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Abstract: The spread of the Human Immunodeficiency Virus (HIV) and the resulting Acquired Immune Deficiency 

syndrome (AIDS) is a major health concern. Mathematical models are therefore commonly applied to understand the spread of 

the HIV epidemic. In this study, HIV dynamics is analyzed using a Stochastic Discrete-Time Markov Chain Mathematical Model. 

Demographic and epidemiological parameters that affect the model population dynamics were investigated. Well posedness of 

the model determined and the conditions for the existence and stability of disease-free and endemic equilibrium points proved, 

using the next generation matrix technique. The effect of various intervention strategies, were simulated by varying the parameters 

representing the possible strategies and comparing the respective values of the reproductive ratio ��. The numerical simulation 

results using intervention transition matrix showed that vertical transmission is the most sensitive parameter standing at 0.6 

followed by the use of HAART at 0.4. This indicates the strategy which requires much effort to avert progression of infected 

individual to AIDS. 
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1. Introduction 

Acquired Immune Deficiency Syndrome (AIDS) is an 

infectious disease caused by Human Immunodeficiency Virus 

(HIV) retrovirus. The retrovirus targets and infects a type of 

immune cells containing CD4
 proteins on its surface, hence 

called ��4
 
 cells or briefly called T cells. Once HIV has 

infected these T cells, the HIV genome is integrated with T 

cell DNA and during cell division, many other HIV is 

produced, infecting many other cells. On the other hand, the 

immune system will destroy infected cells and gradually, the 

T cells decline to levels unable to protect the body against 

opportunistic diseases such as pneumonia, meningitis, 

cancers and tuberculosis. It is then that an infected individual 

is said to have developed AIDS [15]. 

The HIV epidemic has been a major cause of morbidity 

and mortality worldwide. The rate of the spread of the 

HIV/AIDS epidemic has reached a shocking level. On a 

global scale, the HIV epidemic has stabilized, although with 

unacceptably high levels of new infections and AIDS deaths. 

Based on the current trends, over 7300 persons become 

infected with HIV, and 5400 die from AIDS-related causes 

including more than 760 children, every day. This means five 

people are becoming infected with HIV every minute and 

four people dying from AIDS per minute (UNAIDS, 2009). 

AIDS is the leading cause of death in Sub-Saharan Africa, 

especially in the southern part of the continent where nine 

countries with the highest HIV prevalence worldwide are all 

located in this sub region, with each of these countries 

experiencing adult HIV prevalence greater than 10%. With an 

estimated adult HIV prevalence of 26% in 2007, Swaziland 

has the most severe level of infection in the world [26]. The 

recent statistics have shown that an estimate of 22.4 million 

[20.8 million - 24.1 million] people (women account for 

approximately 60%) were living with HIV in Sub-Saharan 

Africa at the end of 2008. Moreover, 72% of world’s AIDS-

related deaths, 68% of new HIV infections among adults and 

91% of new HIV infections among children occurred in Sub-

Saharan Africa. In addition, the epidemic has left behind 

more than 14 million AIDS orphans in the region in 2008 

[26]. 

It has been established that HIV is transmitted through 

three major ways, namely; sexual intercourse, blood 

transfusion and from mother-to-child. HIV transmission as a 
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result of sexual intercourse accounts for about three-quarters 

of all HIV infection world-wide, with heterosexual 

transmission being the major means [9]. Proportion of HIV 

transmission through blood, for example as a result of the 

medical transfusion of infected blood or blood products or 

from the use of contaminated injection equipment by 

intravenous drug users and sharing of cutting tools and the 

vertical transmission from mother- to- child during 

pregnancy, delivery or through breast-feeding is also 

significant.  

Since the emergence of HIV/AIDS in the 1980s, there is 

no drug or vaccine that can be used to control HIV/AIDS and 

the only available control strategy is behavioural and Anti-

Retro-viral (ARV) therapy. Behavioural methods include; 

adopting low risk behaviours, one sexual partner, 

faithfulness, use of condom, avoiding sharing of injections 

and cutting tools, regular testing and avoiding drug use. 

Treatment regimens or options are available for HIV that 

reduces viral loads and slow the progression to AIDS but 

none of these eradicate the virus or prevent the spread of 

infections. Use of ARVs by already infected individuals 

lessens the severity of infection by improving CD4+ T cell 

count and fighting opportunistic diseases. However, it does 

not treat HIV completely, and the virus will continue 

remaining in the system, with the victim remaining infective, 

thus creating a pool of potential transmitters of the disease. 

Lack of curative drugs leaves behavioral adjustment to 

prevent infection as the only option to curb the pandemic. 

Abstinence, Being faithful and Condom use (ABC) has been 

practiced earlier without success. The reason is attributed to 

insufficient public awareness campaign on effective use of 

available ARVs and ABC, and unclear distribution of 

HIV/AIDS among the population. The awareness of how far 

the pandemic has spread helps both the public health and the 

public to improve on their safety precaution against 

contracting the disease.  

Unlike the early years of AIDS epidemic where the 

majority of infected individuals were prostitutes, 

homosexuals, hemophiliacs, and intravenous drug users, 

today there is no geographical area, class and cultural group 

of the world untouched by this pandemic, with the epicenter 

of HIV pandemic in Sub-Saharan Africa. The in this region 

have the highest HIV prevalence worldwide, and experience 

adult HIV prevalence rates greater than 10% [21]. For 

example, by 2008, Swaziland had the most severe level of 

infection in the world with an estimated adult HIV 

prevalence of 26% in 2007, [21].  

Since the spread of HIV depends on the behavioural 

characteristics of the people, efforts by the public health to 

enlighten masses on the control of the spread of HIV through 

behaviour change have shown to significantly help control 

the dispersal gradient of the epidemic [4]. Because of this 

reason, the use of mathematical epidemiological models to 

understand the disease dispersal dynamics helps in analyzing 

the trends and prediction of future states and allocation of 

control strategy resources to curb the pandemic.  

