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Abstract: Quantum Monte Carlo (QMC) method is a powerful computational tool for finding accurate approximation 

solutions of the quantum many body stationary Schrödinger equations for atoms, molecules, solids and a variety of model 

systems. Using Variational Monte Carlo method we have calculated the ground state energy of the Boron atom. Our 

calculations are based on using a modified five parameters trial wave function which leads to good result comparing with 

fewer parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron 

locations to estimate the ground state energy of Boron. Based on comparisons, the energy obtained in our simulation are in 

excellent agreement with experimental and other well established values. 
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1. Introduction 

Variational Monte Carlo (VMC) method has become a 

powerful tool in Quantum Chemistry calculations [1-3]. In 

most of its current applications the VMC method has become 

a valuable method because of a wide variety of wave 

function forms for which analytical integration would be 

impossible. The major advantage of this method is the 

possibility to freely choose the analytical form of the trial 

wave function which may contain highly sophisticated term 

in such a way that electron correlation is explicitly taken into 

account [4-5]. This is an important feature valid for quantum 

Monte Carlo methods, which are therefore extremely useful 

to study physical cases where the electron correlation plays a 

crucial role. For two-electron system, which considered as 

the simplest few-body systems, VMC method provides 

accurate estimations of the ground and excited state energies 

and properties of atomic and molecular systems [6]. Boron is 

a chemical element with symbol B and atomic number 5. The 

word boron was coined from borax, the mineral from which 

it was isolated, by analogy with carbon, which it resembles 

chemically. Boron is concentrated on Earth by the water-

solubility of its more common naturally occurring 

compounds, the borate minerals. These are mined industrially 

as evaporates, such as borax and kernite. The largest proven 

boron deposits are in Turkey, which is also the largest 

producer of boron minerals. 

The Hylleraas method is a variational method which 

introduces the correlation effects by including explicity the 

inter-electronic distances in the wave function. In recent 

years efforts have been done to develop an approach for 

constructing trial wave functions in order to calculate the 

ground state energy of the Boron atom and achieve high level 

of accuracy. In 2006, the VMC method has been used to 

study the ground state energy of the atoms Li through Kr 

using explicitly correlated wave functions which consists of 

product of a Jastrow correlation factor times a model 

function with 17 variational parameters [7]. The obtained 

results were an improvement over all the previous results. 

Recently, calculations on the ground state of boron atom have 

been made using the single and 150 term wave functions 

constructed with Slater orbitals by M.B Ruiz. [8]. 

Despite the fact that there is no shortage of extremely 

accurate wave functions for the Boron atom and some five-

electron atomic ions, most of these studies search for 

accurate results but nevertheless compact wave functions. 

From this point, [9-13] proposed a simple compact trial 

function for the ground state of the Boron atom which 



 American Journal of Applied Mathematics 2015; 3(3): 106-111  107 

 

provided a very accurate energy in such a way that it could 

considered as the most accurate among existent few-

parameter trial functions. 

In the present paper we shall use VMC method to study 

five- electron system (or Boron atom), which may be studied 

by using different method and different form of trial wave 

functions. Accordingly, we shall use a compact five 

parameters wave function to obtain the ground state energy 

for Boron ground state. The calculation will be done in the 

frame of VMC method. 

2. Many-Bodies Stationary Schrödinger 

Equation 

Let us consider a system of quantum particles, such as 

electrons and ions interacting via Coulomb potentials. Since 

the masses of nuclei and electrons differ by three orders of 

magnitude or more and the Hamiltonian is given by 

�� = − �
�∑ ∇	� −	 ∑ 
�

|
����| + ∑ �
|
��
�|��		,�       (1) 

where i and j label the electrons and I runs over the ions with 

charges ��  . Throughout the review, we employ the atomic 

units, 	�� = ℎ = � = 4�� = 1 , where ��  is the electron 

mass, −� is the electron charge and �  is the permittivity of a 

vacuum. The Schrödinger equation is 

− �
�∑ ∇	�Φ+ #Φ = $ Φ	                       (2) 

Here, ∇	� is the Laplacian operator, Φ is a function of their 

positions, and $  is the molecule’s ground state energy. The 

electrostatic potential # in the molecule is given by 

# = ∑ �
�
|
����| + ∑ �

|
��
�|	��		,�                   (3) 

Here, the first summation is over all electrons and nuclei, 

where ��	 and %� 	 are the nuclear charges and locations, 

respectively. The second summation is over all pairs of 

electrons. 

