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Abstract: In this paper, we introduce the concept of (Q,L)-fuzzy normal subsemirings of a semiring and establish some results 

on these. We also made an attempt to study the properties of (Q,L)-fuzzy normal subsemirings of semiring under homomorphism 

and anti-homomorphism , and study the main theorem for this. We shall also give new results on this subject. 
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1. Introduction 

There are many concepts of universal algebras generalizing 

an associative ring ( R ;+; . ). Some of them in particular, 

nearrings and several kinds of semirings have been proven 

very useful. An algebra (R ; +, .) is said to be a semiring if (R;+) 

and (R; .) are semigroups satisfying a.(b+c)=a.b+a.c and 

(b+c).a=b.a+c.a for all a, b and c in R. A semiring R is said to 

be additively commutative if a+b = b+a for all a, b in R. A 

semiring R may have an identity 1, defined by 1. a = a = a. 1 

and a zero 0, defined by 0+a=a=a+0 and a.0=0=0.a for all a 

in R. After the introduction of fuzzy sets by L.A.Zadeh[15], 

several researchers explored on the generalization of the 

concept of fuzzy sets. The notion of fuzzy subnearrings and 

ideals was introduced by S.Abou Zaid[10]. A.Solairaju and 

R.Nagarajan [12] have introduced and defined a new algebraic 

structure called Q-fuzzy subgroups. In this paper, we 

introduce the concept of (Q,L)-fuzzy normal subsemiring of a 

semiring and established some results. 

2. Preliminaries 

2.1. Definition 1 

Let X be a non-empty set and L = (L, ≤) be a lattice with 

least element 0 and greatest element 1 and Q be a non-empty 

set. A (Q, L)-fuzzy subset A of X is a function A: X×Q → L. 

 

2.2. Definition 2 

Let ( R, +, · ) be a semiring and Q be a non empty set. A (Q, 

L)-fuzzy subset A of R is said to be a (Q, L)-fuzzy subsemiring 

(QLFSSR) of R if the following conditions are satisfied: 

(i) A( x+y, q ) ≥ A(x, q) ˄ A(y, q), 

(ii) A( xy, q ) ≥ A(x, q) ˄  A(y, q), for all x and y in R and q in 

Q. 

2.3. Definition 3 

Let R be a semiring and Q be a non-empty set. An (Q, 

L)-fuzzy subsemiring A of R is said to be an (Q, L)-fuzzy 

normal subsemiring (QLFNSSR) of R if it satisfies the 

following conditions: 

(i) A(x+y,q) = A(y+x,q), 

(ii) A(xy,q) = A(yx,q), for all x and y in R and q in Q. 

2.4. Definition 4 

Let A and B be any two (Q,L)-fuzzy subsets of sets G and H, 

respectively. The product of A and B, denoted by A×B, is 

defined as A×B={<(( x, y), q),A×B((x,y),q)>/ for all x in R 

and y in H and q in Q}, where A×B((x,y),q)=A(x, q)˄ B(y, q). 

2.5. Definition 5 

Let (R,+,· ) and (R
׀
,+,· ) be any two semirings and Q be a 

non empty set. Let f:R→R
׀
 be any function and A be a 

(Q,L)-fuzzy subsemiring in R, V be a (Q,L)-fuzzy 

subsemiring in f(R)=R
׀
, defined by V(y,q) =

1
( )

−∈x f y

sup A(x,q), for 
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all x in R and y in R
׀ 
and q in Q. Then A is called a pre-image 

of V under f and is denoted by f 
-1 

(V). 

2.6. Definition 6 

Let A be a (Q,L)-fuzzy subset in a set S, the strongest (Q, 

L)-fuzzy relation on S, that is a (Q,L)-fuzzy relation V with 

respect to A given by V((x,y),q) = A(x,q)˄A(y,q), for all x and 

y in S and q in Q. 

2.7. Definition 7 

A (Q,L)-fuzzy subset A of a set X is said to be normalized if 

there exists an element x in X such that A(x,q)=1. 

