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Abstract: In this paper, order among some known T-norms is investigated. Firstly, the T-norm which is the strongest or
greatest and the T-norm which is the weakest is observed. Comparing two T-norms we establish the relation which is strong or
weak. In addition, for parametric T-norms after changing the interval of their parameter a relation has established which is
strong or weak. Finally, compared has done among three or more T-norms.
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=y.
SoT(x,y) <y.

Consequently,T (x, y)is a lower bound of {x, y}.

Again min (x, y) is the greatest lower bound(glb) of {x, y}.
But I is in chain, so Ty (x,y) = T(x,y).

Hence “min” is the strongest or greatest t-norm.

1. Introduction

T-norms or triangular norms are generalization of the
classical triangular inequality according to K. Menger in
1942. In 1960, B. Schweizer and A. Sklar after revision of
this work redefined the concept of triangular norm as an
associative and commutative binary operation. They play a
fundamental role in probabilistic metric spaces, probabilistic
norms and scalar products, multiple-valued logic, fuzzy sets
theory. Proof: Suppose T is any T-norm.

Definition: Vx, yel; there are two cases:

A T-norm is a functionT: [0, 1] x [0, 1] — [0, 1] which Casel: Without loss of generality suppose x=1, then
satisfies the following properties: Tp(x,y) =Tp(Ly) =y

[T ]:Monotonicity: T(a,b) < T(c,d)ifa < candb < d and T(x,y) = T(1,y) = y [by boundary condition].

[T,]:Commutativity: T (a, b) = T'(b, @) Consequently Tp=1.

[T;]:Associativity: T(a,T(b, C)) =T(T(a,b),c) Case2: When x #1 and y #1, then

. R _ Tp(x,y) = 0.
T,]:Boundary condition: T(a,1) = a D
(] Y (@1) But in I; clearly, 0< T'(x,y)

Therefore T, (x,y) < T(x,y).
Hence among all T-norm T}, is the weakest.

2.2. Proposition: Among all T-norm “Drastic Product” is
the Weakest

2. Ordering of T-norms

2.1. Proposition: Among all T-norm “Min” is the Strongest 2.3. Proposition: Let ke]0,1[, Frank's Product

(k* =Dk -1)
)

Proof: Suppose T is any T-norm.

Vx, yel;

T(x,y) < T(x, 1)[by boundary condition]
=x [by boundary condition] And Algebraic Product Tp(x,y) = xy,V(x,y)el X I.
SoT(x,y) < x. Then Te(x, ) = Tp(x,y) ,V(x,y)el X 1.

Again T(x,y) < T(y,x) [by commutativity] Proof: Let x€]0,1] and R,:[0,1] » R:R,(v) =
< T(y,1) [by monotonicity] 051 we[0,1].

Tr(x,y)) = logy (1 +
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Then R, (v) = 0, and ;—x(Rx) = x(x — 1)v*"2 < 0, which
means that R, (v) is monotonically decreasing.

If we have U,(v) = v¥, then by mean value theorem we
get

U, () -U,(wv) &

A
= R(§o), because Uy (v) = xv*1
< Re(v), &o€]v, 1[.

ie.
LY e, v vel0,1
=y SV x,ve]0,1].
Now let H,:[0,1] - R,
_uX
HX(V) = ].T ,VE]O,l[.
Here
5 —xv¥ 11 —v) +1—v¥
&HX(V) = =2 < 0,Vx,ve]0,1].

Which means that H, (v) is monotonically decreasing and,
Furthermore,
HX (k) S HX (ky)l Vkl ye] 011 [:

ie
1—k* 1—Fk®
>
1-k —1-k
K -1 ke -1
k"_ll_kkyy_ll
( _k)( —D_ —1[v kY —1< 0]
(k* —1)(ky—1)
< kY
=1+ = kl_kly ; <k
L4 HETDE D gy
(k"—l)(ky—)

1 ) > log, (k%) = xy.

This means that Tz (x, y), = Tp(x,v) ,Vk, x,y€]0,1].
Again, we clam that
Te(0,x) = Tr(x,0) = Tp(0,x) = Tp(x,0) = 0.
And
Tp(x, Dy = Tp(1,x) = Tp(x,1) = Tp(1,x)
=x,Vk,x,€]0,1].
Hence Tr(x, V) = Ty(x,v),V(x,y)el X I.

= logy (1 +

2.4. Proposition: Let ke|1, o[, Frank’s Product
U =1) (kY=
(x, ¥k = logi (1 + T)

and Algebraic Product Tp (x,y) = xy ,V(x,y)el X I.

Then Tr (x, ¥) < Tp(x,y),V(x,y)el X 1.

Proof: Let x€]0,1[ and R,:[1,0] » R:R,(v) =
xv*71, vve[0,1].

Then R, (v) = 0, and ;—x(Rx) = x(x — 1)v*"2 < 0, which
means that R, (v) is monotonically decreasing.