The use of mathematics to model communicable diseases 

dates back to the 18
th

 century. The first known result in 

mathematical epidemiology was on a defense of the practice 

of inoculation against smallpox in 1760 by Daniel Bernoulli. 

Other contributions to modern mathematical epidemiology 

are due to P.D. En’ko between 1873 and 1894 [14]. 

Mathematical modeling now plays a key role in policy 

making, including health-economic aspects; emergency 

planning and risk assessment; control-programme evaluation; 

and monitoring of surveillance data. In research, it is 

essential in study design analysis (including parameter 

estimation) and interpretation [13]. Many mathematical 

models including deterministic and stochastic models have 

used to describe the dynamics of infectious diseases. The 

most suitable model which takes into account environmental 

and demographic stochasticity is the stochastic model. 

Stochastic models assigns a probabilistic value to the 

parameters hence gives the exact picture of the situation. In 

this paper, the spread of HIV/AIDS is studied using Markov 

Chain process, incorporating stochasticity to determine the 

threshold values of the parameters that determine the gradient 

of HIV spread, in order to curb the negative effects of the 

pandemic. This model will suggest appropriate intervention 

strategies that guide the allocation of resources in finding a 

lasting solution to HIV/AIDS pandemic. 

2. Literature Review 

This section reviews literature on the transmission of 

HIV/AIDS and the use of mathematical models in describing 

infection dynamics. 

2.1. HIV Infection Stages 

When an individual is infected with HIV, the clinical 

response is complex, progressive and varies among 

individuals. Within few days of infection, an individual 

develops an acute mononucleosis like syndrome with fever, 

malaria and lymphadenopathy or the swelling of the lymph 

glands. These symptoms abate as HIV bonds to cells with 

CD4+ receptor protein on the surface. These CD4+T – 

Lymphocyte cell levels will then drop rapidly from a pre-

infection normal level of about 1200 cells per ml to about 

800 cells per ml [5]. Within 2 - 4 weeks after HIV infection, 

many, but not all, people develop flu-like symptoms often 

described as “the worst flu ever”. Symptoms can include 

fever, swollen glands, sore throat, rash, muscle and joint 

aches, fatigue and headache. This primary infection is body’s 

initial response to the HIV infection. This is called acute 

infection stage. During this early period of this stage, large 

amounts of virus are being produced by the body and 

consequently, CD4 cells are destroyed and their count fall 

rapidly. Eventually the immune response will begin to bring 

the level of virus in the body back down to a level called 

viral set point, which is relatively stable level of virus in the 

body. The next stage is the asymptomatic stage; people who 

are infected with HIV experience no HIV-related symptoms 

or mild ones. The HIV virus continues to reproduce at very 

low levels, although it is still active. The last is the AIDS 
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stage. The immune system is badly damaged and become 

vulnerable to infections and infection-related cancers called 

opportunistic infection. In average, the number of CD4
+
 cells 

falls below 200 cells/mm� of blood. Right from the second 

stage, an infective is able to transmit the disease and infect 

others. 

2.2. Mathematical Modeling and Epidemiology 

Mathematical modeling has become an integral part of the 

research on the control of HIV infection, since it is capable to 

provide useful predictions that can be used as the basis for 

assessing the effects of chemotherapy or immunotherapy and 

for the design of optimum therapies and effective vaccines 

[1]. A mathematical model is a representation of actual 

phenomenon using mathematical concepts and language, 

analysis and interpretation of mathematical results to 

understand the real situation. This models can be applied to 

epidemiology, which is defined by [12] as the study of the 

distribution and determinants of diseases both infectious and 

non-infectious. Mathematical models have been used 

extensively in research into the epidemiology of HIV/AIDS, 

to help improve our understanding of major contributing 

factors to its spread [17]. The goal of any modeling exercise 

is to extract as much information as possible from available 

data and provide an accurate representation of both the 

known and uncertainties of the epidemic [19]. Mathematical 

models based on the underlying transmission mechanism of 

HIV help the medical and scientific community understand 

better how the disease spreads in the community and how 

changes in various parameter values affect the course of the 

epidemic. Therefore, by developing such mathematical 

models, the potential effectiveness of different approaches 

for bringing the epidemic under control, can be evaluated. 

Control of the epidemic therefore depends on the knowledge 

of such parameters which can be analyzed and their 

sensitivities simulated through mathematical epidemiological 

modeling. The effectiveness of the two HIV/AIDS control 

strategies; behavioral and therapeutic depends on the 

quantitative understanding of the dynamics of the epidemic 

in the population.  

Many mathematical models are deterministic and 

subdivide the individuals into classes depending on their 

infection status. [23] studied the dynamics of HIV using 

deterministic SEIR model and obtained the basic 

reproductive number R� which helped them to determine the 

global stability of disease free and endemic equilibrium. 

According to [8], the threshold for many epidemiological 

models is the basic reproduction number R�. [16] developed 

an age-structured model incorporating vertical transmission 

and showed that the only possible way to ensure a disease-

free equilibrium was to bring the force of infection to zero. 

They showed that it is possible to have a disease-free 

children group if all the babies born by infected mothers were 

HIV-free. However, this did not guarantee safety in the adult 

group, and this would only happen if the rate of vertical 

infection was zero. The alternative strategy of controlling 

HIV pandemic is the use of ARV therapy. A person under 

ARV therapy uses drugs which interrupt the entry of HIV 

into the T cells and also interfere with replication. These 

ARVs are classified as Protease Inhibitors and Reverse 

Transcriptase Inhibitors respectively. Treatment with anti-

retroviral increases the life expectancy of people infected 

with HIV, with average survival time estimated to be more 

than 5 years as of 2005 [22]. Without antiretroviral therapy, 

someone who has HIV will develop AIDS and typically die 

within a year. The development of Highly Active Anti-

Retroviral Therapy (HAART) for HIV infection has 

substantially reduced the death rate of HIV victims [20]. As 

the life expectancy of persons with HIV has increased in 

countries where HAART is widely used, the continuing 

spread of the disease has caused the number of persons living 

with HIV to increase substantially. This means that an 

equilibrium point need to be stricken, to balance between 

increasing potential pool of transmitters and reducing new 

cases of infections. [17] developed a model of transmission 

of HIV into population of varying size and other 

demographical and epidemiological factors. In their analysis, 

they found that an increase in the rate of transmission leads 

to increase the population of infective which in turn increases 

the AIDS population. Thus, they concluded that the spread of 

the disease should be controlled by the way of promoting 

effective treatment to keep the overall infective population 

under control. This study utilized a Markov chain model to 

predict the trends of the epidemic.  