2.8. Definition 8 

Let A be an (Q, L)-fuzzy subsemiring of a semiring (R, +, · ) 

and a in R. Then the pseudo (Q, L)-fuzzy coset (aA)
p
 is 

defined by ( (aA)
p 
)(x,q) = p(a)A(x,q), for every x in R and for 

some p in P and q in Q. 

2.9. Definition 9 

Let A be a (Q,L)-fuzzy subset of X. For α in L, a Q-level 

subset of A is the set Aα = { x∈X : A(x,q) ≥ α}. 

3. Properties of (Q,L)-Fuzzy Normal 

Subsemiring of a Semiring 

3.1. Theorem 1 

Let (R,+,.) be a semiring and Q be a non-empty set. If A and 

B are two (Q,L)-fuzzy normal subsemirings of R, then their 

intersection A∩B is an (Q,L)-fuzzy normal subsemiring of R. 

Proof: Let x and y∈R. Let A={〈(x,q),A(x,q)〉/ x in R and q 

in Q} and B={〈(x,q), B(x,q)〉/ x in R and q in Q} be 

(Q,L)-fuzzy normal subsemirings of a semiring R. Let 

C=A∩B and C={〈(x,q),C(x,q)〉/x in R and q in Q}. Then, 

Clearly C is an (Q,L)-fuzzy subsemiring of a semiring R, since 

A and B are two (Q,L)-fuzzy subsemirings of a semiring R. 

And (i) C(x+y,q)=A(x+y,q)˄B(x+y,q)=A(y+x,q)˄B(y+x,q) 

=C(y+x,q), for all x and y in R and q in Q.   

Therefore,C(x+y,q) =(y+x,q), for all x and y in R and q in Q. 

(ii) C(xy,q) = A(xy,q)˄B(xy,q)=A(yx,q)˄B(yx,q)=C(yx,q), for 

all x and y in R and q in Q. Therefore, C(xy,q)=C(yx,q), for all 

x and y in R and q in Q. Hence A∩B is an (Q,L)-fuzzy normal 

subsemiring of a semiring R. 

3.2. Theorem 2 

Let R be a semiring and Q be a non-empty set. The 

intersection of a family of (Q,L)-fuzzy normal subsemirings 

of R is an (Q,L)-fuzzy normal subsemiring of R. 

Proof: Let {Ai}i∈I be a family of (Q,L)-fuzzy normal 

subsemirings of a semiring R and let A=
∈
∩ i

i I

A . Then for x and 

y in R and q in Q. Clearly the intersection of a family of 

(Q,L)-fuzzy subsemirings of a semiring R is an (Q,L)-fuzzy 

subsemiring of a semiring R.(i) A(x+y,q) =
1
( )

inf
−∈x f y

Ai(x+y,q)=

1
( )

inf
−∈x f y

Ai(y+x,q)=A(y+x,q). Therefore, A(x+y,q)=A(y+x,q), 

for all x and y in R and q in Q. (ii) A(xy,q)=
1
( )

inf
−∈x f y

Ai(xy,q)= 

1
( )

inf
−∈x f y

Ai(yx,q)=A(yx,q). Therefore, A(xy,q)=A(yx,q), for all 

x and y in R and q in Q.Hence the intersection of a family of 

(Q,L)-fuzzy normal subsemirings of a semiring R is an 

(Q,L)-fuzzy normal subsemiring of a semiring R. 

3.3. Theorem 3 

Let A and B be (Q,L)-fuzzy subsemiring of the semirings G 

and H, respectively. If A and B are (Q,L)-fuzzy normal 

subsemirings, then A×B is an (Q,L)- fuzzy normal 

subsemiring of G×H. 

Proof:  Let A and B be (Q,L)-fuzzy normal subsemirings of 

the semirings G and H respectively. Clearly A×B is an 

(Q,L)-fuzzy subsemiring of G×H. Let x1 and x2 be in G, y1 and 

y2 be in H and q in Q. Then (x1,y1) and (x2,y2) are in G×H. 

