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Abstract: In this study, a hybrid approach combining trust region (TR) algorithm and particle swarm optimization (PSO) is 

proposed to solve multi-objective optimization problems (MOOPs). The proposed approach integrates the merits of both TR 

and PSO. Firstly, the MOOP converting by weighted method to a single objective optimization problem (SOOP) and some of the 

points in the search space are generated. Secondly, TR algorithm is applied to solve the SOOP to obtain a point on the Pareto frontier. 

Finally, all the points that have been obtained by TR are used as particles position for PSO; where homogeneous PSO is applied to get 

all nondominated solutions on the Pareto frontier. In addition, to restrict velocity of the particles and control it, a dynamic 

constriction factor is presented. Various kinds of multiobjective (MO) benchmark problems have been reported to show the 

importance of hybrid algorithm in generating Pareto optimal set. The results have demonstrated the superiority of the proposed 

algorithm to solve MOOPs. 

Keywords: Multi-Objective Optimization, Trust Region algorithm, Particle Swarm Optimization, Pareto Optimal Set, 

Weighted Method 

 

1. Introduction 

TR method generate steps with the help of a quadratic 

model of the objective function, define a region around the 

current iterate within which they trust the model to be an 

adequate representation of the objective function and then 

choose the step to be approximate minimzer of the model in 

this region. If a step is not acceptable, they reduce the size of 

the region and find a new minimize. In general, the direction 

of the step changes whenever the size of the TR is altered 

[1,2]. 

Because of the boundedness of the TR, TR algorithms can 

use non-convex approximate models. This is one of the 

advantages of TR algorithms comparing with line search 

algorithms. TR algorithms are reliable and robust, they can be 

applied to ill-conditioned problems, they have very strong 

convergence properties and have been proven to be theoretically 

and practically effective and efficient for unconstrained and 

equality constrained optimization problems [3,4]. Also, The 

TR algorithm has proven to be a very successful 

globalization technique for nonlinear programming 

problems with equality and inequality constraints [5]. 

For MOOPs, Kim and Ryu [6] developed an iterative 

algorithm for bi-objective stochastic optimization problems 

based on the TR method and investigated different sampling 

schemes. Their algorithm does not require any strong 

modeling assumptions and has great potential to work well in 

various real-world settings. In addition, in [7] El-Sawy et al. 

proposed a new algorithm is proposed to solve MOOPs 

through applying the TR method based local search (LS) 

techniques. 

On the other hand, PSO is an Evolutionary Computational 

(EC) model which is based on swarm intelligence. PSO 

inspired by the research of the artificial livings and is 

developed by Kennedy et al. [8]. Similar to EC techniques, 

PSO is also an optimizer based on population. The system is 

initialized firstly in a set of randomly generated potential 

solutions and then performs the search for the optimum one 

iteratively. Whereas the PSO does not possess the crossover 

and mutation processes used in EC, it finds the optimum 

solution by swarms following the best particle. Compared to 

EC, the PSO has much more profound intelligent background 

and could be performed more easily. Based on its advantages, 

the PSO is not only suitable for science research, but also 

engineering applications, in the fields of evolutionary 

computing, optimization and many others. 
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Multi-Objective Optimization (MOO) has been one of the 

most studied application areas of PSO algorithms. Number of 

approaches have been utilized and/or designed to tackle 

MOOPs using PSO. A straight forward approach is to convert 

MOO to a SOOP. Parsopoulos and Vrahatis [9] presented a 

first study of the performance of the PSO in MOOPs. In 

recent years, many particle swarm algorithms were proposed 

for solving MOOPs. For instance, Mousa et al. [10] proposed 

LS based hybrid PSO algorithm for MOOPs. A 

comprehensive survey of the state-of-the-art in Multi-

Objective (MO) particle swarm optimizers can be found in 

[11] where different techniques reported in Multi-Objective 

Particle Swarm Optimization (MOPSO) development have 

been categorized and discussed. 

This study presents a hybrid algorithm combining TR and 

PSO for solving MOOPs, which can overcome the 

disadvantage of the TR method (such as restrictions on the 

TR radius) and solve a class of MOOPs efficiently. It is a 

new algorithm that performs random searching and 

deterministic searching for solving MOOPs. In the proposed 

algorithm, MOOP is converting to SOOP, TR is used to 

obtain a point on the Pareto frontier and homogeneous PSO 

is applied to get all the points on the Pareto frontier. 

