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Abstract: This paper, deals with the uncertainty relation for photons. In [Phys.Rev.Let.108, 140401 (2012)], and �1� the 

uncertainty relation was obtained as a sharp inequality by using the energy distribution on space. The relation we obtain here is 

an alternative to the one given in [Phys.Rev.Let.108, 140401 (2012)] by the use of the position of the center of the energy 

operator. The fact that the components of the center is non commutative affected the right hand side of the Heisenberg 

inequality. But this resolved by the increase of the photon energy. Furthermore we study the uncertainty of Heisenberg with 

respect to angular momentum and Foureir. We end the paper by giving some examples. 
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1. Introduction 

As in the standard Heisenberg form of uncertainty relation 

for photons is somewhat difficult identity its position 

operator. However, it is apparently, photon can be influenced 

by the spread of momentum and the extension in space that 

represent the famous Heisenberg phrase “Je genauer der Ort 

bestimmt ist, desto ungenauer ist der Impuls bekannt und 

umgekehrt.” 

The photon uncertainty relations is mainly divided into 

two defined notions: the photon wave function as mentioned 

in momentum space and then the energy density of the 

quantized electromagnetic field. Thus, when the second 

momentum is applied, it is generated the following form�1� 
∆�∆� ≥ 4ℎ                                     (1) 

This work is aimed to construct a definition for the 

uncertainty of the photons position so that can be analogous 

to the standard definition, which done by Iwo Bialynicki-

Birula, Zofia Bialynicka-Birula Heisenberg uncertainty 

relations for photons (2012) �1� . This to illustrate the 

importance of R�  as the center of energy to the first 

momentum. Therefore, this method is going to serve in 

making uncertainty relation as close as the original form of 

Heisenberg, 

√∆��√∆�� > �� ℎ                          (2) 

Where d  is the number of dimensions. A characteristic 

feature of the uncertainty relation for photons is that the left-

hand side in this inequality in two and in three dimensions is 

never equal to  dh/2 , but it tends to this limit with the 

increase of the average photon momentum. Only in the 

infinite-momentum frame is the uncertainty relation for 

photons the same as for nonrelativistic massive particles. 

However, in one dimension, the inequality (2) is saturated so 

that in this case there is no difference between photons and 

massive nonrelativistic particles. 

We also prove the following sharp inequality 

����. �������. ��� ≥ �� ℎ�1 + �√  !                          (3) 

In nonrelativistic quantum mechanics, the inequalities 

obeyed by the two measures of uncertainty, ∆R�∆P�  and �R�. R���P�. P�� , are completely equivalent. They have equal 

lower bounds and they are both saturated by Gaussian 

functions. This equivalence does not hold for photons. 

Nevertheless, the two inequalities are intimately related. We 

shall first prove (3) and then use the information about the 

photon states that saturate this inequality to elucidate the 

intricate properties of the inequality (2). 

Study has been done by Schwinger, he came up with the 

rough estimate that the lower bound of ∆R�∆P�  is of the 

order of h�. 

This work is endeavored to derive a related uncertainty 
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relation for photons beams. Making use of Coherent states of 

the electromagnetic field to find a description of such beams 

in the limit of a large number of photons so as to prove the 

sharp inequality as follows�1�, �3� 
√∆R�√∆P� ≥ �� h�1 + �√�!                          (4) 

And we find the mode functions of the coherent states that 

saturate this inequality. 

