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Abstract: This paper presents the solution of wave equations on transmission lines where leakage to ground on the line is 

very small. As a result of the leakages to ground on the transmission lines which are negligible, the conductance and the 

inductance, which are responsible for leakages on the line, are set to zero in the model of the general wave equation of the 

transmission line. The Laplace transform method was now applied to transform the resulting partial differential equation into 

ordinary differential equation and the method of variation of parameters was used to get the particular solution to the problem. 
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1. Introduction 

Transmission lines are basically electrical circuits having 

distributed constants (or parameters. These parameters 

include the line resistance, line inductance, line capacitance 

and shunt conductance. The performance of a transmission 

line depends upon these parameters to a considerable extent. 

Every electrical conductor offers opposition to the flow of 

current and this opposition is called the resistance of the 

conductor. The resistance is distributed uniformly along the 

whole length of the line. It is the most important cause of 

power loss on the transmission line. The capacitance causes a 

charging current to flow in the transmission line. Any two 

conductors separated by an insulating medium constitute a 

capacitor or a condenser [1] and [2]. Series inductance 

mainly governs the power transmission capacity of the line. 

When an alternating current flows through a conductor, a 

charging flux is set up which links the conductor [1]. The 

conductors therefore posses inductance due to these flux 

leakages. The inductance is also uniformly distributed along 

the whole length of the transmission line. Inductance offers 

opposition to the flow of varying current in a circuit [1]. This 

is different from resistance which offers opposition to the 

flow of both steady (direct) and varying (alternating) current. 

The opposition to the flow of varying current, as a result of 

inductance, is called voltage drop. The shunt conductance is 

mostly due to leakages over the insulator [1]. Just like other 

transmission parameters, it is also uniformly distributed over 

the total length of the transmission line. The line inductance 

and shunt conductance are the parameters responsible for 

leakages along the transmission lines. In this paper, the line 

inductance and shunt conductance are therefore set to zero in 

the general wave equation of transmission lines to get the 

mathematical model which was solved by using the Laplace 

transform method. 

The Laplace transform method has a lot of applications in 

initial and boundary value problems of differential equations 

arising in physics, mathematics and engineering. It originated 

from the work of Oliver Heaviside who found it useful to 

solve the equation of electromagnetic theory [3]. Integral 

transform methods which include the Laplace transform, 

Fourier transform, Hankel transform, to mention a few, has 

been applied to solve a lot of problems in differential 

equations in the field of science and engineering. [4] applied 

the Fourier and Hankel transforms to solve some boundary 

value partial differential equations. [5] used the Hankel 

transform method to solve some boundary value problems in 

their paper. The choice of a particular transform to be used 

for the solution of a differential equation depends upon the 

nature of its initial or boundary conditions [6]. In this paper, 

the Laplace transform method was used to transform the 

derived partial differential equation, in the mathematical 

model for the wave equation on transmission lines where 

leakage to ground on the line is negligible, to ordinary 

differential equation. The method of variation of parameters 

was now used to get the particular solution for the problem. 
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2. Materials and Methods 

Let us considered the equivalence circuit of a transmission 

line having length ∆� with resistance �∆�, capacitance �∆�, 

inductance �∆� and conductance �∆�  as shown in figure 1 

below. 

 

Figure 1. Equivalent Circuit of a Transmission Line. 

Applying the Kirchhoff’s voltage and current laws to the 

symmetrical network of figure 1 and simplifying accordingly, 

we have 

��
�	 = − ��
 + � ��

���	                                (1) 

and 

��
�	 = − ��� + � ��

���	                               (2) 

Equations (1) and (2) above describe the evolution of 

current and voltage on a lossy transmission line [7] and [8]. 

Differentiating (1) with respect to x and (2) with respect to 

t and simplifying the result, we have 

���
�	� = �� ���

��� + �� ��
�� + � ��� + � ��

���	        (3) 

Differentiating (1) with respect to t and (2) with respect to 

x and simplifying the result, we have 

���
�	� = �� ���

��� + �� ��
�� + � ��
 + � ��

���	        (4) 

Equations (3) and (4) are hyperbolic partial differential 

equations which represent the general wave equations for a 

lossy transmission line [7] and [8]. 

When leakages to ground on a transmission line are 

negligible, the conductance and the inductance on the line are 

set to zero because they are the factors responsible for 

leakages on the line [1], [2] and [9]. Therefore, setting G and 

L to zero in equation (3), we have 

���(	,�)
�	� = �� ��(	,�)

�� 	                          (5) 

Similarly setting G and L to zero in equation (4), we have 

���(	,�)
�	� = �� ��(	,�)

�� 	                       (6) 

Let � = ��, so that equation (6) now becomes 

���(	,�)
�	� = � ��(	,�)

�� 	                      (7) 

Equation (7) can now be solved together with the 

following initial conditions 


(�, 0) = �(�), 
�(�, 0) = �(�)	               (8) 

where 
  is the current through the conductor, �(�)  is the 

initial value of the current, �(�) is the initial speed of the 

current and 0 < � < �	. 
Taking the Laplace transform of (7) with respect to t, we 

have 

�� (�, �) − �
(�, 0) − 
�(�, 0) = � !�"(	,#)
!	�        (9) 

Putting the initial conditions, we have 

� !�"(	,#)
!	� −	�� (�, �) = −[�(�) + ��(�)]	       (10) 

This now gives 

!�"
!	� −	&� = '((�)	                         (11) 

where &� = #�
)  and '((�) = *[+(	),#-(	)]

)  

The general solution of (11) is given by 

 =  . +  /	                                    (12) 

where  .  is the complementary function and  /  is the 

particular integral. 