2. Multi-Objective Optimization 

The MOO is a very important research area in engineering 

studies because real world design problems require the 

optimization of a group of objectives. Thanks to the effort of 

scientists and engineers during the last two decades, 

particularly the last decade, a wealth of MO optimizers have 

been developed and some MOOPs that could not be solved 

hitherto were successfully solved by using these optimizers 

[12]. The general minimization problem of q objectives can 

be mathematically stated as: 

( ) ( )
( )

( )

minimize: ,  1,2,...,

subject to the constraints: 0,     i 1,2,..., ,

0,      1, 2,..., ,

j
f x f x j q

Ci x p

Ce x e m

 = = ≤ = 
= = 

 (1) 

where, ( )jf x  is the j-th objective function , ( )xCi  is the i-

th inequality constraint, ( )Ce x  is the e-th equality constraint 

and [ ]1 2  , , , nx x x x= …  is the vector of optimization or 

decision variables; where n the dimension of the decision 

variable space. The MOO problem then reduces to finding an 

x such that ( )jf x  is optimized. Since the notion of an 

optimum solution in MOOP is different compared to the 

SOOP, the concept of Pareto dominance is used for the 

evaluation of the solutions. This concept formulated by 

Vilfredo Pareto is defined as follows [13]: 

Definition 1. (Dominance Criteria). For a problem having 

more than one objective function (say, 1, , ,  , 1jf j q q= … > ), 

any two solution a
x  and b

x  can have one of two 

possibilities, one dominates the other or none dominates the 

other. A solution a
x  is said to dominate the other solution b

x , 

if both the following condition are true.  

1. The solution a
x  is no worse (say the operator ≺  denotes 

worse and ≻  denotes better) than b
x  in all objectives, or 

( )j a
f x ≺ ( )j b

f x  for all 1,..,j q=  objectives. 

2. The solution a
x  is strictly better than b

x  in at least one 

objective, or ( ) ( )j a j b
f x f x≻  for at least one 

{ }1, ,j q∈ … . 

If any of the above condition is violated, the solution a
x  

dose not dominates the solution b
x . 

Definition 2. (Pareto optimal solution). *x  is said to be a 

Pareto optimal solution of MOOP if there exists no other 

feasible x such that, ( ) ( )*
j j

f x f x≤  for all 1,..,j q=  and 

( ) ( )*
j j

f x f x<  for at least one objective function 
jf . 

3. Weighted Method 

Weighted method is an intuitive way for MOO. In this 

approach, different objectives are weighted and summed up 

to one single objective. By using weighted method [14], we 

convert the constrained MOOP (1) to SOOP. This method 

consists of creating a single-objective model by weighing the 

q objective functions by assigning a weight to each the 

functions. Through the weighted method the MOOP (1) is 

formulated as: 

( ) ( )

( )
( )

1

minimize       

subject to      0,     i 1, 2,..., ,

                     0,      1,2,..., ,

q

j j

j

f x w f x

Ci x p

Ce x e m

=

=

≤ =

= =

∑
            (2) 

where, 
1 , , qw w… are non-negative weights with 

1 1  1qw w w+ +…+ = . The weights 
1 , , qw w… are 

determined as follows: 

1

,  1,...,
q

j j j

j

w random random j q
=

= ∀ =∑              (3) 

where, random1, random2,…, randomq, are non-negative 

random integers. The following conclusions can be drawn for 

the weighted method: 

� It is computationally very efficient 

� It is conceptually very easy to understand 

� Only one solution can be obtained in one run, assuming 

that the Pareto front is convex 

� The solutions located in the concave region of the 

Pareto front cannot be obtained 

4. Particle Swarm Optimization 

PSO is an evolutionary computation technique motivated 

by the simulation of social behavior [7]. The PSO algorithm 
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is a population based metaheuristic algorithm that applies 

two approaches of global exploration and local exploitation 

to find the optimum solution.  