Forecasting the progression of HIV/AIDS spread plays an 

important role in controlling disease transmission and 

alleviating health disparities. Given the growing threat of 

limited resources in the society, especially in the health care 

system and public health system, the projection of the future 

epidemic can help to optimize resource allocation and design 

efficient, economical, timely health policies targeting the 

high risk populations and high prevalence areas.  

According to [10] a Markov process is a type of stochastic 

processes in which a system changes in a random manner 

between different states, at regular or irregular intervals. 

Markov chain modeling has been applied to a number of 

studies in the medical field over the years to predict and 

estimate random or uncertain events associated with specific 

probabilities of occurrence. Some practical applications have 

been observed in analysis of genetics, particularly in sickle 

cell anaemia, determining efficacy of noninsulin-dependent 

diabetes in a population of patients, predicting outcomes of 

dialysis treatment/kidney transplants in patients and 

analyzing longitudinal disease progression for liver cancer 

breast cancer, bronchiolitis obliterans syndrome and 

Alzheimer's disease, among others. [6] used Markov chain 

model to track the movement of the HIV dynamics virus 

from one generation to another in a period of 20 years. They 

applied multistate Markov modeling to explain the rate at 

which the Hepatitis C disease progresses. Observational data 

on 1306 patients in Trent, England was collected from 1991 

to 2006 and used for the longitudinal study. They also 

developed a multivariate Markov chain model to project 

tuberculosis (TB) progression in the US from the 1980s to 
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2010 among different races in the country. 

Although previous studies have modeled disease progress 

and transmission dynamics using Markov models, few have 

focused on epidemiological disease progression at a macro 

level of total populations through Markov models. The 

prediction of both incidence and prevalence of HIV/AIDS, 

made using the Markov model, will help in planning and 

calibrating adequate surveillance systems, as well as guiding 

public health in selecting and mobilizing suitable 

intervention and treatment strategic plans.  

A three-state Markov model was used to described survival 

functions from smoking cessation interventions [25]. It was 

found that on quitting, smokers transit through a state of 

withdrawal characterized by a high rate of relapse, and then 

into a more secured state of long - term abstinence. The 

Markov model embodies the dynamic nature of the 

cessation/relapse process; it permits stronger inference to 

long - term abstinence rates, provides measures of treatment 

efficacy, describes the outcomes of new quit attempts, and 

suggests mechanisms for the survival process. 

Markov micro simulation model accurately assess the cost-

effectiveness of prevention and treatment of osteoporosis. 

According to [11], the patient history was recorded and was 

used in calculations of transition probabilities, utilities, and 

costs. They carried out an example calculation for 

alendronate therapy, to test the internal consistency of the 

model. The results revealed that, Micro simulation models 

present reliable predictions which are largely compatible with 

the existing state of the art, evidence-based literature. In this 

paper, similar Markov Chain process is employed to describe 

the spreading dynamics of HIV/AIDS. 

3. Model Formulation and Analysis 

The dynamics of HIV/AIDS in this study is analyzed using 

three distinct infection status classes, namely; Susceptibles  S(t) , infectives  I(t) , and AIDS classes  A(t) , with 

demography. The modes of infection considered here include 

both vertical and horizontal modes, with the effectiveness of 

various intervention strategies illustrated. The discrete time 

model used in the study is given by the model equations,  

�(� + 1) = Λ + #1 − (% + &)'(�(�) − )*�(�) + +(,(�) ,(� + 1) = -(% + &)(�(�) − ).,(�) + (1 − /)(1 − +)(,(�) + 0(1(�) 1(� + 1) = (1 − -)(% + &)(�(�) + /(1 − +)(,(�) − )�1(�) + (1 − 0)(1(�)                                (1) 

where the transfer parameters Λ ≥ 0, % ≥ 0, & ≥0, / ≥ 0, )* ≥ 0, ). ≥ 0, )� ≥ 0, + ≥ 0, 0 ≥ 0, ( ≥ 0  and - ≥ 0 . The first equation represents population of 

susceptibles who are recruited at a constant rate  Λ , and 

augmented by successfully treated infectives at a rate + . 

These individuals are transferred to other compartments 

through vertical infection at birth % and horizontal infection 

due to sexual intercourse at a rate & = 4 56 and lost by natural 

death rate of )*. The second difference equation accounts for 

the infective population, with a proportion -(% + &)  
recruited from the susceptible class after getting infection and 

additional from AIDS class who recover at a rate 0 due to 

effective use of ARVs and treatment of opportunistic 

diseases. Individuals in this class are lost because of 

accelerated death at a rate ). and transferred to AIDS class at 

a rate of /(1 − +)  due to unsuccessful treatment of 

infectives. The third equation models AIDS class who 

receive individuals directly from infected susceptibles at a 

rate (1 − -)  and from infective class with probability of 

/(1 − +) of those not successfully treated. 

3.1. Positivity and Boundedness 

Due to biological considerations, we require that all 

solutions of system (1) are positive. Define a bounded 

invariant space, ℝ
 = 8�, ,, 1|� > 0, , > 0, 1 > 0}  and ℝ
� = <�(0) = �� ≥ 0, ,(0) = ,� ≥ 0, 1(0) = 1� ≥ 0, � +, + 1 = = ≤ ?*@(A@BC)D. 

Proposition 1. (Positivity of Solutions) The solutions �(�), ,(�), 1(�) of system (1) with initial values from ℝ
� are 

positive for all � ≥ 0. The space ℝ is positively invariant and 

all solutions starting in ℝ approach enter or remain in ℝ. 

