected mosquitoes die naturally but not 

due to disease or infection and the birth rate of 

mosquito equals with its death rate.. 

(iii) Infected humans do not die due to infection, but due 

to natural death. 

(iv) All the new born ones are susceptible to infection. 

(v) The model considers only mosquito as a transmission 

agent. That is, infected mosquito can infect a 

susceptible human; but, infected human cannot infect 

a susceptible human. 

(vi) The development of the virus starts when the infected 

mosquito bites the human host. 

(vii) The infection is propagated to vectors by 

asymptomatic infected hosts with more rates than by 

symptomatic infected hosts. 

(viii) The recovered individuals are assumed to acquire 

permanent immunity and there is no transfer from the �	class back to the �	class. 

(ix) Susceptible vectors can get infection, through direct 

contact with a symptomatic or asymptomatic infected 

individual. 

(x) Natural death or due to other diseases occurs in each 

of the compartments. 

(xi) Populations move from one compartment to another 

compartment with certain rates. 

Based on these assumptions the compartmental structure 

of the model showing the compartments and flow of 

population has been represented by a flow diagram as 

follows: 

 

Figure 1. The compartmental structure describing Zika virus transmission. 

Considering the model assumptions and the flow diagram 

given in Figure 1 the dynamics of zika virus in human and 

mosquito populations can be described by a system of 

ordinary differential equations constructed in terms of 

notations of variables and parameters as follows: 	��
 ��⁄ = Ʌ
 	

 − �	∅	�� 	(�
 

⁄ ) − �
	�
 	       (1) 	��� ��⁄ = �	 ∈ ∅	�� 	(�
 

⁄ ) + "�	�� − (�
 + �)	��     (2) 	��� ��⁄ = �(1−∈)∅	�� 	(�
 

⁄ ) + "�	��−(�
 + �)	��    (3) 	��# ��⁄ = �	(�� + 	�� ) −�
�#               (4) 

��$ ��⁄ = Ʌ$ 	
$ − 	�	�	��	(�$ 

⁄ ) − �	%	��	(�$ 

⁄ ) − �$�$ (5) 	��$ ��⁄ = 	�	�	��	(�$ 

⁄ ) + �	%	��	(�$ 

⁄ ) − �$�$     (6) 

With initial conditions �
(0) = �
', ��(0) = ��' , ��(0) =	��', �
(0) = �
', 	��(0) = ��', ��(0) = ��' 

The total population sizes 

  and 
� can be determined by 	

 	= 	 �
 	+ 	 �� + 	�� 	+ �
	()�	
�	 = 	�� 	+ 	 ��	  (7) 

2.2. Positivity of the Solution 

The general model equations of system (1-6) are to be 

epidemiologically meaningful and well posed; we need to 

prove that all the state variables are non-negative. 

Theorem 1: If 	*
(0) > 0 , +�(0) > 0, , +�(0) > 0 , +�(0)	 then the solutions ,�
(�), ��(�), ��(�), �
(�), ��(�), +�(�)-  on the system of 

equation (1-6) are non-negative for all � > 0. 

Proof: To show the positivity of the solution of the 

dynamical system comprising the equations (1) to (6) we 

have to consider and verify each differential equation and 
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show that their solution is positive. 

First let us consider equation (1) of the dynamical system 	��
 ��⁄ = Ʌ
 	

 − �	∅	��	(�
 

⁄ ) − �
	�
 , 	��
 ��⁄ ≥ −�	∅	�� 	(�
 

⁄ ) − �
	�
, 	��
 ��⁄ ≥ −/�
 −�
	�
 ≥ −(/ + �
)�
 

Where 	/ = �	∅	(�� 

⁄ ). Up on integrating the inequality 

we obtain analytic solution as	�
(�) ≥ �
'012(3456)78 . Here �
9 	 is integral constant and 

represents initial population of the susceptible human 

compartment and hence it is a positive quantity. Now within 

the limit � → ∞	the analytical solution leads to 	�
(�) > 0 . 

Hence the solution or the population size of the susceptible 

compartment �
(�)	is always positive. 

Secondly let’s consider equation (2) of the dynamical 

system 	��� ��⁄ = �	 ∈ ∅	��	(�
 

⁄ ) + "�	�� − (�
 + �)	�� 

which implies 	��� ��⁄ ≥ �	 ∈ ∅	�� 	(�
 

⁄ ) − <	�� ,where < = �
 + � − "�	 	 	��� ��⁄ ≥  −<	�� , Integrating by using 

separation of variables we have the first order linear ordinary 

differential equation and can be solved to obtain a particular 

solution as ��(�) ≥ ��'02=8 , Since 	��' > 0 , and the 

exponential function always positive, it is clear that ��(�) ≥. 