3. Variational Monte Carlo for the Boron 

Atom 

Variational Monte Carlo (VMC) is based on a direct 

application of Monte Carlo integration to explicitly 

correlated many-body wave functions. The variational 

principle of quantum mechanics, states that the energy of a 

trial wave function will be greater than or equal to the energy 

of the exact wave function. Optimized forms for many-body 

wave functions enable the accurate determination of 

expectation values. Variational Monte Carlo is a method of 

computing the total energy 

〈�〉 = ∑ ()*+)*,�
∑ -)*./�

	                                      (4) 

and its variance ( statistical error) 

	0� = ∑ 1+)*�23)*4.)*.�
5∑ -)*./� 6.                            (5) 

Here, H is the Hamiltonian, Ψ8  is the value of the trial 

wave function at the Monte Carlo integration point	%	. The 

constant $  is fixed at a value close to the desired state in 

order to start the optimization in the proper region. The exact 

wave function is known to give both the lowest value of � 

and a zero variance. If the adjustable parameters in the trial 

wave function are optimized so as to minimize the energy, 

instability often occurs. This happens when a set of 

parameters causes � to be estimated a few sigmas too low. 

Although such parameters will produce a large variance, they 

are favored by the minimization. This problem can be 

avoided only by using a very large number of configurations 

during the optimization of the wave function so as to 

distinguish between those wave functions for which �  is 

truly low and those which are merely estimated to be low. In 

contrast, variance minimization favors those wave functions 

which have a constant local energy. Parameter values which 

do not produce this property will be eliminated by the 

optimization process. As a result, only a small fixed set of 

configurations is needed to accurately determine the 

variance. Previous studies have shown that the rate of 

convergence of a variational calculation can be tremendously 

accelerated by using basis functions which satisfy the two-

electron cusp condition and which have the correct 

asymptotic behavior [12]. Unfortunately, the integrals of such 

functions can rarely be evaluated analytically. Because our 

method uses Monte Carlo integration, we can easily build 

into the trial wave function many features which will 

accelerate convergence. Although, in principle, this 

flexibility leads to an enormous number of possible forms, in 

practice, the ideal trial wave-function form must have a low 

variance, must add adjustable parameters in a straightforward 

manner, and must be easy to optimize. 

4. The Trial Wave Function 

The calculations for the Boron atom obtained previously 

using trial wave functions which takes the form [14]: 

9�1:�, :�, :;, :<, :=4 = 

(6) 

Exp5−α1r� + r� + r; + r<46RDE1α , r=4Y�,G1:̂=4 
where, the symbol :̂=	denotes the angular variables of :=	and 

the function IJK1L , :=4M�,N1:̂=4  is the hydrogen-like wave 

function in the nl-state with effective charge L  . 

This wave function was used to calculate the energy of 

Beryllium ground state with quite accurate results. In the 

present paper we introduce some modifications to this trial 

wave function in order to get more accurate results. Firstly, 

we will consider the correlation between each two electrons. 

In order to include the electron-electro correlation we have to 

modify the form of this trial wave function by multiplying by 

the following factor: 
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O5:	�6 = $%P Q 
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R1�ST
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which expresses the correlation between the two electrons i 

and j due to their Coulomb repulsion. That is, we expect f to 

be small when :	�  is small and to approach a large constant 

value as the electrons become well separated. Then, for the 

ground-state of the Boron	Eq. (6) reduces to the following 

form: 

9�1:�, :�, :;, :<, :=4 = 

    (8) 

$%P5−�1:� + :� + :; + :<46IJK1L , :=4V O5:	�6	��
 

where the indices i, j run over the number of the electrons. 

The variational parameters α 	and W will determined for each 

value of Z by minimizing the energy. The function 

M�,N1:̂=4	of equation (6) is constant for the ground-state of 

Beryllium. 

5. Estimate of the Smallest Eigenvalue 

To estimate the smallest eigenvalue, Let us rewrite 

equation (2) more compactly as 

�Φ =	$ Φ                                    (9) 

where �  represents the sum of both operators on the left-

hand side of equation (9). The variational principle tells us 

[17] that 

X()*+)*,YZ
X)*.[\ ≥ $                             (10) 

The integration is over the three coordinates of each of the 

four electrons, altogether a 12 dimensional problem and Ψ is 

any trial solution to equation (2). The limit of equality holds 

only for the exact solution	Φ, but for approximate solutions, 

called variational estimates of the ground-state energy, the 

left-hand side of equation (10) is usually quite close to	$ . 

The main problem is how to evaluate the two 12-dimensional 

integrals; this is impossible to do analytically and not feasible 

even numerically. But, Monte Carlo is the process that can 

easily simulate 12-dimensional integrals. 