Now,A×B[(x1,y1)+(x2,y2),q]=A×B((x1+x2,y1+y2),q) 

=A(x1+x2,q)˄B(y1+y2,q)=A(x2+x1,q)˄B(y2+y1,q) 

=A×B((x2+x1,y2+y1),q)=A×B[(x2,y2)+(x1,y1),q]. 

Therefore,A×B[(x1,y1)+(x2,y2),q]=A×B[(x2,y2)+(x1,y1),q]. 

And,A×B[(x1,y1)(x2,y2),q]=A×B((x1x2,y1y2),q) 

=A(x1x2,q)˄B(y1y2,q)=A(x2x1,q),B(y2y1,q)= 

A×B((x2x1,y2y1),q)=A×B[(x2,y2)(x1,y1),q].  

Therefore, A×B[(x1,y1)(x2,y2),q]=A×B[(x2,y2)(x1,y1),q]. 

Hence A×B is an (Q,L)-fuzzy normal subsemiring of G×H. 

3.4. Theorem 4 

Let A be a fuzzy subset in a semiring R and V be the 

strongest (Q,L)-fuzzy relation on R. Then A is an (Q,L)-fuzzy 

normal subsemiring of R if and only if V is an (Q,L)-fuzzy 

normal subsemiring of R×R. 

Proof: Suppose that A is a (Q,L)-fuzzy normal subsemiring 

of R. Then for any x=(x1,x2) and y=(y1,y2) are in R×R and q in 

Q. Clearly V is a (Q,L)-fuzzy subsemiring of R×R. We have, 

V(x+y,q)=V[(x1,x2)+(y1,y2),q]=V((x1+y1,x2+y2),q) 

=A((x1+y1),q)∧A((x2+y2),q)=A((y1+x1),q)∧A((y2+x2),q) 

=V((y1+x1,y2+x2),q)=V[(y1,y2)+(x1,x2),q]=V(y+x,q) 

Therefore,V(x+y,q)=V(y+x,q), for all x and y in R×R and q in 

Q. We have, V(xy,q)=V[(x1,x2)(y1,y2),q]=V((x1y1,x2y2),q) 

=A((x1y1),q)∧A((x2y2),q)=A((y1x1),q)∧A((y2x2),q) 

=V((y1x1,y2x2),q)=V[(y1,y2)(x1,x2),q]=V(yx,q)       

Therefore, V(xy,q)=V(yx,q), for all x and y in R×R and q in Q. 

This proves that V is a (Q,L)-fuzzy normal subsemiring of 

R×R. Conversely, assume that V is a (Q,L)-fuzzy normal 

subsemiring of R×R, then for any x=(x1,x2) and y=(y1,y2) are 

in R×R,we have  

   A(x1+y1,q)∧A(x2+y2,q)=V((x1+y1,x2+y2),q) 

=V[(x1,x2)+(y1,y2),q]=V(x+y,q)=V(y+x,q) 

=V[(y1,y2)+(x1,x2),q]=V((y1+x1,y2+x2),q) 

=A(y1+x1,q)∧A(y2+x2,q). We get, A((x1+y1),q)=A((y1+ x1),q), 

for all x1 and y1 in R and q in Q. And 

A(x1y1,q)∧A(x2y2,q)=V((x1y1,x2y2),q)=V[(x1,x2)(y1,y2),q] 

=V(xy,q)=V(yx,q)=V[(y1,y2)(x1,x2),q]=V((y1x1,y2x2),q) 

=A(y1x1,q)∧ A(y2x2,q). We get, A(( x1y1),q)=A((y1x1),q), for 

all x1 and y1 in R and q in Q. Hence A is a (Q, L)-fuzzy normal 
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subsemiring of R. 