Proof: Let the initial conditions be �(0) = �(��) = �� ≥0, ,(0) = ,(��) = ,E ≥ 0, 1(0) = 1(��) = 1� ≥ 0 ∈ ℝ
� , 

then using system (1), we have the solutions at the next time 

interval �* = �� + ℎ (ℎ as the step size) as, 

�(�*) = Λ + #1 − (% + &)'(�� − )*�� + +(,� ,(�*) = -(% + &)(�� − ).,� + (1 − /)(1 − +)(,� + 0(1� 1(�*) = (1 − -)(% + &)(�� + /(1 − +)(,� − )�1� + (1 − 0)(1�                                         (2) 

With 0 ≤ % ≤ 1, 0 ≤ ( ≤ 1, 0 ≤ )* ≤ 1, 0 ≤ / ≤ 1, 0 ≤+ ≤ 1, 0 ≤ 0 ≤ 1, 0 ≤ )� ≤ 1, and that 0 ≤ ,(�) ≤ =(�) for 

all  � ≥ 0 , � ∈ ℕ , then 0 ≤ I1 − (% + &)J ≤ 1  or 0 ≤(% + &) ≤ 1. Let ) = max8)*, )., )�}, and let M = (( − )) >0  be the survival rate. Then the total population =(�*) =�(�*) + ,(�*) + 1(�*), satisfies the relation, 

=(�*) = Λ + M=(��)                        (3) 

whose solution is given for all � ≥ 0 by 

=(�) = ?#*@NO'*@N =(0) + MP=(0)              (4) 
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Clearly, the limit of =(�) in equation (4) as � → ∞ tends to 

a positive fixed point defined as 

=∗ = ?*@(T@μC)                        (5) 

This implies that the solutions are positive and bounded 

for all positive time 0 ≤ � ≤ ∞, that is, all solutions starting 

in the region ℝ approach, enter or stay in ℝ.∎ 

3.2. Fixed Points 

There are usually at least two fixed points in epidemiology, 

namely; Disease Free Equilibrium (DFE) and Endemic 

Equilibrium Point (EEP). The DFE occurs in absence of the 

disease, while EEP occurs when the disease persist.  

3.2.1. Disease Free Equilibrium (DFE)  

Define system (1) in vector form as, WP
* = 1W  where, W = (�, ,, 1)X and the matrix 1 is a 3 × 3 matrix given by; 

1 = [#1 − (% + &)'( − )* +( 0-(% + &)( (1 − /)(1 − +)( − ). 0((1 − -)(% + &)( /(1 − +)( (1 − 0)( − )�
\ 

The DFE W] of systems (1) is obtained by solving W] = 1W] with ,� = 0, 1� = 0 is given by  

W] ≔ (��, ,�, 1�) = _ ?*@(A@BC) , 0, 0`                                                                   (6) 

3.2.2. Endemic Equilibrium Point (EEP) 

Solving W] = 1W] with ,� ≠ 0, 1� ≠ 0 using equation (1) yields the EEP of system (1) defined by (�b , ,b , 1b) as; 

_ ?(*@A
BC
Ac)@dA , − (*@A
BC
Ac)(dA)e , ?(*@f)AcI(*@A
BC
Ac)@dAJ(Bg
h) − i(*@d)A(*@A
BC
Ac)(Bg
h)(dA)e  `                                   (7) 

3.3. Extinction and Persistence of the Disease 

Extinction or persistence of the disease depends on the reproductive ratio ��. Considering only the disease compartments, 

that is; a compartments with infected individuals, we eliminate �(�) in system (1) using the relation �(�) = =∗ − ,(�) − 1(�). 

This yields a reduced system of two equations, 

,(P
*) = -4 5(O)6∗ (#=∗ − ,(P) − 1(P)' − ).,(P) + (1 − /)(1 − +)(,(P) + 0(1(P)                                       (8) 

1(P
*) = (1 − -)4 ,(P)=∗ (#=∗ − ,(P) − 1(P)' + /(1 − +)(,(P) − )�1(P) + (1 − 0)(1(P) 
with positive invariant manifold defined as; Ω = <(,, 1) ∈ �
. |, ≥ 0, 1 ≥ 0, , + 1 < ?

*@(A@BC)D. 

3.3.1. Reproductive Ratio 

The definition and computation of the basic reproductive number �� is done using the next generation matrix approach 

described by [7], [24]. Using this approach, the basic reproductive ratio for system (8) is found to be; 

 �� = fAlI*
Bg@(*@h)AJ
(*@f)AlhA
I*
Be@(*@i)(*@d)AJI*
Bg@(*@h)AJ
hAi(*@d)A                                                           (9) 

3.3.2. Local Stability and mn. 

Proposition 2. (Local Stability about the fixed points). With �� as a measure of replacement rate of the infection, if �� < 1, 

the DFE of model (1) is the only equilibrium point and is Locally Asymptotically Stable (LAS) with the disease extinction at 

the limit as � → ∞. If �� > 1, DFE is unstable and there exist another fixed point, EEP where the disease persists in the 

population. 

Proof:  The stability matrix o extracted by linearizing system (1) is given by 

o =
p
qq
rs1 − 4 ,=t ( − )* s1 − 4 1=t (� + +( 0

-4 ,= ( -4 �= ( − ). + (1 − /)(1 − +)( 0(
(1 − -)4 ,= ( (1 − -)4 �= ( + /(1 − +)( −)� + (1 − 0)(u

vv
w

 

Stability of system (1) is determined by the value of the eigenvalues of matrix o evaluated at the equilibrium points. With 

the closed form solution of system (1) given by, W]x = �xW]�, where � = y@*oy ≔ z{|}(~), we require that the magnitude of 
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the eigenvalues ~� of matrix o are less than one. The system is stable at DFE, (��, ,�, 1�) ≔ _ ?*@(A@BC) , 0, 0` if |~�| < 1. That 

is; 

��( − )* − � (Λ1 − (r − μ*) + +( 00 -4( + (1 − /)(1 − +)( − ). − � 0(0 (1 − -)4( + /(1 − +)( (1 − 0)( − )� − ��� = 0 

Clearly, the first eigenvalue �* = |( − )*| < 1. The other 

two eigenvalues are obtained from the quadratic 

characteristic equation �. − 
(|(o)� + Det(o) = 0                   (10) 

Where 
(|(o) = Trace of  o = -4( + (1 − /)(1 −+)( − ). + (1 − 0)( − )�  and ���(o) = I-4( +(1 − /)(1 − +)( − ).JI(1 − 0)( − )�J − 0(I(1 − -)4( +/(1 − +)(J denotes the Determinant of matrix o. 