The algorithm is initialized by creating a swarm, that is, 

population of particles, with random positions. Every particle 

is shown as a vector ( ), ,i i ix v p in a n-dimensional search 

space where ( )1 2, , ,i i i inx x x x…=  and ( )1 2, , ,i i i inv v v v…=  

are the position and velocity, respectively, and 

( )1 2,  , .,i i i inp p p p…=  is the personal best position (pbest) 

found by the i-th particle. In addition, the best position 

obtained by the entire population ( )1 2,  , ,g g g gnp p p p= … is 

computed to update the particle velocity. Based on 
i

p  and 

gp , the next velocity and position of the i-th particle are 

computed using (4) and (5) as follows (the superscripts 

denote number of the iteration t): 

( ) ( )1

1 1 2 2

t t t t

i i i i g i
v wv c r p x c r p x+ = + − + − ,           (4) 

1 1t t t

i i ix x v+ += + ;                                  (5) 

where,   1,2, .,i N= …  and N is the size of the population; w 

is the inertia weight; c1 and c2 are two positive constants, 

called the cognitive and social parameter respectively; r1 and 

r2 are random numbers uniformly distributed within the range 

[0,1].  

5. The Proposed Approach 

In the following, the proposed algorithm is presented. The 

proposed algorithm contains three stages initialization stage, 

TR stage and PSO stage. 

5.1. Initialization Stage 

� Initialize N points in the search space 

� Converting MOOP to SOOP 

� The non-negative weights (w1,…,wm) is generated using 

(3) 

� Construct the weighted problem (2) 

� Converting the general nonlinear optimization problem (2) 

to equality Constrained problem 

� Following Dennis et al. [15], we define the indicator 

matrix ( ) p pW x ×∈ℝ , whose diagonal entries are 

( ) ( )
( )

1     if   0

0     if   0
i

Ci x
w x

Ci x

≥= 
<

                   (6) 

� Using this matrix, the Problem defined in (2) can be 

transformed to the following equality constrained 

optimization problem: 

( )
( ) ( ) ( )

( )

minimize        

subject to       1 2 0,

                      0.

T

f x

Ci x W x Ci x

Ce x

=

=

        (7) 

The above problem can be rewritten as: 

( )
( )

minimize       

subject to       0,

f x

h x =
                            (8) 

where, ( ) ( ) ( ) ( ) ( )   1 2
T

h x Ce x Ci x W x Ci x =
 

.  

The matrix ( )W x  is discontinuous; however, the function 

( ) ( )W x Ci x  is Lipschitz continuous and the function 

( ) ( ) ( )T
Ci x W x Ci x  is continuously differentiable [15]. 

� The Lagrangian function associated with problem defined 

in (8) is given by: 

( ) ( ) ( ), T

k k k k kL x f x h xλ λ= + ;                   (9) 

where, kλ ∈ℝ  is the Lagrange multiplier vector 

associated with equality constraint ( )kh x ∈ℝ . 

� The augmented Lagrangian is the function: 

( ) ( ) ( ) 2

, ; , kx r L x r h xλ λΦ = + ;                 (10) 

where 0r >  is a parameter usually called the penalty 

parameter. 

5.2. TR Stage 

The detailed description of TR algorithm for solving 

problem (8) is presented. 

The reduced Hessian approach is used to compute a trial 

step dk. In this approach, the trial step dk is decomposed into 

two orthogonal components; the normal component 
n

kd  and 

the tangential component
t

kd . The trial step dk has the form

n t

k k k kd d Z d= + , where Zk 
is a matrix whose columns form an 

orthonormal basis for the null space of ( )T

kh x∇ . 

We obtain the normal component 
n

kd
 by solving the 

following TR sub-problem: 

( ) ( )
21

minimize        
2

subject to       ,  

T n

k k

n

k

h x h x d

d ξ

+ ∇

≤ ∆
           (11) 

For some ζ∈ (0,1). 

Given the normal component
n

kd , we compute the 

tangential component t t

k k kd Z d=  by solving the following TR 

sub-problem: 

( )( )

2
2

minimize        ,

1

2

subject to       ,

T

T
T n

k x k k k k

t t T t

k k k

t n

k k k

Z L x H d

d d Z H Z d

Z d d

λ ∇ + 

+

≤ ∆ −

         (12) 

Once the trial step is computed, it needs to be tested to 
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determine whether it will be accepted or not. To do that, a 

merit function is needed. We use the augmented Lagrangian 

function (10) as a merit function. To test the step, we 

compare the actual reduction in the merit function in moving 

from 
k

x  to 
k k

x d+  versus the predicted reduction. 