Similarly ��(�) ≥ ��'02>8, where ? = �
 + � − "�	. 
Thirdly, let’s consider equation (4) of the dynamical 

system 	��
 ��⁄ = �	(�� + 	��  ) −�
�#  which can be 

expressed as 	��# ��⁄ ≥ −�
�# . Up on integrating the 

inequality we obtain an analytic solution as 	�#(�) 	≥�
'02568 .  Since 	�
' > 0 , and the exponential function 

always positive, it is clear that �
(�) ≥0. 

Fourthly consider equation (5) of the dynamical system ��$ ��⁄ = Ʌ$	
$ − 	�	�	��	(�$ 

⁄ ) − �	%	��	(�$ 

⁄ ) −�$�$ without the loss of generality this can be expressed as 	��$ ��⁄ − @(�)�$ − �$�$  where (�) =  �	�	(�� 

⁄ ) −�	%	(�� 

⁄ ). Integrating by using separation of variable we 

have the first order linear ordinary differential equation and 

can be solved to obtain a particular solution as �$(�) =�$'012A(8)7825B8 . Since �$' > 0  and the exponential 

function always positive, it is clear that	��(�) ≥ 0. 

Finally let’s consider equation (6) of the model equation 

which is 	��$ ��⁄ = 	�	�	��	(�$ 

⁄ ) + �	%	��	(�$ 

⁄ ) −�$�$ without the loss of generality this can be expressed as 	��$ ��⁄ ≥ −�$�$. Upon integrating the inequality we obtain 

the analytic solution as ��(�) = ��'025B8 . Here 	��'	  is 

integral constant and represent initial infective vector 

population and hence it is a positive quantity. Now within the 

limit � → ∞ the analytical solution leads to	��	(�) ≥ 0. Hence 

the solution or the population size of the infected 

compartment 	��(�)	is always non-negative. 

Therefore the solution sets ,�
(�), ��(�), ��(�), �
(�), ��(�), ��(�)-  of the model 

equations (1) to (6) are all non-negative for all � ≥ 0. 
2.3. Boundedness of the Solution 

The total human population 

(�) = �
(�) + ��(�) +��(�) + �
(�) implies using equations (1) to (4)	�

 ��⁄ =��
 ��⁄ + ��� ��⁄ + ��� ��⁄ + ��
 ��⁄ = Ʌ


 − �


	 +���� + ���� (8) Here without loss of generality and physical 

meaning �� <  

 , �� < 

  and �� + �� 	≤ 

	.  which implies �

 ��⁄ ≤ Ʌ


 − �


	 + ��

 + ��

  solving this we 

have the analytic solution of the form 

(�) ≤ (Ʌ
 + �� +��)

/�
 − 
'0256  or equivalently it implies that 0 <

(�) ≤ (Ʌ
 + �� + ��)

/�
  as � → ∞ . Therefore the 

solution system of human population is bounded. Similarly 

the total vector population is 
�(�) = ��(�) + ��(�) implies 

using equations (5) and (6) we have �
� ��⁄ = ��� ��⁄ +��� ��⁄ = Ʌ�
� − ��
�. Since in our assumption the natural 

birth rate and the death rate of vector is equal then, Ʌ� = �� 

which implies the vector population is constant and equal 

with the initial vector population which is bounded. 

Therefore the feasible region is F = F
GF� = ,�
, ��, ��, �
, �� , �� ∈ �H: 

≤ (Ʌ
 + �� + ��)

�
 , 
� = 
'- 
2.4. Disease Free Equilibrium Point	

Disease-free equilibrium (DFE) points are steady-state 

solutions where there is no Zika virus infection i.e �� = �� =	�
 = �� = 0. This is obtained by setting the right hand side 

of the model equation equal to zero. Thus, the disease-free 

equilibrium point of the model equation is, J'	=,�
 , ��, ��, �
, �� , ��}={Ʌ


 �
, 0, 0, 0⁄ , Ʌ�
� ��⁄ , 0	}. 