The characteristic roots of Equation (10) are; �* =*. 
(|(o) + �*� 
(|(o). − ���(o)�Ce
 and �. = *. 
(|(o) −

�*� 
(|(o). − ���(o)�Ce with both |�*| < 1  and |�.| < 1 . 

The conditions for stability of system (1) is to have the trace 
(|(o) > 0  and the determinant  ���(o) > 0 . This is 

satisfied if the condition �� + 1 < 2M, therefore the system 

(10) is stable at EEP if; 

�� < 2M − 1  ∎                                   (11) 

3.4. Sensitivity Analysis 

The threshold parameter �� which determines stability is a 

function of many parameters which include +, /, 0, -, % 

which are the intervention parameters for treatment, use of 

ARVS, immune boosters, anti AIDS and PMCT respectively. 

The sensitivity of these parameters is determined by 

computing the partial derivative of �� with respect to each 

parameter. 

The sensitivity of % (Use of PMCT) is evaluated as; 

����� = fAI*
Bg@(*@h)AJ
(*@f)AehI*
Be@(*@i)(*@d)AJI*
Bg@(*@h)AJ
hAi(*@d)A ≔ ��   (12) 

The sensitivity of 0 is evaluated as,  

����h = �flAe
(*@f)Ael��@��I*
Be@(*@i)(*@d)AJA
i(*@d)Ae��e ≔ �h                                    (13) 

where � = -(4I1 + )� − (1 − 0)(J + (1 − -)(40( and  � = I1 + ). − (1 − /)(1 − +)(JI1 + )� − (1 − 0)(J + 0(/(1 − +)( 

The sensitivity of + is evaluates as; 

����d = − �flAI*
Bg@(*@h)AJ
(*@f)Aelh�8(*@i)A}I*
Bg@(*@h)AJhAei8I*
Be@(*@i)(*@d)AJI*
Bg@(*@h)AJ
hAi(*@d)A}e ≔ �d                                           (14) 

while the sensitivity of the �� with respect to - will be; 

����f = lAI*
Bg@(*@h)AJ@AelhI*
Be@(*@i)(*@d)AJI*
Bg@(*@h)AJ
hAi(*@d)A ≔ �f   (15) 

and finally the sensitivity of �� with respect to / is defined 

by; 

 ����i = 8fAl�
(*@f)AlhA}8(*@d)A�
hA(*@d)A}8I*
Be@(*@i)(*@d)AJ�
hAi(*@d)A}e ≔ �i      (16) 

where � = I1 + )� − (1 − 0)(J . The sensitivity values of 

these parameters and their graphs are displayed in the next 

chapter. 

3.5. Simulation of Intervention Strategies 

In order to determine the effects of various intervention 

strategies, we simulate the results by varying the parameters 

representing the possible strategies. In the model system (2), 

the possible intervention strategies include;  

3.5.1. Prevention of Vertical Transmission 

This involves prevention of vertical transmission of HIV 

from mother to child through PMCT campaigns. It is 

represented by the rate parameter 0 ≤ % ≤ 1. When % = 0, 

all children are born free from HIV, while % > 0 means some 

children are infected either during birth or during 

breastfeeding by an infected mother. The available 

intervention strategy is more of behavioural than treatment. 

This is because all babies are born free from HIV and the 

mothers’ behaviour may lead to the infection f the child. 

Vaccines can also be used to prevent the child from getting 

infected. 

3.5.2. ARV Treatment of Infectives to Prevent Development 

of AIDS 

This is represented by the parameter  0 ≤ - ≤ 1 . This 

parameter varies with the use of ARV’s. The greater the value 

of -, the more the infected people living with HIV and the 

lesser there are those with AIDS. This parameter is 

determined by the drug efficacy and accessibility to ARVs 

specifically the use of Zidovidine, Didanosine and others 

which inhibits the replication of virus, thus enabling the 

immune system to maintain sufficient CD4 cells. 



 American Journal of Applied Mathematics 2016; 4(5): 235-246 241 

 

3.5.3. Treatment of Infectives to Full Recovery 

This is quite minimal and currently very rare to find an 

individual who has successfully been cured and free from 

HIV. This is because the HIV virus resides in the cell 

nucleous and uses the cell mechanism to replicate. It can 

remain inside a dormant cell for life and thus it is not easy to 

cure an individual completely. However, if the HIV cells 

have been reduced to undetectable levels, then we can say the 

individual is cured. This treatment is denoted by the 

parameter 0 ≤ + ≤ 1  and is facilitated by the use of a 

combined AntiRetroviral Therapy (cART). 

3.5.4. Progression to AIDS Class of Infected Patients 

AIDS cases can be treated by use of HAART, making the 

victims recover back into infective class. The probability of 

progression to AIDS class is represented by parameter  0 ≤ / ≤ 1. A successfully treated individual / = 0 recovers 

from AIDS class back to infective class (PLWH). The target 

of intervention is to reduce the value of /  to zero. The 

measure of the proportion of individuals who become 

successfully treated is denoted by 0 . The complementary 

proportion (1 − 0) will remain with AIDS while the rest 0 

recover back to infectives. 