The actual reduction in the merit function is defined as: 

( ) ( )
( ) ( )

1 1

2 2

1

, ,k k k k k k

k k

Ared L x L x r

h x h x

λ λ+ +

+

= − +

 −
 

         (13) 

The predicted reduction in the merit function is defined as: 

( ) ( ) ( )( ) ( ) ( ) ( )
221

, +
2

T T TT T

k x k k k k k k k k k k k k k k kPred L x d d H d h x h x d r h x h x h x dλ λ  = −∇ − − ∆ + ∇ − + ∇  
              (14) 

where, ( )1k k kλ λ λ+∆ = − .  

If ( ) 0 ;k kAred Pred τ<  where ( )0 0,1τ ∈  is a fixed 

constant, then the step is rejected. In this case, the radius of 

the TR k∆  is decreased by setting 3 ;k kdτ∆ =  where 

( )3 0,1τ ∈ , and another trial step is computed using the new 

TR radius.  

If ( ) 2 ;k kAred Pred τ≥  where 2
0τ >  then the step is 

accepted and set the TR as 

{ }{ }1 max min 1min ,  max ,k kτ+∆ = ∆ ∆ ∆ .  

If ( )0 2
,k kAred Predτ τ≤ <  then the step is accepted and 

set the TR as ( )1 min
max ,k k+∆ = ∆ ∆ . Finally, the algorithm is 

terminated when either 1kd ε≤  or 2 ,T

k x k kZ L h ε∇ + ≤  

for some 1 2
, 0ε ε > .  

5.3. PSO Stage 

In this stage a homogeneous PSO for MOOP is proposed 

with a dynamic constriction factor to restrict velocity of the 

particles and control it [16]. In homogeneous PSO one global 

repository concept is proposed for choosing pbest and gbest, 

this means that each particle has lost its own identity and 

treated simply as a member of social group. The procedure of 

the PSO stage is as follows. 

Step1: Initialization 

• All non-dominated points (which obtained by applying 

TR stage) chosen as particles position
t

ix . 

• PSO parameters such as velocity 
t

iv , inertia weight w 

and learning rates c1 and c2 are set up.  

• Store non-dominated particles in Pareto repository. If 

the specific constraint doesn’t exist for a repository, the 

size of the repository is unlimited. 

Step2: Evaluation 

• Evaluate the MO fitness value of each particle and save 

it in a vector form. 

Step3: Floating 

• Two optimal solutions are chosen randomly for pbest 

and gbest from the repository. 

• Determine the new position of each particle using (4) 

and (5). 

 

Step4: Repairing of Particles 

• Where, the particle i start at the position 
t

ix with 

velocity 
t

iv  in the feasible space, the new position 
1t

ix +
 

in Fig. 1 depends on velocity 
1t

iv +
. 

• To restrict (control) the particle’s velocity
t

iv , a modified 

constriction factor (i.e., dynamic constriction factor) is 

presented to keep the feasibility of the particles. E.g., 

Fig. 1 shows the movement of the particle i through the 

search space without any control factor (dashed line) 

also with a modified constriction factor (solid line). 

Where the particle i start at position 
t

ix  with velocity 
t

iv  

in the feasible space, the new position 
1t

ix +
 depends on 

velocity 
1t

iv +
 making the particle lose its feasibility, so 

we introduce a modified constriction factor: 

2

2

2
χ

τ τ τ
=

− − − +                       (15) 

where, τ is the age of the infeasible particle (i.e., how 

long it is still infeasible) and it is increased with the 

number of failed trials to keep the feasibility of the 

particle. The new modified positions of the particles are 

computed as: 

1 1 t t t

i i i
x x vχ+ += +                             (16) 

 

Figure 1. The movement of the particle i through search space. 

• For each particle, the feasibility is checked, if it is 

infeasible, the χ parameter is implemented to control its 

position and velocity. 
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Step5: Selection and Update the Repository 

• Check the Pareto optimality of each particle. If the 

fitness value of the particle is non-dominated when it 

compared to the Pareto optimal set in a repository, save 

it into the Pareto repository. 

• In the Pareto repository, if a particle is dominated from 

new one, then discard it. 

Step6: Repeat 

• Repeat again step 2 to step 5 until the number of 

iteration reaches to a given t. 