Solving the associated homogeneous differential equation 

for (11), we have the complementary function as 

 .(�, �) = �0 .1(�, �) + �� .�(�, �) = �023	 + ��2*3		  (13) 

Using the method of variation of parameters, we seek a 

particular solution of the form 

 /(�, �) = 40(�) .1(�, �) + 4�(�) .�(�, �)	             (14) 

where  .1(�, �) = 23	 ,  .�(�, �) = 2*3	 , 40(�) = 5 616 7� 

and 4�(�) = 5 6�6 7�, [10] – [13]. 

Values of 8, 80 and 8�are obtained from the determinants 

below 
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8 = 9 23	 2*3	
&23	 −&2*3	9	                    (15) 

80 = 9 0 2*3	
'((�) −&2*3	9	                 (16) 

8� = 9 23	 0&23	 '((�)9	                      (17) 

We can easily see from (15), (16) and (17) that 8 = −2&, 80 = −'((�)2*3	 and8� = '((�)23	. 

Therefore 40(�) = 5 .;(	)<=>?
�3 7�  and 4�(�) =

−5 .;(	)<>?
�3 7�. 

Substituting the values of 40(�) , 4�(�) ,  .1(�, �)  and  .�(�, �) in (14), we have the particular solution as 

 /(�, �) = <>?
�3 5 '((�)2*3	 7� − <=>?

�3 5 '((�)23	 7�	    (18) 

The general solution to (11) is therefore 

 (�, �) = �023	 + ��2*3	 + <>?
�3 5 '((�)2*3	 7� − <=>?

�3 5 '((�)23	 7�	                                         (19) 

Substituting the values of b and cy(x) in (19), we have 

 (�, �) = �02 ?@√B + ��2=?@√B − < ?@√B
�#√) 5[(�(�) + ��(�))2=?@√B ]7� + <=?@√B

�#√) 5[(�(�) + ��(�))2 ?@√B]7�	                 (20) 

Taking the inverse Laplace transform, we have the final solution as 


(�, C) = �0D EC + 	
√)F + ��D EC − 	

√)F − �*0[ < ?@√B
�#√) 5[(�(�) + ��(�))2=?@√B ]7�+�*0 G<=?@√B

�#√) 5[(�(�) + ��(�))2 ?@√BH 7�	   (21) 

where D(C) is the Dirac delta function [10] 

3. Computational Examples 

3.1. Example1 

Let us consider the wave equation on transmission line 

with negligible leakage to ground on the line that is given by 

���(	,�)
�	� = ��(	,�)

��   

with the initial conditions 


(�, 0) = 2	, 
�(�, 0) = −2	,  
where 0 < � < � and k is any given constant. 

Taking the Laplace transform of the equation with respect 

to t and substituting the initial conditions, we have 

�� (�, �) − �2	 + 2	 = !�"(	,#)
!	�   

That is 

!�"(	,#)
!	� − �� (�, �) = (2	 − �2	)  

Solving the associated homogeneous differential equation 

for the problem above, we have the complementary function 

as 

 .(�, �) = �02	# + ��2*	#  

Using the method of variation of parameters, we seek a 

particular solution of the form 

 /(�, �) = 40(�) .1(�, �) + 4�(�) .�(�, �)  

where  .1(�, �) = 2#	,  .�(�, �) = 2*#	 , 40(�) = 5 616 7� and 

4�(�) = 5 6�6 7�, 

Values of 8, 80 and 8�are obtained from the determinants 

below 

8 = I 2#	 2*#	
�2#	 −�2*#	I  

80 = 9 0 2*#	
(2	 − �2	) −�2*#	9  

8� = 9 2#	 0�2#	 (2	 − �2	)9  
Therefore 40(�) = 5 (<?*#<?)<=@?

�# 7� and 4�(�) =
−5 (<?*#<?)<@?

�# 7�. 

Substituting all these values in the equation 

 /(�, �) = 40(�) .1(�, �) + 4�(�) .�(�, �)  

we have the particular solution for this problem as 

 /(�, �) = <?
�# + (#*0)<?

�#(#,0)  
The general solution of the problem is therefore 

 (�, �) = �02#	 + ��2*#	 + <?
�# + (#*0)<?