The nonexistence of the local photon density in 

configuration space is due to the fact that in quantum 

electrodynamics the operator of the total number of photons N� involves not a single but a double integral: 

&� = 14(�ℎ) * +�� * +��, ×: /0�1�, 23. 0�1�,, 234|� − �,|� + 7�1�, 23. 7�1�,, 238|� − �,|� 9 

= :�;<=> ? +�� ? +��, : @A�B1C,D3.A�ECF,DG|CHCF|< I                     (5) 

We use systematically the Riemann-Silberstein vector (the 

RS vector)  

J�1�, 23 = K�1C,D3
√�L + M N�1C,D3

��O                           (6) 

Which will allow us to write many formulas in a compact 

form. The normal ordering removes the (infinite) 

contribution from the vacuum state �1� . In contrast to the 

total-number operator, the total-energy operator of the 

electromagnetic field P� (the Hamiltonian) is an integral of a 

local density 

P� = ? +�� 41̂�, 23                                    (7) 

Where 

4̂1�, 23 =: J�R1�, 23. J�1�,, 23:                     (8) 

The center of the energy operator can be introduced in any 

relativistic theory. All we need for this construction is the set 

of generators of the Poincar´e group. The Poincar´e group is 

the group of  Minkowski spacetime isometries. It is a ten 

dimensional noncompact Lie group. The abelian group of 

translations is a normal subgroup, while the Lorentz group is 

also a subgroup, the stabilizer of the origin. The Poincar´e 

group itself is the minimal subgroup of the affine group 

which includes all translations and Lorentz translations. More 

precisely, it is a semi direct product of the translations and 

Lorentz group. 

We define the operator ��  as follows�1�, �15�: 
�� = :�T� &� + &� :�T� = :�T� &� :�T�                   (9) 

Where N� is the first moment of the energy distribution, 

&� = ? +�� �41̂�, 23                                 (10) 

Example(1): 

Prove that 

�� = :�T� &� + &� :�T� = :�T� &� :�T�. 

Proof. 

The symmetrization in (9) is necessary to obtain a 

Hermitian operator. The inverse of the Hamiltonian is well 

defined, provided we exclude the vacuum state. The 

spectrum of the Hamiltonian is nonnegative, therefore the 

positive square root is unique. The significance of &�  is 

further underscored by its being the generator of Lorentz 

transformations. Since the operators P�  and &�  do not 

commute (the energy changes under Lorentz 

transformations), the equivalence of the two forms of ��  in (9) 

is not obvious and to prove the equality of the two forms of ��  

in (9) we will first prove the following lemma 

MUVP�, WXY = 0 2ℎ[\ @�P�, WXI = 0                           (11) 

In the proof, we use the fact that the eigenvectors of the 

Hamiltonian form a basis. Acting on an arbitrary state in this 

basis |E� (excluding the vacuum), we have: 

^�P�, √_` = @�P�, WXI |_� = VP�, WXY|_� = 0       (12) 

Since the factor ^�H�, √E`  does not vanish, it can be 

dropped and the validity of the lemma is established �1�. 
Next, we use the commutation relations between the 

Hamiltonian and the generator of the Lorentz transformations 

VP�, &�Y = −Mℏ��                                (13) 

To obtain: 

/P�, c :�T� &� :�T� , :�T�d9 = c :�T� VP�, &�Y :�T� , :�T�d = ℏe cf�T� , :�T�d = 0 (14) 

Finally, using the lemma, we may replace H� by �H� in the 

first term and expand the resulting double commutator: 

0 = /�H� c :�T� &� :�T� , :�T�d9 = :T� &� + &� :T� − 2 :�T� &� :�T�     (15) 

The vanishing of the difference of two expressions for ��  

appearing in (9) means that they are equal. 

2. The Generalized Uncertainty Relation 

Earlier we learned about the famous Hiesenberg 

uncertainty principle which relates the uncertainly in position 

to that of momentum via from formula (1): 

∆x∆p ≥  ℏ�                                 (16) 

We now generalize this relation to any two arbitrary 

operators A and B. First, we recall that in a given state |ψ�, 
the mean or expectation value of an operator ο is found to 

be�6�: 
�ο� = �ψ|ο|ψ�                            (17) 
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Now let’s consider the standard deviation or uncertainty 

for two operators A and B: 
1A3� = �1A − �A�3��                        (18) 

1B3� = �1B − �B�3��                        (19) 

Using �ο� = �ψ|ο|ψ� we can rewrite these two equations 

as: 

1∆A3� = �1A − �A�3�� = �ψ|�A − �A���|ψ�      (20) 