3.5.5. Force of Transmission 

The force of HIV transmission from one individual to the 

other is contributed generally by behavioral factors. These 

include high risk behaviours like multiple partners, 

unprotected sex, unfaithfulness, use of drugs just to mention 

but a few. All these determine the size of the parameter 0 ≤ 4 ≤ 1 . Any intervention strategy applied will have a 

reduction effect on the value of  4. The smaller the value of  4, the better the control of the spread of HIV pandemic. In 

this research, all the behavioural intervention strategies will 

be treated indiscriminately as one. 

3.6. Closed form Simulation System 

In order to determine the effects of change in parameters 

discussed above, the closed form solution of system (1) is 

used to determine the values of the next time interval by 

iteration. The model is given in matrix form as, 

[�(� + 1),(� + 1)1(� + 1)\ = [#1 − (% + &)'( − )* +( 0-(% + &)( (1 − /)(1 − +)( − ). 0((1 − -)(% + &)( /(1 − +)( (1 − 0)( − )�
\ [�(�),(�)1(�)\                  (17) 

or in compact form as W]P
* = oW]P 

where  o is the transition matrix and W] is the vector (�, ,, 1)X . The closed form solution of the system (17) is obtained after 

iterations as,  W]x = oxW]x                                                                                      (18) 

During the implementation of any intervention strategy, the transformation matrix o will be modified to increase �(� + 1) 

and reduce ,(� + 1) and  1(� + 1). Denoting the new transition matrix by  o�, then the new system with one occurrence of 

intervention will be W]x = o�ox@*W]� 

where the modified matrix will have the modified elements denoted with a subscript � as 

o� = [#1 − (%� + &�)'( − )* +�( 0-�(%� + &�)( (1 − /�)(1 − +�)( − ). 0�((1 − -�)(%� + &�)( /(1 − +�)( (1 − 0�)( − )�
\                               (19) 

Applying the intervention strategy M times yields W]x = o�No(x@N)W]� 

The optimum intervention strategy is to apply the 

intervention strategy and maintain the steady state. This will 

help eliminate the HIV pandemic forever. The desired steady 

state is obtained when the intervention is applied continually 

to obtain the steady state matrix o� defined by the limit 

o� = limN→x _ limx→� o�No(x@N)` = limN→� o�N 

The numerical values and their graphical illustrations are 

presented in the next chapter to justify the theoretical results 

in this chapter. 

4. Numerical Results 

We illustrate the theoretical analytic results in Chapter 

three by numerical simulation using the values presented in 

Table 1 below. The values were obtained from literature of 

[3], which were used to simulate HIV-TB co-infection. The 

parameter values were determined basing on data collected in 

Sub-Saharan Africa and thus a reflection to our Kenyan 

demographic and epidemiological situation. It is however 

recommended that, data from an area or location of interest 

must be collected and simulated using the MATLAB code 

provided in the appendix, before the model results are 

applied. 
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The table below shows the parameter values used in the 

simulation, together with the initial conditions of the 

variables  (��,  ,�,  1�) = (100, 1, 1). All parameters lie in the 

interval  , = I0, 1J. 
Table 1. Parameter Values for Model Simulation. 

No Parameter Description Symbol Value 

1 Constant Recruitment rate into the population Λ 15 

2 Infection during birth and/or through breastfeeding rate % 0.03 

3 Disease transmission probability through risk behaviour 4 0.3 

4 Probability that an Infective recover successfully and become Susceptible + 0.02 

5 Probability of successful treatment of an AIDS case back to Infectious state 0 0.5 

6 Natural death rate of Susceptibles )* 0.02 

7 Accelerated death rate due to infection ). 0.032 

8 Accelerated death rate due to development of AIDS )� 0.05 

9 Rate of becoming infectious once infected. (1 − -) develop AIDS directly - 0.8 

10 Survival rate of a Susceptible ( 0.95 

11 Natural progression of Infectives to AIDS / 0.96 

 

4.1. Markov Chain Mathematical Model 

The Markov Chain Mathematical Model is formulated 

from equation (2) and expressed in matrix form as in 

equation (17). Using the parameter values in Table 1, we 

obtain the model 

[�(� + 1),(� + 1)1(� + 1)\ = �0.8984 0.0019 00.0253 0.1576 0.80750.0063 0.7585 0.0925� [�(�),(�)1(�)\    (20) 

Notice that the sum of elements in each row does not add 

up to 1. This is a modified matrix, applicable for a dynamical 

system, whose entire population changes with time. For a 

conserved system, where the population remains constant, 

the sum of elements of each column equals to one. In our 

case, the difference is the value of survival rate for each 

class, that is  � = ( − )�, { = 1, 2, 3 . Using the provided 

initial conditions,  (��,  ,�,  1�) = (100, 1, 1), the population 

distribution for the first 50 iterations of the system (18) yields 

Table 2. The first 50 Iterations of System (20). 

t S(t+1) I(t+1) A(t+1) N(t+1) t S(t+1) I(t+1) A(t+1) N(t+1) 