Let us first define the local Energy by, 

	$^ = +)
) = − �

�
∑ ∇�.� )

) + #                    (11) 

The left hand side of (10) can now be written as 

X2_)*.YZ
X)*.YZ

	                                   (12) 

Next, we randomly generate a large sample of 10000 

configurations of 12 variables denoted collectively as I  and 

compute the corresponding	Ψ, D and	$^ . By averaging the 

10000 values of $^, we get an estimate of $ . Unfortunately, 

this estimate will be very inaccurate since our random sample 

of configurations bears, at this point, no relationship to 9� of 

equation (12). 

To fix this, we move each configuration to a new location, 

specified by 

IJ 	= 	I 	+ 	`	a 	+ 	√`	c                     (13) 

where a  is the drift function evaluated at the old location 

I , N is a random vector of 12 independent components from 

the normal distribution (with mean 0 and standard deviation 

1), and ` is an extra parameter called the step size, which 

controls the speed of this motion. This will bring us a step 

closer to the desired distribution of configurations whose 

probability density function is proportional to	9�, but it will 

take dozens of such moves to reach it. Monitoring the 

consecutive sample averages of	$^ , we find no systematic 

change but only random fluctuations after reaching a so-

called equilibration. Once in equilibrium, we continue 

advancing our configuration for as many steps (called 

iterations) as feasible, to reduce the statistical error of the 

final estimate. This is computed by combining all the 

individual sample averages into one. There is only one little 

snag: the result will still have an error proportional to the step 

size 	` . To correct for this, we would have to make ` 

impractically small and equilibration would take forever. 

Fortunately, there is another way, called Metropolis sampling 

[19], for each proposed move (13) we compute a scalar 

quantity 

d = )e.
)3.

$%P f1a + aJ4. (I − IJ + h
� 1a − aJ4,i    (14) 

where the subscripts n and o mean that 9 and D have been 

evaluated at the new or old location, respectively. The move 

is then accepted with a probability equal to T. When T > 1, 

the move is accepted automatically. When a move is 

rejected, the configuration simply remains at its old 

location	I . The step size ` should be adjusted to yield a 

reasonable proportion of rejections, say between 10% and 

30%. Rejecting configurations in this manner creates the 

last small problem, in our original random sample there is 

usually a handful of configurations which, because they 

have landed at “wrong” locations, just would not move. To 

fix this, we have to monitor, for each configuration, the 

number of consecutive times a move has been rejected, and 

let it move, regardless of T, when this number exceeds a 

certain value. After this is done and the sample equilibrates, 

the problem automatically disappears, and no configuration 

is ever refused its move more than six consecutive times. 

To get an accurate estimate of 	$ 	 , we repeat the 

simulation with substantially more iterations, and then 

computing the grand mean of the $^ 	values. In our case, this 

yields −24.5540 atomic units, with an average acceptance 

rate of about 90%. The easiest way to find the 

corresponding statistical error is to execute the same 

program, independently, 5 to 10 times, and then to combine 

the individual results. This improves the estimate to 

−24.5540	 atomic units, with the standard error of 

±0.05326. 

The obvious discrepancy, well beyond the statistical 

error, between our estimate and this value is due to our use 

of a rather primitive trial function. In accordance with the 
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variational principle, our estimate remains higher than the exact value. 

 

Figure 1. 1000 iterations of VMC to reach equilibrium. 

6. Monte Carlo Estimation 

Replacing 9� by	9m in equation (12), the expression then 

yields “nearly” the exact value of	$ , subject only to a small 

nodal error [16]. So, all we need to do is to modify our 

simulation program accordingly, to get a sample from a 

distribution whose probability density function is 

proportional to ΨΦ instead of Ψ�. This can be achieved by 

assuming that each configuration carries a different weight, 

computed from 

n = 1 − `∑ Exp	1−2`o.p4	 × ($^1r4 − $s,      (15) 

where $^1r4	 is the local energy of the configuration as 

computed r  iterations ago, the summation is over all past 

iterations, and $s  is a rough estimate of $  (the variational 

result will do). The sum in (10) “depreciates” the past 

$^ − $s values at a rate that should resemble the decrease in 

serial correlation of the $^  sequence, which can be easily 

monitored during the variational simulation. 

The new estimates of $  are then the correspondingly 

weighted averages, computed at each step and then combined 

in the usual grand-mean fashion. There are two slight 

problems with this algorithm, but both can be easily 

alleviated. 