2.5. Basic Reproduction Number 

The basic reproduction number denoted by �', is defined 

as the number of secondary infections that result from the 

introduction of a single infectious individual into a 

completely susceptible population during its entire period of 

infectiousness, will be calculated by using the next 

generation matrix technique. It is an important parameter in 

epidemiology as it sets the threshold in the study of a disease 

both for predicting its outbreak as well as evaluating its 

control strategies. Persistent and die out of the disease in a 

community depend on the size of the reproduction number, �'. If the reproductions number �' > 1 the disease break out 

and if the reproduction number 	�' < 1, the disease dies out 

over the period of time. When �' = 	1  then the disease 

becomes endemic, meaning the disease remains in the 

population at a constant rate as one infected human transmits 

the disease to one susceptible vector and one infected vector 

transmits the disease to one susceptible human. 

Now by considering the infective compartments in human 

and mosquito population we can compute the reproduction 

number by using next generation approach. The infected 

compartments are �� , ��, �� . From those infected 

compartments we can compute the infection state K  and 

transfer state 	L . The reproduction number is the dominant 

eigenvalue of the matrix KL2� . The rate of change of 

population in this compartments are give in the dynamic 

model equation (2, 3) and equation(6). From this we can find MN and	ON . 
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MN = 

PQQ
QR �	�	Ф	��( S6T6	)�	(1 − �)Ф	��( S6T6	)�	�	��( SUT6	) + �	� 	��( SUT6	)VW

WWX and ON 	= Y <��?������Z 
Differentiating with respect to the variables 	��, ��, 	�� , and 

solving at the disease free equilibrium point 	J'  gives the 

jacobian matrix 

K = Y 0 0 bεФ0 0 α(1 − ε)Фb	θu 	b	� u 0 Z and L = Yk 0 00 q 00 0 μvZ 
Here we have used the fact initially	�
 = 

. Finally after 

computing we have got the matrix 

	KL2�  
= 

PQQ
QR 0 0 deФfg0 0 d(�2e)Фfgdhij dϒik 0 VWW

WX
 where l = m ɅU5U , m = TUT6 

The eigenvalues of the matrix KL2�are the solution of the 

characteristic equation |KL2� − /�| = 0  where �  is an 

identity matrix and / is the Eigen value of the matrix KL2�. 
Solving this we have /� = 0, /� 	= 	−opqrФ5U s � 	(�2t)> + u	t= v , /w 	= 	opqrФ5U s � 	(�2t)> + u	t= v. 

Among those eigenvalues the dominant Eigen value is /w 	= 	opqrФ5U s � 	(�2t)> + u	t= v  which is the reproduction 

number. i.e. �' = opqrФ5U s � 	(�2t)> + u	t= v . The reproduction 

number is a powerful parameter which measures the 

existence and stability of the disease in the human and 

mosquito population. 

3. Analysis of the Model 

In this section, the equilibrium points for the general 

model are identified and their stability analysis is made. The 

system exhibits two types of equilibrium point viz., disease 

free equilibrium points and endemic equilibrium points. 

3.1. Scaling of the Model 

In order to simplify and analyze the zika model in system 

(1-6) we work with fractional quantities instead of actual 

populations by scaling the population of each class by the 

total species population as papers [4, 8, 11]. The model can 

be simplified by assuming the following fractions with 

conditions �
 = 	*


, �� = +�

, �� = +�

, �
 =	@


, �� =	*�
� , �� = +�
�  therefore in the scaled version *
 + +� ++� + @
 =1 and *� +  +� = 1 . From this 	*� = 1 − +� , @
 = 	1 −	*
 − +� − +� . In our model since recovered 

individuals develop permanent immunity and hence they do 

not propagate the disease either to susceptible or to infected 

vector. That is ��  and ��  are not depend on �
  therefore 

without loss of generality this system of equation can be 

written as subsystem of four equations. Doing by 

differentiating the fractions with respect to time �  and 

simplifying as follows and the scaled version of the model 

becomes 	�*
 ��⁄ = Ʌ − x	*
	+� − μy	sy                          (10) 	�+� ��⁄ = x	�	+�	*	
– �
	+� − �	+� + ��	+�           (11) 	�+� ��⁄ = x(1 − �)	+�	*	
– �
	+� − �	+� + ��	+�   (12) 	�+� �� = b	θ	i�s} 	+ b	� 	i�	s} − μ}	i}⁄                 (13) 

Where x = �	Фm 

3.2. Existence and Stability of Disease Free Equilibrium 

Disease-free equilibrium (DFE) points are steady-state 

solutions where there is no Zika virus infection and the 

equilibrium points are obtained by setting the right hand 

sides of the model equations to zero. 
Theorem1: The disease free equilibrium point is locally 

asymptotically stable if and only if the reproduction number �' < 1 and unstable if	�' > 1. 