Now we have ,
U,:[1,0[-> R, U, (v) = v*,Vxe]0,1[ and

Ux(v) - Ux(l) 6
= U ()

= R (§0), V$0€]0,1[V

2 R, (v)

because R, (v) is monotonically decreasing and &, < v.

ie.

v¥-1

=x&,"" ", vx€]0,1[, ve]1, o[ (1)

v—1
Now let H, (v):[1, ] - R,
vX —
H,(v) = VT'VVE]I'OO[' x€]0,1]

We see that
) xv¥l(v—1)—-v¥+1
—H = <
8x «V) (v—1)2 -
According to (1) and H, (v) is monotonically decreasing.
Then,
Hx(k) S HX(ky)! VyE] 011 [, ke] 1' OO[
i.e.

k-1 _ kK*Y-1
>
k-1 — kY-1 @)

From (2) we get
k*-DE -1)

< k%
(e — (Y — 1)
—_— < Xy
K—1 < logy (k™)
- D& - DY _
k—1 =%
that Tr(x,¥)r < Tp(x,¥),V(x,y)el X1,

= logy (1 +

= logy (1 +

This means
Vke]1, oo[.
MoreoverTr (0, x), = Te(x,0), = Tp(0,x)
=Tp(x,0) =0
And
Te(x Dy = Te(L 0k = Te(x, 1) = Tp(1,%)
= x, Vx€]0,1[, Vk, €] 1, oo].
Hence Tr(x, ), < Tp(x,y),V(x,y)el X I,Vke]1, .

2.5. Proposition: Let ke|1, o[, Frank’s Product

(k* =Dk -1)
)

Tr(x,y) = logy (1

And Boundary Product
Tg(x,y) = (OAx+y —1),V(x,y)el X I.
Then Ty (x,y) < Te(x,y)i, V(x,y)el X 1.
Proof: We will distinguish two cases:
Casel: Ifx+y > 1thenTz(x,y) =x+y—1
Now for Tp (x,y) < Te(x,y), we get
(k* - 1D)(k¥ - 1)
=)

x+y—1£10gk(1+

X _ y
o rtgqp T DE D

—1
X _ y
o vt g < WD -1

e (Y1 —1)(k - 15(3 (1kx -1k - 1)
S — k=YL LS — kY kY + 1
S k¥ + kY <k + k¥

Sk -k +k- kM <k+k-k&DOD
S+ <1+ kEDOD

o1k 1 4 p&-D0-1) >
S11-kYH -k T1-k*H=>0
e(1-kHa-k1H=0

Which is true, because k > 1,x —1 <0,y — 1 < 0 and
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P t<k®=1
kY1 <k®=1.
Case2: If x + y < 1 then
TB (x, }’) =0
ForTg(x,y) < T (%, y)i = 0 < Tr(x, ¥k
This is obvious.
Hence Ty (x,y) < Tr(x, ¥)i, V(x,y)€el X 1, ke]1, oo].

2.6. Proposition: Let ke[0, 1], Duboi’s & Prade Product

xy
Tpp (X, ¥)i = IVyVE
and Algebrai Product Tp(x,y) = xy,V(x,y)el X I.
Then Tp(x,y) < Tpp(x, ), V(x,y)el X I,V (x,y)el X I.
Proof: We will distinguish three cases, according to the
maximum value of x, yandk.
Caesl: If xVyV k = x, then

xy
Tpp (6, Yk = >
=y
> xy, [~ x, yel]
= TP (x, 3’)

= Tp(x,¥) < Tpp (X, Y)i-
Case2: If xVyV k =y, then

xy
T (X, Y) -
DP k v
=x
> xy, [~ x, yel]
=Tp(x,y).

- TP(x:y) < TDP(x:y)k.
Case3: If x Vy V k = k, then

xy
Tpp (X, ¥)i = 7
=7 xy)
1
= ETP(xJ’)
> T,(x,y).

- TP(x:y) = TDP(X:Y)k'V(x,J’)EI X I: VkE[O,l]
Hence we can say from three cases Tp (x, V) < Tpp (X, ¥)k-

2.7. Proposition: Let Einstein Product Tg: 1 X 1 — 1

xy
1+1-x)1-y)

TE(X,}’) =

Boundery ProduuctTy (x,y) = 0Vx +y —1,
Algebraicc ProdducctTy (x, y) = xy,V(x, y)el X I.
Then T (x,y) < Tg(x,y) < Tp(x,y),V(x,y)el X I.
Proof: Now we will split the proof into two cases:
Casel: If Tz (x,y) < Tp(x,y), then
xy

T+d-nd—y -7
xy

CTva-oa-» ="
s1+1-0)1-y) =1
1-x)1-y)=0
Which is true, because V(x, y)el X I.
Case2: If Tg(x,y) < Tg(x,y),then
oVix+y—1) < a2d