The PSO stage algorithm needs at least two Pareto 

solutions in the first generation to avoid premature 

convergence. Figure 2 shows the flow chart of proposed 

algorithm. 

 

Figure 2. Flow chart of proposed algorithm. 

6. Numerical Results 

In order to validate the proposed algorithm, several 

benchmark problems are solved which are reported in the 

literature [17].  

All test problems have been executed on an Intel ®, core™ 

i3, 3 GHz processor. The proposed approach is coded using 

MATLAB programming language. The parameters adopted 

in the implementation of the proposed algorithm are listed in 

Table 1. 

For evaluating the performance of the proposed approach 



86 M. A. El-Shorbagy:  Weighted Method Based Trust Region-Particle Swarm Optimization for Multi-Objective Optimization  

 

nine well-known MO benchmark problems are used. Each 

test problem consists of two objective functions with/without 

constraints and has continuous/discrete with 

convex/nonconvex Pareto front. The following test problems 

for study are considered [17]: 

Table 1. The parameter adopted in the implementation of the proposed 

algorithm. 

Parameter Value Parameter Value 

N 20-50 ∆max 105∆0 

ε1, ε2 10-7 ∆min 10-3 

τ0 0 PSO iteration 50-200 

τ1 2 w 0.6 

τ2 0.25 c1 2.8 

τ3 0.25 c2 1.3 

∆0 (1,1.5)×∆min τ 15 

Test Problem-1 (Continuous Convex): 

( )
( ) ( )

2

1 1

2 1 2

Minimize     4

Minimize     1 5

f x x

f x x x

=

= − +
 

Subject to: 

[ ]
[ ]

1

2

0,10

0,10

x

x

∈

∈
 

Test Problem-2 (Continuous Convex): 

( )

( )
1 1

2
2

1

Maximize      1.1

1
Maximize      60

f x x

x
f x

x

= −
+

= −
 

Subject to: 

[ ]
[ ]

1

2

0.1,1

0,5

x

x

∈

∈
 

Test Problem-3 (Discrete): 

( )
( ) ( ) ( )

1 1

2

Minimize      

Minimize      

f x x

f x g x h x

=

=
 

( )

( ) ( )

2

2

1 1
1

where      1 10

and          1 sin 8

g x x

f f
h x f

g g
π

= +

 
= − − 

 

 

Subject to: [ ]
[ ]

1

2

0,1

0,1

x

x

∈

∈
 

Test Problem-4 (Continuous Convex): 

( )

( )

2

1 1

2

1

2 2

2

Minimize      

1
Minimize      

f x x

x
f x

x

=

+
=

 

Subject to: 

1

2

0.1,1

0, 5

x

x

 ∈  

 ∈  

 

 Test Problem-5 (Continuous Convex): 

( )
( ) ( )

2 2

1 1 2

2 2

2 1 2

Minimize      

Minimize      2

f x x x

f x x x

= +

= + +
 

Subject to: 

[ ]
[ ]

1

2

50,50

50,50

x

x

∈ −

∈ −
 

Test Problem-6 (Continuous Convex): 

( )
( ) ( ) ( )

2 2

1 1 2

2 2

2 1 2

Minimize      4 4

Minimize      5 5

f x x x

f x x x

= +

= − + −
 

Subject to: 

( ) ( )
( ) ( ) ( )

2 2

1 1 2

2 2

2 1 2

5 25

8 3 7.7

C x x x

C x x x

= − + ≤

= − + + ≥
 

[ ]
[ ]

1

2

0,5

0,3

x

x

∈

∈
 

Test Problem-7 (Continuous Convex): 

( ) ( ) ( )
( ) ( )

2 2

1 1 2

2

2 1 2

Minimize      2 2 2

Minimize      9 1

f x x x

f x x x

= + − + −

= − −
 

Subject to: 

( )
( )

2 2

1 1 2

2 1 2

225

3 10 0

C x x x

C x x x

= + ≤

= − + ≤
 

[ ]
[ ]

1

2

20,20

20,20

x

x

∈ −

∈ −
 

Test Problem-8 (Discrete): 

( )
( )

1 1

2 2

Minimize      

Minimize      

f x x

f x x

=

=
 

Subject to: 

( ) ( )( ) [ ]
( ) ( ) ( ) [ ]