Proof: The local stability of J' is then determined from the 

signs of the eigenvalues of the Jacobian matrix. At the 

disease-free equilibrium, J', the Jacobian matrix is given by 

~�' = 

PQQ
QQR
−�
 	0	0 −x Ʌ6560 −<	0 x� Ʌ65600 0��l	 −?�� l x(1 − �) Ʌ656−�� VWW

WWX and 

det	(~�' − /�)=	�	−(�ℎ + /) 0 0 	−x	�000
	−(< + /)	0	��l

0−(? + /)�ϒl
x	�	�x(1 − �)�−(�O + /)� 

Where, � = Ʌ656 	*olving �(/) 	= �0�(~E0−/�) = 0 we have −(�
 + /) = 0	 ⇒ 	/ = 	−�
. 

The other three Eigenvalues are the roots of the 

characteristic equation of the matrix formed by excluding the 

first row and first column of the Jacobean matrix and has the 

characteristic equation of the form /w 	+ 	(�/� 	+ (�/ +	(w 	= 0                (14) 

Where, (� = 	<	 + 	?	 +	�� 	> 0, ( 2 = 	<	?	 + 	<�� 	+?��	– x	�	�l	ϒ(1 − �) − x	�	�l	�	�	 and (w = <?	��(1 −�'�) > 0 if and only if �' < 1.	
Due to the complexity in determining the signs of the 

remaining eigenvalues, we employ Routh-Hurwitz conditions 

for stability. The roots of the characteristic equation have 

negative real parts if and only if all the principal diagonal 

minors of the Hurwitz matrix are positive. For our case of a 

third order system, the stability criterion is defined by the 

inequalities (� > 0, (w > 0	 and (�(� − (w > 0. Clearly (� > 0, (w >0 and	(� to be positive 
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<?	 + 	<�� 	+ ?�� 	> 	x	�	l�ϒ(1 − �) + 	x	�	�l��	 and 

also (�(� 	− 	(w > 0.	
Hence, by Routh-Hurwitz criterion, all the eigenvalues 

have negative real parts if 	�' < 1 , Hence from Routh-

Hurwitz criterion we have all the real parts of eigenvalues of 

the Hurwitz matrix being negative, hence the disease free 

equilibrium point is stable if �' < 1. 
Theorem 2: The disease free equilibrium point J'  of the 

system of ordinary differential equations is globally stable if �' < 1. 

Proof: The proof is based on using a comparison theorem. 

The equation of the infected components can be written in 

terms of	
Y���/�����/�����/��Z	= (K − L) Y������Z −Y

00(�	�	�� + �	ϒ	��)��Z 
Y���/�����/�����/��Z 	≤ (K − L) Y������Z                          (15) 

And also all the eigenvalues of the matrix [K − 	L] have 

negative real parts. It follows that the system of linear 

differential inequalities (15) is stable whenever �' < 1	[19].	
3.3. The Endemic Equilibrium Point 

Endemic equilibrium point is a steady-state solution, 

where the disease persists in human and mosquito 

population. This equilibrium implies that if the carrier 

population is present in the system, then the infection will be 

transmitted to the human and mosquito population. Endemic 

equilibrium J� of our model is obtained by setting right hand 

side of the model system of equation equal to zero. For the 

existence and uniqueness of endemic equilibrium 	J� = (	�
∗, ��∗, ��∗, ��∗) where = (	�
∗, ��∗, ��∗, ��∗)	and solving system 

above by setting the right hand side of the equation equals to 

zero we have the following E1 = (	�
∗, ��∗, ��∗, ��∗) 
�
∗ =	 Ʌ6	(A	��q	4	�)��q	f�	(A	4	�) 	��∗ = 

t	Ʌ	6	(��q	2	�)=	��q	(	A	4	�) 	��∗ = 
(�2t)	Ʌ6	(��q		2	�)>	��q		(	A	4	�)  

��∗  = 
�	d	Ʌ�j	ϒ	i	(	�2e	)4	�	d	Ʌ�	k	i	h	e2	fg56	j	k�	d	Ʌ�	j	i	ϒ	(	�2e	)	4	�	d	Ʌ�k	i	h	e	4	�	fg	j	k  = 

f�(��q	2	�)�	(�	��q	4	�) , 

where @ = �
/x 

Here ��∗ is positive if and only if �' > 1 and therefore all 

endemic equilibrium points can be expressed in terms of �' 

and all are positive. We apply the linearization technique in 

the system to determine the stability of the endemic 

equilibrium. 