1+(1-x)A-y)

Investigation of Order among Some Known T-norms

OIfx +y <1,then OV(x +y —1) = 0.
In this case we get,
xy

0<
1+1-x)1-y)
. xy
Since x, ye[0,1], soxy = 0 and PEYCR Y >0
= Tp(x,y) < Tg(x,y)
(i)Otherwise x+y =1,thenOV(x+y—-1)=x+y—
1.
X
(x+y- :

1) <
1+(1-x)1-y)
Sx+y-DA-x)A-y)<xy
Sxy-—(x+y-1DA-x)1-y)=0
Sxy—-(x+y-1DQR—-x—-y+xy)=0
Sxy—2x—x2—xy+x’y+2y—xy—y*+xy? -2
+x+y—xy)=0
Sxy—CBx—x2+x%y—3xy+3y—y>+xy2—-2)=0
Sxy—3x+x?—x*y+3xy—-3y+y*—xy?+2)=0
S x?(1—-y)—3x+4xy—xy?+2-3y+y2=0
Sx*1-y)-xB-4y+y)+Q2-y)A-y) =20
Sx’1-y)-x@-y)A-N+1-y02-y)=0
o10-E?—-xB-y)+2-y)=0
S1-y)x*—3x+xy+2-y)=>0
1-y)Q2-2x—x+x*—y+xy)=>0
s1-yA1-x)2—-x—y)=0.
This is true Vx, ye[0,1].
From above we may conclude that
TB(x'y) STE(X:Y) < TP(X'J’)'V(X:Y)GIXI-

2.8. Proposition:Let Hamacher Product Ty: 1 X I = 1

xy )
k+Q-kbx+y—xy)’

TH(x:y)k = 6[1'2]

Then TB(xly) < TH(x:y)k < TP(x;Y):V(x:Y)EI x 1.

Proof: As above we will distinguish two cases:

Casel: In this case, it will prove that Ty (x, y), < Tp(x,y),
then

ad <x
k+(Q-kx+y—xy)
1

y

‘:}k+(1—k)(x+y—xy) =1
ok+(A-kKkx+y—xy)=1
o -1+k+(1-kk+y—xy)=0
o0-kx+y—-1-xy)=0
(0-khA-x1-y)=0.
This is obvious, since x, ye[0,1]andke[1,2].
Case2: Now we prove the relation
Ty (x, y)randTp(x, y).
We may see that if x + y < 1, then
Te(x,y) = 0 < Tp(x,y).
if x+y=1, and consider Tz(x,y) <

between

Otherwise,
Ty (X, ¥) i, then
xy
1<
k+(1-kKx+y—xy)
Sk+y-DEk+A-KHx+y—xy) <xy
Sx+y-Dk+x+y—xy—kx—ky+kxy) —xy
<0

xX+y-—
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S kx + x% + xy — x%y — kx? — kxy + kx®y + ky + xy
+y% —xy? —kxy — ky* + kxy? —k
—x—y+xy+kx+ky—kxy—xy<0

& —k+kx—x+x*+kx —kx*—y+xy+2ky — 2kx
+xy — x% — kxy + kx?y + y? — xy?
—ky*+ kxy? <0

= -k(l-x)—x(1—-x)+kx(1—x)—y(1—x)
+2ky(1 —x)+ xy(1 —x) — kxy(1 — x)
+9y2(1—x)—ky?(1-x)<0

o 1-x)(-k—x+kx—y+2ky+xy—kxy+y?
—ky?<0

o (1 —x)(-k+ky+ky—ky?—x+xy+kx—kxy
—y+y2<0

©1-0)CkA-y)+ky(Q—y)—x(1-y)
+kx(1-y)—y(1-y)<0

o0-x)A-y)(-k+ky—x+kx—y)<0

Q-0 -»kx+y-1)—-x-y)<0

o0-x1-y)x+y-Dk-1)—-1<0.

This is true because
1-x<0,1-y<O0and(x+y—-1(k—1)—1<0
4:>(x+y—1)(k—1)£1<=>x+y—1sﬁ
Sincex+y—-1<1 Sﬁ,vke[l,z].
Hence we may conclude that
Tp(x,y) <Tp(x,y) < Ty, y)i < Tp(x,y)
< Ty (x,y),V(x,y)el x 1.

3. Conclusion

Form above discussions, it conclude that T-norm Min is
the strongest and T-norm Drastic product is the weakest T-
norms. Also, T-norm Algebraic product is stronger than T-
norm Hamacher product and Boundery Product. Similarly, T-
norm Dubois & Prade product Tpp is stronger than T-norm
Algebraic product. Since, T-norms are using for taking
suitable decision from multi-valued logic. So, the ordering of
T-norms, that’s means, this paper will help to take correct
decision using sufficient T-norms according to their order.
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