3.5. Theorem 5 

Let (R,+, .) and (R
׀
,+, .) be any two semirings and Q be a 

non-empty set. The homomorphic image of an (Q,L)-fuzzy 

normal subsemiring of R is an (Q,L)-fuzzy normal 

subsemiring of R
׀
. 

Proof: Let (R,+,.) and (R
׀
,+,.) be any two semirings Q be a 

non-empty set and f :R→R
׀ 

be a homomorphism. Then, 

f(x+y)=f(x)+f(y) and f(xy)=f(x)f(y), for all x and y in R. Let 

V=f(A), where A is an (Q,L)-fuzzy normal subsemiring of a 

semiring R. We have to prove that V is an (Q,L)-fuzzy normal 

subsemiring of a semiring R
׀
. Now, for f(x), f(y) in R

׀
, clearly 

V is an (Q,L)-fuzzy subsemiring of a semiring R
׀
, since A is an 

(Q,L)-fuzzy subsemiring of a semiring R. Now, 

V(f(x)+f(y),q)=V(f(x+y),q)≥A(x+y,q)=A(y+x,q)≤V(f(y+x),q)

=V(f(y)+f(x),q), which implies that V(f(x)+f(y),q)= 

V(f(y)+(f(x),q), for all f(x) and f(y) in R
׀
. Again, 

V(f(x)f(y),q)=V(f(xy),q)≥A(xy,q)=A(yx,q)≤V(f(yx),q) 

=V(f(y)f(x),q), which implies that V(f(x)f(y),q)=V(f(y)f(x),q ), 

for all f(x) and f(y) in R
׀
. Hence V is an (Q,L)-fuzzy normal 

subsemiring of a semiring R
׀
. 

3.6. Theorem 6 

Let (R,+,.) and (R
׀
,+,.) be any two semirings and Q be a 

non-empty set. The homomorphic preimage of an (Q,L)-fuzzy 

normal subsemiring of R
׀
 is an (Q,L)-fuzzy normal 

subsemiring of R. 

Proof: Let ( R, +, .) and ( R
׀
, +, .) be any two semirings and 

Q be a non-empty set and f : R → R
׀
 be a homomorphism. 

Then, f(x+y)=f(x)+f(y) and f(xy)=f(x)f(y), for all x and y in R. 

Let V=f(A), where V is an (Q,L)-fuzzy normal subsemiring of 

a semiring R
׀
. We have to prove that A is an (Q,L)-fuzzy 

normal subsemirring of a semiring R. Let x and y in R. Then, 

clearly A is an (Q,L)-fuzzy subsemiring of a semiring R, since 

V is an (Q,L)-fuzzy subsemiring of a semiring R
׀
. Now, 

A(x+y,q)=V(f(x+y),q)=V(f(x)+f(y),q)=V(f(y)+f(x),q)= 

V(f(y+x),q)=A(y+x,q), which implies that 

A(x+y,q)=A(y+x,q), for all x and y in R and q in Q. Again, 

A(xy,q)=V(f(xy),q)=V(f(x)f(y),q)=V(f(y)f(x),q)=V(f(yx),q)=

A(yx,q), which implies that A(xy,q)= A(yx,q), for all x and y 

in R and q in Q. Hence A is an (Q,L)-fuzzy normal 

subsemiring of a semiring R. 

3.7. Theorem 7 

Let (R, +, .) and (R
׀
, +, .) be any two semirings and Q be a 

non-empty set. The anti-homomorphic image of an (Q, 

L)-fuzzy normal subsemiring of R is an (Q, L)-fuzzy normal 

subsemiring of R
׀
. 

Proof: Let (R,+,.) and (R
׀
,+,.) be any two semirings and Q 

be a non-empty set and f:R→R
׀
 be an anti-homomorphism. 

Then, f(x+y)=f(y)+f(x) and f(xy)=f(y) f(x), for all x and y in R. 