1 98 1 1 100 26 89.8858 48.837 42.099 180.8219 

2 103.0417 3.4453 1.471 107.958 27 88.62 49.746 42.9494 181.3153 

3 107.5756 4.3387 3.4012 115.3155 28 87.458 50.5651 43.7148 181.7378 

4 110.8257 6.8126 4.451 122.0893 29 86.3965 51.2982 44.4033 182.098 

5 113.526 8.3118 6.4899 128.3278 30 85.4304 51.954 45.0191 182.4034 

6 115.2569 10.8212 7.9723 134.0504 31 84.5544 52.5375 45.5692 182.6612 

7 116.4647 12.7391 10.094 139.2978 32 83.7628 53.0562 46.0583 182.8774 

8 116.9383 15.2773 11.8756 144.0913 33 83.0494 53.5155 46.4927 183.0575 

9 116.965 17.4509 14.0494 148.4653 34 82.4082 53.9214 46.8769 183.2065 

10 116.4555 19.9796 16.0067 152.4418 35 81.8334 54.2791 47.2162 183.3287 

11 115.601 22.2671 18.1828 156.0509 36 81.319 54.5938 47.515 183.4279 

12 114.3796 24.7297 20.2054 159.3147 37 80.8598 54.8699 47.7776 183.5073 

13 112.9224 27.0118 22.3255 162.2597 38 80.4505 55.1117 48.0078 183.5701 

14 111.2408 29.3482 24.3187 164.9077 39 80.0862 55.323 48.2094 183.6186 

15 109.4264 31.5298 26.3261 167.2824 40 79.7626 55.5072 48.3853 183.6551 

16 107.503 33.6869 28.2146 169.4045 41 79.4755 55.6676 48.5386 183.6816 

17 105.5342 35.6991 30.0622 171.2955 42 79.221 55.8068 48.6719 183.6997 

18 103.5444 37.6383 31.7918 172.9745 43 78.9958 55.9275 48.7876 183.7109 

19 101.5761 39.4378 33.447 174.4609 44 78.7967 56.0318 48.8878 183.7164 

20 99.6488 41.1382 34.985 175.772 45 78.621 56.1218 48.9744 183.7172 

21 97.7889 42.7047 36.4311 176.9247 46 78.4659 56.1994 49.0491 183.7143 

22 96.0089 44.162 37.7637 177.9346 47 78.3292 56.2659 49.1133 183.7085 

23 94.3233 45.4941 38.9989 178.8163 48 78.2089 56.323 49.1684 183.7003 

24 92.7379 46.7178 40.1276 179.5833 49 78.1031 56.3717 49.2155 183.6903 

25 91.2585 47.8279 41.1616 180.248 50 78.0101 56.4131 49.2558 183.679 

 
The term =(� + 1)  is the total population of �(� + 1) +,(� + 1) + 1(� + 1) . The graph below represents the 

population dynamics simulated in Table 2.  
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Figure 1. Cell Population Dynamics In absence of Intervention. 

Clearly, the total population =(� + 1�  continually 

increases as expected in normal life. Due to the introduction 

of one infective and one AIDS individual, the susceptibles 

continue to decrease especially after the infectives have 

increased significantly after 10 time intervals. The AIDS 

class follows soot increasing as Infectives increase. This is a 

plot of the values of ��� � 1�, ,�� � 1�, 1�� � 1� with the last 

values at time � ! 50  equal to ��, ,, 1� ! �78.0101, 56.4131, 49.2558� and  = ! 183.679. 

4.2. Threshold Values of Intervention Parameters 

The parameters that determine the rate of transmission of 

the disease (HIV) as discussed in section 3.3 contribute to the 

value of ��. The target of intervention strategy is to reduce �� to values less than one. This means that the infectives are 

not able to replace themselves and thus with time, the 

diseases will be phased out. The most important of the 

parameters is checked from the sensitivity analysis discussed 

in chapter three. 

4.4. Parameter Sensitivity Values 

Using the values of parameters presented in Table 1, the 

sensitivity values of intervention parameters are presented in 

Table 3 below. 

Table 3. Table of Sensitivity Analysis Values. 

No Sensitivity Parameter Description Symbol Value 

1 
Effect of % (rate of vertical infection) on the 

value of �� 
�� 0.6123 

2 
Effect of 0 (treatment of AIDS victim) on the 

value of �� 
�h 0.0069 

3 
Effect of + (successful treatment of infective) 

on the value of �� 
�d 0.1830 

4 
Effect of - (prevention of development of 

AIDS) on the value of �� 
�f 0.0444 

5 
Effect of / (progression rate from ,P to 1P) on 

the value of �� 
�i 0.4147 

The most sensitive parameter on the value of �� as shown 

in Table 3 above is % followed by  /. This analysis indicates 

the target parameters for intervention. Clearly, since infants 

are helpless and depend entirely on their mothers to live, they 

are highly vulnerable and thus it is at this point that much 

care must be taken to prevent vertical transmission of HIV. 

Also, since there is no cure of HIV, the best strategy is to 

provide medication to prevent progression of infected 

individual to AIDS. These two intervention targets are the 

most important. The sensitivity graphs are illustrated in the 

figure below. 

 

Figure 2. Sensitivity Analysis of intervention parameters. 

4.3. Intervention Matrix 

Due to intervention, the transition matrix  o�  in equation 

(19) will have the following elements 

o� ! �0.9063 0.0019 00.0225 0.0015 0.90050.0012 0.9596 0.0005� 

The interpretation of the intervention matrix is described 

as, 91% of susceptible will remain in susceptible class, while 

only 2.3% progress to infectives and none develop AIDS 

directly because of enhanced PMCT. The Infectives on the 

other hand will have none moving to susceptibles, because of 

absence of curative drugs, but with the use of ARVs, none 

will remain infective with 96% progressing to AIDS class. 
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Lastly, the AIDS class will never move back to susceptibles, 

with majority 90% being treated back to susceptibles 

(PLWHA) and none remain with AIDS. This depicts an 

healthy nation with the steady state dynamics of the 

compartmental populations simulated in Table 3 below. This 

represents the solution of equation (19) of the form 

limxQ�NQx
W]x ! o�No�x@N�W]� 

Table 4. Simulation Results Using Intervention Transition Matrix. 

t S(t+1) I(t+1) A(t+1) N(t+1) T S(t+1) I(t+1) A(t+1) N(t+1) 