Firstly, when an electron moves too close to a nucleus, 

$^1r4 − $s 	may acquire an unusually low value, making the 

corresponding n rather large, sometimes larger than all the 

remaining weights combined. We must eliminate “outliers” 

outside the ±10.5 +  . ;
h 4 range. It is better to do this in a 

symmetrical way by truncating the value to the nearest 

boundary of the interval. 

Secondly, The final (grand-mean) estimate may have a 

small, `  -proportional bias. This can be removed only by 

repeating the simulation, preferably more than once, at 

several (say 3 to 5) distinct values of ` , and getting an 

unbiased estimate of $u by performing a simple polynomial 

regression. It is the intercept of the resulting regression line 

(corresponding to ` = 0) that yields the final answer. 

7. Result and Discussion 

In this paper we have calculated the ground state energy of 

the Boron atom using a modified wave function. Moreover, 

we have succeeded to use this trial wave function to obtain 

the energy of the Boron ground state by using VMC Method. 

The iteration averages of $^ will show that equilibration now 

takes many more steps (about 1000, when ` = 0.025) than in 

the case of variational simulation. We have thus decided to 

discard the first 1000 results and partition the remaining 6000 

into six blocks of 1000. We can produce six such values with 

` = 0.050 and ` = 0.075. It is now easy to find the resulting 

intercept. 

Table 1. Monte Carlo Result. 

 Estimate Standard Error P-Value 

1 −24.546707 0.034 2.4747 × 10��< 

x 99.5137 2.48945 3.1413 × 10�{ 

%� −796.109 24.6392 7.3521 × 10�| 

This yields the value of −24.546707 ± 0.034  for the 

corresponding intercept. This is in Reasonable agreement, in 

view of the nodal error, with the experimental value of -

24.541246 atomic units. This visualizes the regression fit is 

Table 2. Energy Values. 

Experiment Energy 

Hylleraas Experiment −24.541246 

Monte Carlo Method −24.546707 

Table-1 shows the final results of the energy using a very 

large of MC points together with the standard deviation given 
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by equation (4) and equation (5). It is clear from Table-2 that, 

the obtained result is of good agreement with the recent 

experimental Hylleraas value. Also, the associated standard 

deviations have very small value; this is due to the large 

number of MC points. The electron-electron correlation 

factor, which has been included in the trial wave function, 

played a crucial role in improving the results. In fact, the 

ground state energy of the Boron atom which was obtained 

previously using the same trial wave function, but without 

introducing the factor, was −24.541246 . It is clear from 

Table-1 that our result for the Boron atom (Z=5) 

is	−24.546707, which is very accurate. 

 

Figure 2. Presenting the energy level as a function of Boron and using a set of Monte Carlo points. 

Table 3. Comparison of the energies for boron atom calculated with different 

methods and the nonrelativistic energy (all values in a.u.)[8]. 

Reference Year Method Energy 

Clementi 1989 HF -24.495670 

Clementi, Roetti 1974 HF -24.498369 

Ruiz 2004 Ref Hy -24.498369 

Clementi, Raimondi 1963 HF -24.498370 

Huzinaga 1977 HF -24.528709 

Froese-Fisheret La 1993 Numerical HF -24.529036 

Mayer 2004 Full-CI -24.530874 

Ruiz 2004 Hylleraas -24.541246 

Froese-Fisher La 1994 Multiref. CI -24.560354 

Estimated 

nonrelativistic 
1993 Full-CI -24.65391 

Ruiz[8] 2004 Hydrogen Like Orbital -24.501187 

Present work  Monte Carlo Method -24.546707 

Finally, in Table 3, we compare our energy results with the 

ones of other methods. The ground state energy obtained 

with Variational Monte Carlo Method was -24.546707 a.u. 

This energy lies 0.056% above the Froese-Fisher et la result 

and is comparable in accuracy to Ruiz result (Table-3)
 
. 

Only the energy obtained by Ruiz [8] lies closer to our 

result and the error was only 0.02%. By comparing with the 

values of Clementi, Raimondi, Froese-Fisheret La, Mayer 

and Huzinaga (Table-3), we see that our result is an improved 

one when compared with experimental result. In a follow-up 

article, it showed that how Monte Carlo procedure can be 

extended to estimate atomic properties, including geometry 

and polarizability, etc. and how to optimize Parameters of a 

trial function, to make the Monte Carlo method more “self-

sufficient. This means that VMC method introduced a very 

well description for the Beryllium ground state using a trial 

wave function expressed in hydrogen-like orbital’s with a 

rather simple factor, describing the correlations between the 

electrons. 
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