Let V=f(A), where A is an (Q,L)-fuzzy normal subsemiring of 

a semiring R. We have to prove that V is an (Q,L)-fuzzy 

normal subsemiring of a semiring R
׀
. Now, for f(x) and f(y) in 

R
׀
, clearly V is an (Q,L)-fuzzy subsemiring of a semiring R

׀
, 

since A is an (Q,L)-fuzzy subsemiring of a semiring R. Now, 

V(f(x)+f(y),q)=V(f(y+x),q)≥A(y+x,q)=A(x+y,q)≤V(f(x+y),q)

=V(f(y)+f(x),q), which implies that 

V(f(x)+f(y),q)=V(f(y)+f(x),q), for all f(x) and f(y) in R
׀
. 

Again,V(f(x)f(y),q)=V(f(yx),q)≥A(yx,q)=A(xy,q)≤V(f(xy),q)

=V(f(y)f(x),q), which implies that V(f(x)f(y),q)=V(f(y)f(x),q), 

for all f(x) and f(y) in R
׀
. Hence V is an (Q,L)-fuzzy normal 

subsemiring of a semiring R
׀
. 

3.8. Theorem 8 

Let (R,+,.) and (R
׀
,+,.) be any two semirings and Q be a 

non-empty set. The anti-homomorphic preimage of an 

(Q,L)-fuzzy normal subsemiring of R
׀
 is an (Q,L)-fuzzy 

normal subsemiring of R. 

Proof: Let ( R, +, .) and ( R
׀
, +, .) be any two semirings and 

Q be a non-empty set and f :R→ R
׀
 be an anti-homomorphism. 

Then, f(x+y)=f(y)+f(x) and f(xy)=f(y)f(x), for all x and y in 

R.Let V=f(A), where V is an (Q,L)-fuzzy normal subsemiring 

of a semiring R
׀
. We have to prove that A is an (Q,L)-fuzzy 

normal subsemiring of a semiring R. Let x and y in R, then 

clearly A is an (Q,L)-fuzzy subsemiring of a semiring R, since 

V is an (Q,L)-fuzzy subsemiring of a semiring R
׀
. Now, A(x+ 

y,q)=V(f(x+y),q)=V(f(y)+f(x),q)=V(f(x)+f(y),q)=V(f(y+x),q)

=A(y+x,q), which implies that A(x+y,q)= A(y+x,q), for all x 

and y in R and q in Q. Again, 

A(xy,q)=V(f(xy),q)=V(f(y)f(x),q)=V(f(x)f(y),q)=V(f(yx),q)=

A(yx,q), which implies that A(xy,q)=A(yx,q), for all x and y in 

R and q in Q. Hence A is an (Q,L)-fuzzy normal subsemiring 

of a semiring R. 

3.9. Theorem 9 

Let A be an (Q, L)-fuzzy normal subsemiring of a semiring 

(R, +, .), then the pseudo (Q, L)-fuzzy coset (aA)
p
 is an (Q, 

L)-fuzzy normal subsemiring of a semiring R, for a in Rand q 

in Q. 

Proof: Let A be an (Q, L)-fuzzy normal subsemiring of a 

semiring R. For every x and y in Rand q in Q, we have, 

((aA)
p
)(x+y)=p(a)A(x+y)≥p(a){(A(x)˄A(y)}= 

{p(a)A(x)˄p(a)A(y)}={((aA)
p
)(x)˄((aA)

p
)(y)}.     

Therefore, ((aA)
p
)(x+y)={((aA)

p
)(x)˄((aA)

p
)(y)}.      

Now, ((aA)
p
)(xy)=p(a)A(xy)≥p(a){A(x)˄A(y)} = 

{p(a)A(x)˄p(a)A(y)}={((aA)
p
)(x)˄((aA)

p
)(y)}.     

Therefore, ((aA)
p
)(xy)={((aA)

p
)(x)˄((aA)

p 
)(y)}.    Hence 

(aA)
p
 is an (Q, L)-fuzzy normal subsemiring of a semiring R. 

3.10. Theorem 10 

Let A and B be (Q,L)-fuzzy subsets of the sets R and H 

respectively , and let α in L. Then (A×B)α =Aα × Bα. 