1∆73� = �17 − �7�3�� = �n|�7 − �7���|n�     (21) 

We now define the following kets: 

|X� =1A − �A�3|ψ�                      (22) 

|Φ� =1B − �B�3|ψ�                      (23) 

This allows us to write: 

1∆A3� = �1A − �A�3�� = �ψ|�A − �A���|ψ� = qX|Xr   (24) 

1∆B3� = �1B − �B�3�� = �ψ|�B − �B���|ψ� = qΦ|Φr  (25) 

Now consider the product of these terms�6�, �11�: 
1∆A3�1∆B3� = qX|XrqΦ|Φr            (26) 

The Schwartz inequality tells us that: 

qX|XrqΦ|Φr ≥ |qX|Φr|� = qX|ΦrqΦ|Xr      (27) 

Remember that the inner product formed by a ket and a bra 

is just a complex number, so |qX|Φr|� = |Z|� = ZZ∗ For any 

complex number z, we have: 

ZZ∗ = Re1z3� + Im1z3� ≥ Im1z3� = ^yzy{�| `�
  (28) 

In this case we have: 

qX|Φr = �ψ|1A − �A�31B − �B�3|ψ�            (29) 

= �ψ|AB − A�B� − �A�B + �A��B�|ψ� 
= qψ|AB|ψr − qψ|A�B�|ψr − qψ|�A�B|ψr + qψ|�A��B�|ψr 
Now �A�, the expectation value of an operator, is just a 

number. So we can pull it out of each term giving: 

qψ|AB|ψr − qψ|A|ψr�B� − �A�qψ|B|ψr + qψ|�A��B�|ψr 
= qψ|AB|ψr − �A��B� − �A��B� + qψ|�A��B�|ψr 
= �AB� − 2�A��B� + qψ|�A��B�|ψr                         (30) 

Now the expectation value of the mean, which is again just 

a number, is simply the mean back again, i.e. 

qψ|�A��B�|ψr = ��A��B�� = �A��B�            (31) 

So, finally we have: 

qX|Φr = �ψ|1A − �A�31B − �B�3|ψ� 
= �AB� − 2�A��B� + qψ|�A��B�|ψr 

= �AB� − 2�A��B� + �A��B� = �AB� − �A��B�   (32) 

Following a similar procedure, we can show that: 

qΦ|Xr = �ψ|1B − �B�31A − �A�3|ψ� = �BA� − �A��B� (33) 

Putting everything together allows us to find an 

uncertainty relation for A and B. First we have: 

1∆A3�1∆B3� = qX|XrqΦ|Φr ≥ |qX|Φr|� = qX|ΦrqΦ|Xr  (34) 

Recalling that�6�, 
ZZ∗ = Re1z3� + Im1z3� ≥ Im1z3� = ^yHy{�| `�

, 

We set Z∗ = qΦ|Xr.Then 

1∆A3�1∆B3� ≥ |qX|Φr|� = }qX|Φr − qΦ|Xr2i � 

= }1�AB� − �A��B�3 − 1�BA� − �A��B�32i ��
 

= }1�AB� − �A��B�3 − �BA� + �A��B�2i ��
 

= }�AB� − �BA�2i ��
 

= }�AB − BA�2i ��
 

= ^���,����| `�
                                   (35) 

Taking the square root of both sides gives us the 

generalized uncertainty relation, which applies to any two 

operators A and B. 

Definition: The Uncertainty Relation Given any two 

operators A and B: 

∆A∆B ≥ ���,����|                                 (36) 

Where �A, B� is the commutator of the operators A and B. 