1 98 1 1 100 26 193.8856 0.719 0.6568 195.2614 

2 106.0023 1.0126 0.9431 107.958 27 195.215 0.6715 0.6783 196.5648 

3 113.433 0.9718 0.9557 115.3605 28 196.448 0.695 0.6338 197.7768 

4 120.3308 0.9961 0.918 122.2449 29 197.6017 0.6478 0.6556 198.9051 

5 126.7552 0.9527 0.9404 128.6483 30 198.6713 0.6717 0.6113 199.9543 

6 132.7282 0.9754 0.8997 134.6033 31 199.6728 0.6247 0.6336 200.9311 

7 138.2917 0.93 0.9207 140.1423 32 200.6008 0.649 0.5896 201.8394 

8 143.4636 0.9519 0.8781 145.2936 33 201.4707 0.6023 0.6122 202.6852 

9 148.2817 0.9052 0.8984 150.0853 34 202.2762 0.627 0.5685 203.4716 

10 152.7602 0.9267 0.8546 154.5415 35 203.032 0.5806 0.5914 204.204 

11 156.9331 0.8793 0.8745 158.6868 36 203.7314 0.6057 0.548 204.885 

12 160.8114 0.9006 0.83 162.542 37 204.3885 0.5596 0.5713 205.5194 

13 164.4259 0.8527 0.8498 166.1283 38 204.996 0.585 0.5282 206.1092 

14 167.7847 0.874 0.8048 169.4636 39 205.5676 0.5393 0.5518 206.6587 

15 170.916 0.8258 0.8247 172.5665 40 206.0955 0.5651 0.509 207.1695 

16 173.8253 0.8474 0.7795 175.4522 41 206.593 0.5196 0.533 207.6456 

17 176.5385 0.7991 0.7995 178.137 42 207.052 0.5458 0.4904 208.0882 

18 179.0588 0.8209 0.7542 180.6338 43 207.4854 0.5006 0.5147 208.5008 

19 181.41 0.7726 0.7744 182.957 44 207.8847 0.5271 0.4725 208.8843 

20 183.5936 0.7947 0.7292 185.1175 45 208.2625 0.4823 0.4971 209.2419 

21 185.6317 0.7465 0.7497 187.1279 46 208.61 0.5091 0.4552 209.5742 

22 187.524 0.7689 0.7046 188.9975 47 208.9396 0.4645 0.4801 209.8843 

23 189.291 0.7209 0.7254 190.7373 48 209.2423 0.4917 0.4384 210.1724 

24 190.9312 0.7437 0.6804 192.3553 49 209.5302 0.4474 0.4637 210.4413 

25 192.4636 0.6959 0.7015 193.8611 50 209.7940 0.4749 0.4223 210.6911 

The solution curves of the population dynamics under the intervention strategies will have the Susceptibles increasing while 

the infectives and AIDS case maintained at very low levels. The disease cannot be eradicated completely because the 

therapeutic drugs used are not to cure but to keep it very low. This scenario is illustrated in the figure below. 

 

Figure 3. Population Dynamics with Intervention strategies. 

From the Figure 3 above, it is clear that the only 

significantly large numbers of individuals are susceptibles. 

They are equal to the total population. The numbers of 

infectives and AIDS cases are very minimal.  

5. Conclusion 

In this study, a discrete-time Markov chain mathematical 

model has been proposed and analyzed to study the dynamic 
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of HIV/AIDS model. The disease free and endemic equilibria 

are obtained and their stabilities investigated. A numerical 

study of the model has been conducted to see the impact of 

certain key parameters on the spread of HIV disease. It is 

observed that an increase in infectives through sexual 

intercourse, blood and from mother-to-child transmission 

would lead to increase the population of infectives which in 

turn increase the AIDS population. 

Intervention Strategies 

The following measures can be exercised in order to 

decrease the value of �� to be less than one so as to decrease 

the infections, which can lead to eradication or reduction of 

the HIV/AIDS disease; 

Use of Antiretroviral Drugs 

In many cases, an HIV-infected individual may be invaded 

by a host of common diseases ranging from very strong 

bacterial and viral infections to mild sicknesses. Since the 

infected person may be invaded by many infections 

simultaneously, it is noted that a single drug may not be 

sufficient to clear such an attack. As a result, a couple of drug 

recombinants that are particularly made to treat the 

HIV/AIDS patients of combinations of attacks have been 

developed. Individuals who have reached the advanced 

stages of HIV disease require combinations of antiretroviral 

drugs for their own health. This treatment, which must be 

taken every day for the rest of one’s life, is also highly 

effective at preventing transmission of HIV.  

Prevention of Vertical transmission 

Effective prevention of mother-to-child transmission 

(PMTCT) is a threefold strategy (UNAIDS/WHO, 2005). 

Two strategies are under the discretion of the mother, while 

one is for the doctors to take initiative. The first is prevention 

of HIV infection among prospective parents. This involves 

taking HIV tests and other prevention interventions available 

in services related to sexual health such as antenatal and 

postpartum care. Providing appropriate counseling and 

support to women living with HIV will enable them to make 

informed decisions about their reproductive lives and help in 

preventing transmission of HIV from HIV-positive mothers 

to their unborn children during pregnancy, labour and at 

delivery. This calls for the integration of HIV care, treatment 

and support for women found to be positive and their 

families.  

The second strategy is cesarean delivery. When a mother is 

HIV positive a cesarean section may be done to protect the 

baby from direct contact with her blood and other bodily 

fluids. There are indications that cesarean birth decreases the 

risk of mother-to-child transmission ([18]). If the mother is 

taking combination antiretroviral therapy then a cesarean 

section will often not be recommended because the risk of 

HIV transmission will be very low. But cesarean delivery 

may be recommended if the mother has a high levels of HIV 

concentration in her blood, although the procedure is seldom 

available and/or safe in resource poor settings ([2]). 

The third PMTC strategy is safer infant feeding. A number 

of studies have shown that the protective benefit of drugs is 

diminished when babies continue to be exposed to HIV 

through breastfeeding [2]. Mothers with HIV are advised not 

to breastfeed but instead use breast milk substitutes (formula) 

which is acceptable, feasible, affordable, sustainable and 

safe. While weaning the baby, the newly introduced food 

corrodes the gut lining creating openings where HIV can 

penetrate. It is therefore advised that once the mother stops 

breastfeeding and introduce alternative baby food, HIV 

positive mothers should never breastfeed again because this 

will expose the child to high risk of infection. 

Recommendation 

Because of the continuity of HIV/AIDS epidemic world-

wide, it is therefore important that the following 

recommendations should be taken on board by policy 

makers: more studies on assessment of treatment are required 

to provide more insight of dynamics of the disease to policy 

makers, intensification preventive strategies that will reduce 

risks with the infected HIV population and finally collection 

of appropriate data for modeling, accurate predictions and 

efficient planning. 
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