�#(#,0)  
Simplifying further, we have 

 (�, �) = �02#	 + ��2*#	 + <?
(#,0)  

Taking the inverse Laplace transform, we have the final 

solution as 


(�, C) = �0D(C + �) + ��D(C − �) + 2(	*�)  
whereD(C) is the Dirac delta function 



 American Journal of Applied Mathematics 2015; 3(3): 124-128  127 

 

3.2. Example 2 

Consider the wave equation on transmission line with very 

small leakage to ground on the line that is given by 

���(	,�)
�	� = ��(	,�)

��   

with the initial conditions 


(�, 0) = 2	, 
�(�, 0) = �, 0 < � < �  

where k is any given constant. 

Substituting the initial conditions of this problem into the 

general solution in (20) with � = 1 , we have the general 

solution as 

 (�, �) = �02	# + ��2*	# − <?@
�# 5[(� + �2	)2*	#]7� +

<=?@
�# 5[(� + �2	)2	#]7�  

where �02	# + ��2*	#  is the complementary function and 

− <?@
�# 5[(� + �2	)2*	#]7� + <=?@

�# 5[(� + �2	)2	#]7�  is the 

particular solution. 

Integrating the last two terms of the general solution and 

simplifying, we have 

 (�, �) = �02	# + ��2*	# + 	
#� + <?

�(#*0) + <?
�(#,0)  

Taking the inverse Laplace transform, we have the final 

solution as 


(�, C) = �0D(C + �) + ��D(C − �) + �C + <(?KL)
� + <(?=L)

�   

whereD(C) is the Dirac delta function 

3.3. Example 3 

Consider the wave equation on transmission line with 

negligible leakage to ground on the line that is given by 

���(	,�)
�	� = ��(	,�)

��   

with the initial conditions 


(�, 0) = M
N�, 	
�(�, 0) = 0, 0 < � < �  

where k is any given constant. 

Substituting the initial conditions of this problem into the 

general solution in (20) with � = 1 , we have the general 

solution as 

 (�, �) = �02	# + ��2*	# − <?@
�# 5[(�M
N�)2*	#]7� +

<=?@
�# 5[(�M
N�)2	#]7�  

where �02	# + ��2*	#  is the complementary function and 

− <?@
�# 5[(�M
N�)2*	#]7� + <=?@

�# 5[(�M
N�)2	#]7�  is the 

particular solution. 

Integrating the last two terms of the general solution and 

simplifying, we have 

 (�, �) = �02	# + ��2*	# − OP#	
Q � 0

(#*0)� + OP#	
Q � 0

(#,0)� − R�S	
Q � 0

(#*0)� − R�S	
Q � 0

(#,0)� − OP#	
� � 0

(#�,0)� + R�S	
� [ #

(#�,0)]  
Taking the inverse Laplace transform, we have the final solution as 


(�, C) = �0D(C + �) + ��D(C − �) − OP#	<L
Q + OP#	<=L

Q − R�S	<L
Q − R�S	<=L

Q − OP#	R�S�
� + R�S	OP#�

�   

whereD(C) is the Dirac delta function 

3.4. Example 4 

Consider the wave equation on transmission line with very 

small leakage to ground on the line that is given by 

���(	,�)
�	� = 4 ��(	,�)

��   

with the initial conditions 


(�, 0) = 2	, 
�(�, 0) = 2*	 , 0 < � < �  

where k is any given constant. 

Substituting the initial conditions of this problem into the 

general solution in (20) with � = 4 , we have the general 

solution as 

 (�, �) = �02?@� + ��2=?@� − <?@�
Q# 5 �(2*	 + �2	)2=?@� � 7� + <=?@�

Q# 5 �(2*	 + �2	)2?@� � 7� = �02?@� + ��2=?@� − <?@�
Q# {5 2*	E0,@�F7� +

� 5 2	E0*@�F7�} + <=?@�
Q# {5 2	(@�*0)7� + � 5 2	(@�,0)7�}  

where �02?@� + ��2=?@�  is the complementary function and − <?@�
Q# {5 2*	E0,@�F7� + � 5 2	E0*@�F7�} + <=?@�

Q# {5 2	(@�*0)7� +
� 5 2	(@�,0)7�} is the particular solution. 

Integrating all the integrands in the general solution and simplifying, we have 

 (�, �) = �02?@� + ��2=?@� + <=?
Q �0# − 0

(#,�)� + <?
� � 0

(#*�)� + <=?
Q � 0

(#*�) − 0
#� + <?

� [ 0
(#,�)]  

Taking the inverse Laplace transform, we have the final solution as 
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(�, C) = �0D EC + 	
�F + ��D EC − 	

�F + <=?
Q [1 − 2*��] + <?K�L

� + <=?
Q [2�� − 1] + <?=�L

� = �0D EC + 	
�F + ��D EC − 	

�F −
<=(?K�L)

Q + <?K�L
� + <=(?=�L)

Q + <?=�L
�   

where D(C) is the Dirac delta function 

4. Conclusion 

Analytical results of some transmission line equations 

where leakage to ground are negligible were obtained in this 

paper. The conductance and the inductance, which are 

responsible for leakages on the line, are set to zero in the 

model of the general wave equation for the transmission line. 

The resulted partial differential equations were transformed 

to ordinary differential equations by using the Laplace 

transform method and the method of variation of parameters 

was thereafter used to get the particular solution to the 

problem. 
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