For the operators X and P, we find that �X, P� = iℏ . So 

��,���| = |ℏ�| = ℏ�                                  (37) 

Therefore we obtain the famous Hiesenberg uncertainty 

principle: 

∆X∆P ≥ ℏ�                                        (38) 

Also, we can despite all of the differences between the 

nonrelativistic and relativistic dynamics we may derive a 

sharp Heisenberg uncertainty relation along one direction, 

say x , for any relativistic system. This one-dimensional 

uncertainty relation is based solely on the commutation 

relations between X�  =  R�� and P�  =  P�� and has the standard 

form�1� 
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√∆X�√∆P� ≥ :� h                    (39) 

where 

∆X� = �E∆P�G�� , ∆X� = X� − �X��              (40) 

∆P� = �E∆P�G�� , ∆P� = P� − �P��              (41) 

The one-dimensional uncertainty relation holds for any 

relativistic quantum system. A simple proof of (39) uses the 

commutation relations VR� |, P��Y = ihδ|�  and the non-negative 

expectation value of the operator: 

�E∆X� − iλΔP�GE∆X� + iλΔP�G� ≥ 0                  (42) 

Where λ is an arbitrary real number. The condition that this 

expression treated as a function of λ can have at most one 

real root gives (39). This inequality is saturated by the 

quantum state whose state vector satisfies the condition 

E∆X� − iλΔP�G|Ψ� =  0.                              (43) 

The specific form of |Ψ� depends, of course, on the system 

under study. Note that we may remove the average values ℏ 

�X�� and  ℏ�P�� from (43) by choosing |Ψ� in the form�1� 
�Ψ� =  expEi�P�� X� h − i�X�� P� h⁄⁄ G�Ψ,�            (44) 

Since the inequality must hold for all vectors, replacing 

|Ψ� by |Ψ,� makes no difference and the two forms of the 

uncertainty relation in one dimension, namely, 

√∆X�√∆P� ≥ :
� h and �EX��G�EP��G ≥ :

� h       (45) 

are completely equivalent. In nonrelativistic quantum 

mechanics the equivalence holds in any number of 

dimensions. A spherically symmetric Gaussian function 

shifted in the coordinate space by �r� and in the momentum 

space by �p� by the unitary transformation of the form (44) 

will automatically saturate the inequality (2). This 

equivalence, however, is no longer valid for relativistic 

systems in three dimensions�1�, �10�, �7�. 
To extend our analysis to two and three dimensions, we 

introduce the dispersion in position that involves two or three 

components of the center-of-energy vector R� , 

∆R� = �∆R�. ∆R��                              (46) 

Where ∆R� = R� − �R�  and the dispersion in momentum, 

∆P� = �∆P�. ∆P��                               (47) 

Where ∆P� = P� − �P��. Following the same procedure as the 

one used in deriving (39), we obtain (2). The proof is based 

this time on the expectation value of the following positive 

operator: 

�E∆R� − iλΔP�GE∆R� + iλΔP�G� > 0                     (48) 

In contrast to the one-dimensional case, the inequalities (2) 

and (48) are not sharp because there is no state vector that is 

annihilated by all three components of the vector operatoA� =
∆R� + iλΔP� and even by two components. This is due to the 

fact that the commutators VR� |, R� �Y = −ihc�H� H:S�|�H� H: of the 

components of R�  do not vanish. Should there exist a state 

vector annihilated by A� , then this vector would also be 

annihilated by the commutators of the components of A� . 

These commutators are proportional to the components of 

spin. Therefore, for any relativistic quantum system endowed 

with spin the inequality (2) cannot be saturated. 

3. The Uncertainty Relations for Angular 

Momentum 

Recalling the generalized uncertainty relation for two 

operators A and B, 

∆A∆B ≥ ��V��,��Y�
�| �                          (49) 

we can write down uncertainty relations for the 

components of angular momentum using the commutators�2� 
−�6�. For example, we find, 

∆L�∆L� ≥ ��V��,��Y�
�| � = ℏ

� �Ly�               (50) 

Fourier theory: 

The fact that momentum can be expressed as p = kℏ 

allows us to define a “momentum space” wavefunction that 

is related to the position space wavefunction via the Fourier 

transform. A function f1x3 and its Fourier transform. F1k3 are 

related via the relations: 

f1x3 = :
√�� ? F1k3e|��dk�

H�                  (51) 