Proof: Let α in L. Let (x,y) be in (A×B)α if and only if 

A×B( (x,y),q) ≥ α 

if and only if {A(x,q)˄B(x,q)} ≥ α 

if and only if A(x,q)≥α and B(x,q) ≥ α 

if and only if xϵ Aα and yϵ Bα 

if and only if (x,y) ϵ Aα × Bα. 

Therefore, (A×B)α =Aα × Bα. 

3.11. Theorem 11 

Let A be a (Q,L)-fuzzy normal subsemiring of a semiring R. 

If A(x,q) < A(y,q), for some x and y in R and q in Q, then 

A(x+y,q)=A(x,q)= A(y+x,q), for some x and y in R and q in Q. 
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Proof: It is trivial. 

3.12. Theorem 12 

Let A be a (Q,L)-fuzzy normal subsemiring of a semiring R. 

If A(x,q) > A(y,q), for some x and y in R and q in Q, then 

A(x+y,q)=A(y,q)= A(y+x,q), for some x and y in R and q in Q. 

Proof: It is trivial. 

3.13. Theorem 13 

Let A be a (Q,L)-fuzzy normal subsemiring of a semiring R 

such that Im A ={α}, where α in L. If A=B∪ C, where B and 

C are (Q,L)-fuzzy normal subsemiring of a semiring R, then 

either B ⊆ C or C ⊆ B. 

Proof: It is trivial. 

4. In the Following Theorem is the 

Composition Operation of Functions 

4.1. Theorem 1 

Let A be an (Q, L)-fuzzy normal subsemiring of a semiring 

H and f is an isomorphism from a semiring R onto H. Then A◦f 

is an (Q,L)-fuzzy normal subsemiring of the semiring R. 

Proof: Let x and y in R and A be an (Q,L)-fuzzy normal 

subsemiring of a semiring H. Then clearly A◦f is an 

(Q,L)-fuzzy subsemiring of a semiring R. Now, (A◦f)( x+y, q) 

=A(f(x+y),q)=A(f(x)+f(y),q)=A(f(y)+f(x),q)=A(f(y+x),q) 

=(A◦f)(y+x,q),which implies that (A◦f)(x+y,q)=(A◦f)(y+x,q) , 

for all x and y in R and q in Q. And, (A◦f)(xy,q)= 

A(f(xy),q)=A(f(x)f(y),q)=A(f(y)f(x),q)=A(f(yx),q)= 

(A◦f)(yx,q), which implies that (A◦f)(xy,q)=(A◦f)(yx,q) , for 

all x and y in R and q in Q. Hence A◦f is an (Q,L)-fuzzy 

normal subsemiring of a semiring R. 

4.2. Theorem 2 

Let A be an (Q,L)-fuzzy normal subsemiring of a semiring 

H and f is an anti-isomorphism from a semiring R onto H. 

Then A◦f is an (Q,L)-fuzzy normal subsemiring of the 

semiring R. 

Proof: Let x and y in R and A be an (Q,L)-fuzzy normal 

subsemiring of a semiring H. Then clearly A◦f is an 

(Q,L)-fuzzy subsemiring of a semiring R. Now, (A◦f)(x+y,q) = 

A(f(x+y),q)=A(f(y)+f(x),q)=A(f(x)+f(y),q)=A(f(y+x),q)= 

(A◦f)(y+x,q),which implies that (A◦f)(x+y,q)=(A◦f)(y+x,q) , 

for all x and y in R and q in Q. And, (A◦f)(xy,q) = 

A(f(xy),q)=A(f(y)f(x),q)=A(f(x)f(y),q)=A(f(yx),q)= 

(A◦f)(yx,q), which implies that (A◦f)(xy,q)=(A◦f)(yx,q) , for 

all x and y in R and q in Q. Hence A◦f is an (Q,L)-fuzzy 

normal subsemiring of a semiring R. 
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