Theorem 3:- The Endemic equilibrium point of system of 

equation is locally asymptotically stable if and only if the 

reproduction number �' > 1 and unstable if �' < 1. 

Proof: At the steady states of the model, the Jacobean 

matrix is given by 

~�� = � −(x��∗ + �
) 0 0 −x�
∗x���∗x(1 − �)��∗0
−<0�l���∗

0−?�l� ��∗
x��
∗x(1 − �)�
∗−�� � 

The characteristic polynomial at the endemic equilibrium 

point is given by �(/) = det	(~�� − /�) = 0, and therefore �(/) 	= 	 /� + (�/w 	+ (�/� 	+ (w/	 + (� = 0,   (16) 

Where (� 	= x��∗ + �
 	+ <	 + ?�� 	> 0 if and only if �' > 1 (� = 	x	<	��∗ + x	?	��∗ 	+ x	����∗ 	+ �
	< + �
	? + �
	��+ <	? + <	�� 	+ ?	��− x	�	lγ(1 − �)�
∗	��∗ 	− 	x	�	�l	�	�
∗	��∗. 
	(w = x	<	? + x	<	����∗ + x	?	����∗ + �
	<	? + �
	��	<+ �
	��	? + �
x	�	lγ(1 − �)�
∗	��∗ 	− 	�
	x	�	l	�	��
∗	��∗ + <	?	��− <	x	�	lγ(1 − �)�
∗	��∗ − x�	?	l�	��
∗	��∗.	(� 	= x	<	?	����∗ 	+ 	<	?	���
 	− 	x	�	�
<	lγ(1 −�)	�
∗	��∗ − 	x	�	�
?	l	�	�	�
∗	��∗ . Since solving the above 

characteristic polynomial for eigenvalues is tedious we will 

use the Routh-Hurwitz criterion to determine whether all 

roots have negative real parts and establish the stability of the 

system without solving the characteristic equation itself. By 

Routh – Hurtwiz criteria the determinant of Hurwitz matrix 

becomes positive if the following conditions hold true (� > 0, (w > 0  and (� > 0  and 	(�(�(w >	(��(� + (w� . It 

required that all these requirements should hold true in our 

present model. Therefore, after a certain manipulation we 

have the following results (� > 0 if and only if �' > 1 and �	Ʌ
 	�
,γ(1 − �)(�'� +1) + �	�	(�'� − 1)-	> x	�Ʌ
(@	�'� + 1),lγ	(1 − �) + l�	�-. (w > 0	if and only if �' > 1	and Ʌ
�(�'� − 1),�
	�	� +�	γ	l(1 − �) − ?	�	�- > x	�	Ʌ
(@	�'� 	+ 1),�	l	� +(?	l	�	�/�
) + <lγ(1 − �)/�
- (4 > 0	+MM	�0 > 1  and 	�Ʌ
(�'� − 1),<	l	γ	(1 − �) −?	l	�- > x	�	Ʌ
(@	�'� 	+ 	1),<	lγ(1 − �) 	+ ?	l	�-	
Hear all the requirements on the parameters are found hold 

well. 

Similarly, after exercising the same procedure it can be 

further observed that (�(� > (w  and (�(�(w >  (��(� + (w� 

holds with a certain conditions. Hence all roots of the 

characteristic polynomial are negative and this verifies that 

the system of equation (1) to (6) is locally asymptotically 

stable. 

4. Simulation Study of the Model. 

Our numerical simulations examine the effect of infective 

symptomatic and asymptomatic immigrants on the 

transmission of the disease using MATLAB ��045 and show 

the sensitive parameters on the dynamics of the disease. 

Some of the parameter values are taken from literatures and 

the others are by assumptions. The parametric values are 

given in the following table. 
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Table 3. Model parameters and their values. 

Parameters Case 1 Case 2 Case 3 Reference Ʌ
 0.06 0.06 0.06 [17] �
 0.003 0.003 0.003 [19] �� 0.029 0.029 0.029 [11] � 0.3 0.3 0.3 [20] �Ф 0.75 0.65 0.4 Assumption � 0.25 0.63 0.1333 Assumption �  0.4 0.7 0.2 Assumption � 0.2 0.2 0.2 [21] �� 0.1 0.2 0.1 Assumption �� 0.2 0.3 0.1 Assumption � 0.2 0.2 0.2 Assumption x 0.4218 0.3656 0.225 Assumption 

 

Figure 2. Numerical simulation of zika virus with	� = 0.25, � = 0.4, x =0.4218, �� = 0.1, �� = 0.2. 