F1k3 = :
√�� ? f1x3eH|��dk�

H�                 (52) 

These relations can be expressed in terms of p  with a 

position space wavefunction ψ1x3  and momentum space 

wavefunction Φ1p3 as: 

ψ1x3 = :
√��ℏ ? ∅1p3e|�� ℏ⁄ dp�

H�           (53) 

∅1p3 = :
√��ℏ ? ψ1x3eH|�� ℏ⁄ dx�

H�          (54) 

Parseval’s theorem tells us that�6�: 
? |f1x3|�dx�

H� = ? |F1k3|�dk�
H�              (55) 

These relations tell us that Φ1p3, like ψ1x3, represents a 

probability density. The function Φ1p3  gives us information 

about the probability of finding momentum between a ≤ p ≤
b: 

P1a ≤ p ≤ b3 = ? |∅1p3|�dp¢
£                (56) 

Parseval’s theorem tells us that if the wavefunction ψ1x3 is 

normalized, then the momentum space wavefunction Φ1p3 is 

also normalized 
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? |ψ1x3|�dx�H� = 1 ⟹ ? |∅1p3|�dp = 1�H�     (57) 

It is a fact of Fourier theory and wave mechanics that the spatial 

extension of the wave described by ψ1x3 and the extension of 

wavelength described by the Fourier transform Φ1p3 cannot be 

made arbitrarily small. This observation is described 

mathematically by the Heisenberg uncertainty principle: 

∆X∆P ≥ ℏ                             (58) 

We can using p = kℏ , ∆k ≥ 1. 

Example(2): 

A particle of mass m in a one-dimensional box is found to 

be in the ground state: 

ψ1x3 = ¥2a sin ^πxa ` 

Solution: 

Using p = iℏd dx⁄  we have: 

pψ1x3 = iℏ ¨̈� /��£ sin ^��£ `9 = Hℏ�£ ��£ cos ^��£ `    (59) 

and: 

p�ψ1x3 = iℏ ¨̈� }Hℏ�£ ��£ cos ^��£ `� = Hℏ�£ ��£ sin ^��£ `   (60) 

⟹ �p� = ? ψ∗1x3pψ1x3dx                     (61) 

We found in the example above that �p� = 0 for this state. 

�p�� = * ψ∗1x3p�ψ1x3dx 

= * ¥2a sin ^πxa ` ℏ�π�
a�

£
ª ¥2a sin ^πxa ` dx 

= ℏ�π�
a� * «2a¬ @sin ^πxa `I� dx£

ª  

= 2ℏ�π�
a� * 1 − cos ^���£ `2 dx£

ª
 

= ℏ<�<
£­ x|a0 = ℏ<�<

£<                                  (62) 

∆p = ��p�� − �p�� = �ℏ<�<
£< = ℏ�£                  (63) 

�x� = * ψ∗1x3xψ1x3dx = * ¥2a sin ^πxa ` x¥2a sin ^πxa ` dx£
ª

 

= 2a * x ^sin ^πxa ``� dx£
ª  

= �£ £<
� = £�                                               (64) 

�x�� = * ψ∗1x3x�ψ1x3dx 

= ? ��£ x� ^sin ^��£ ``� dx = £<
®£ª ^2 − ��<`             (65) 

∆x = ��x�� − �x�� = �£<1�<H®3:��< = £� �1�<H®3:�          (66) 

After calculation�1�<H®3:� = 0.57, so∆x∆p > ℏ�. 

4. Conclusion 

We conclude be making the following points: 

� Our results on the uncertainty relation are based on 

measuring the extension of the spatial domain of the 

photon function. 

� We divided the first moment of the energy distribution 

instead of the moment of the energy distribution see [1]. 

� It should be noted that by dividing the first moment of 

the energy distribution by the total energy we obtained 

similar analysis to that one of the classical quantum 

mechanics. And we shown that the classical Heisenberg 

uncertainty relation with respect to Fourier is  > ℏ� see 

example (2). 
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