In figure 2 the fractions of the populations *
, 	+�, +�, and +� 

are plotted vs. time. With increasing time, the susceptible 

fraction of human population and symptomatic infected 

human populations are decrease and the fractions of infected 

vector populations increase. 

 

Figure 3. Numerical simulation of zika virus with � = 0.63, � = 0.7, x =0.365, �� = 0.2, �� = 0.3. 
In figure 3 the parameters are changed and with increasing 

time, the fractions of susceptible humans and the fraction of 

asymptomatic infected humans decrease and infected vectors 

are increases very fast because of the values of �� and ϒ. 

 

Figure 4. Numerical simulation of zika virus with � = 0.1333, � = 0.2, x =0.225, 	�� = 0.1, �� = 0.1. 
In figure 4 the fraction of symptomatic and asymptomatic 

infected human populations are increase initially and 

decrease after a certain time because of ��, ��	and the values 

of the interaction rates �  and � . Here the fraction of 

susceptible human population is decreases with increase time 

because the interaction coefficients of symptomatic and 

asymptomatic infected human populations. In all figures the 

value of α plays a crucial role on the dynamic and spread of 

zika virus. 

 

Figure 5. The effect of contact rates from infected human to vector on 

infected vector population. 

In this figure as the contact rates from symptomatic and 

asymptomatic infected human population to susceptible 

vector increases proportionally infected vector populations 

increase rapidly. 
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Figure 6. The effect of asymptomatic immigrants on infected human 

population. 

In figure (6) as the rate of asymptomatic infected 

immigrants increase the infected human population becomes 

increase and this leads to increase the chance on infection for 

susceptible vector from those infected humans. 

In our model, the interaction coefficient �  from 

symptomatic infective to susceptible vector, ϒ  from 

asymptomatic infected human to susceptible vector, Ф from 

infected vector to susceptible human are more sensitive 

parameters. ��	  the symptomatic immigration rate, ��  

asymptomatic immigration rates and x  the transmission 

probability from infected vector to susceptible human also 

sensitive parameters. 

In general, we could observe that increasing the contact 

rates, human to mosquito and mosquito to human, leads to 

the outbreak of the disease and results an increasing zika 

virus prevalence. However, controlling these parameters with 

different control strategies allow the reproduction number to 

become less than 1, and then the disease dies out. 

5. Conclusions 

Intervention measures, to prevent or reduce the transmission 

of vector born, are currently being used with a degree of 

success in some parts of the world. Some of the methods used 

include house spraying with residual insecticides and most 

recently the use of mosquito bed nets. These methods operate 

by reducing the contact rates between the mosquitoes and 

humans. Spraying reduces mosquito longevity (and perhaps 

also fertility). This strategy is also likely to kill mosquitoes so 

it would increase the chances of killing infected mosquitoes 

and increase the mosquito death rate ��.. Preventing mosquito-

human contacts should reduce the number of bites per 

mosquito. Controlling the symptomatic and asymptomatic 

infected immigrants also reduce the contact rate between the 

infected host and susceptible vector. 

In this study, we have derived and analyzed a 

mathematical model in order to understand the transmission 

and spread of the zika virus disease. The model is modified 

by eliminating the recovery human and susceptible mosquito 

population from the system and by considering symptomatic 

and asymptomatic infective immigrants. We defined a 

reproductive number �' which provides the expected number 

of new infections from one infectious individual over the 

duration of the infectious period given that all other members 

of the population are susceptible. We showed the existence 

and stabilities of equilibrium points of the model. In the 

model, we demonstrated that the disease-free equilibrium 

point J'  is stable is 	�' 	< 1, and unstable if �' > 1. 

Numerical simulation of the model shows the dynamic 

properties of human and vector compartments versus time 

and the stabilities of the equilibrium points. One can observe 

from the simulations that the infected human population 

increases with larger values of the contact rates from 

mosquito to human population and human to mosquito 

population and with rates of infective immigrants. We notice 

that in order to reduce the basic reproduction number below 

1, focus on reduction of the contact between mosquito vector 

and human host and controlling infective immigrants. Thus, 

using treated bed nets, and insecticides that would reduce the 

mosquito population and keep the human population stable. 
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