2 2

1 1 2 1 2 1

2 2

2 1 2 2

1 0.1cos 16arctan 0 0,

0.5 0.5 0.5 0,

C x x x x x x

C x x x x

π

π

= + − − ≥ ∈

= − + − ≤ ∈
 

Test Problem-9 (Continuous Non-convex): 

( ) ( ) ( )
( ) ( ) ( )

( )

2 2

1 2

1 2 2 2

3 4 5

2 2 2 2 2 2

2 1 2 3 4 5 6

25 2 2
Minimize      

1 4 1

Minimize      

x x
f x

x x x

f x x x x x x x

 − + −
 = −
 + − + − + − 

= + + + + +
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Subject to: 

( )
( )
( )
( )
( ) ( )
( ) ( )

1 1 2

2 1 2

3 2 1

4 1 2

2

5 3 6

2

6 5 6

2 0

6 0

2 0

2 3 0

4 3 0

3 4 0

C x x x

C x x x

C x x x

C x x x

C x x x

C x x x

= + − ≥

= − − ≥

= − + ≥

= − + ≥

= − − − ≥

= − + − ≥

 

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

1

2

3

4

5

6

0,10

0,10

1,5

0,6

1,5

0,10

x

x

x

x

x

x

∈

∈

∈

∈

∈

∈

 

7. Results and Discussion 

As shown in Figs. 3 -11, the proposed approach is able to 

obtain the Pareto front of these kinds of problems. 

For the test problems 1-5 (Figs. 3-7) we can see that our 

approach able to find well distribution of the Pareto-optimal 

curve in the objective space. Also, it is observed that the 

resulting Pareto front is smooth, uniformly distributed and it 

achieves very good solutions at the two ends of the curve. 

The test problem 6 (Fig. 8) and the test problem 7 (Fig. 9) 

are fairly simple in that the constraints may not introduce 

additional difficulty in finding the Pareto-optimal solutions. 

It can be observed that our approach performs well and have 

a dense sampling of solutions along the true Pareto optimal 

curve. 

The test problem 8 (Fig. 10) and the test problem 9 (Fig. 

11) are relatively difficult. The constraints in the test problem 

8 make the Pareto-optimal set discontinuous. The constraints 

in the test problem 9 divide the Pareto-optimal set into five 

regions. 

 

Figure 3. Pareto front for the Test Problem (1). 

 

Figure 4. Pareto front for the Test Problem (2). 

 

Figure 5. Pareto front for the test problem (3). 

 

Figure 6. Pareto front for the test problem (4). 

 

Figure 7. Pareto front for the Test Problem (5). 

 

Figure 8. Pareto front for the Test Problem (6). 
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Figure 9. Pareto front for the Test Problem (7). 

 

Figure 10. Pareto front for the Test Problem (8). 

 

Figure 11. Pareto front for the Test Problem (9). 

As it can be seen from the graphs for the test problem 8 

(Fig. 10), our approach displayed a better distribution of the 

Pareto optimal points and there are no gaps between the 

nondominated solutions which Making the curve is smooth. 

For the test problem 9 (Fig. 11), it can be seen that our 

approach gave a good sampling of points at the mid-section 

of the curve and found a few points in the rest of the curve. 

Generally we can say that the results have demonstrated 

that the proposed algorithm can successfully find the Pareto 

optimal for all test problems except test problem 9; where it’s 

Pareto is nonconvex in the objective space. As we know that 

the classical techniques aim to give a single point (solution) 

at each run of problem solving but, the proposed approach 

generates the set of Pareto optimal solution, which provides 

the facility to save computing time. 

There are usually two important aspects of MOO 

performance. One is the spread across the Pareto optimal 

front and the other is the ability to attain the global optimum 

or final tradeoffs. Every MO optimizer should have the 

ability of exploration and exploitation to achieve these two 

goal simultaneously. There are several metrics to express 

these two aspects with a quantitative assessment. 

To evaluate the proposed algorithm, the Generational 

Distance (GD) criterion is used [6]. When the optimal Pareto 

set is known, GD is a way of estimating how far are the 

elements in the set of nondominated vectors found so far 

from those in the Pareto optimal set and is defined as follows: 

1

Nv Nv

ii
d

GD
Nv

==
∑                               (17) 

where, Nv is the number of vectors in the set of nondominated 

solutions found so far and di is the Euclidean distance 

between each of these and the nearest member of the Pareto 

optimal set. If all the solution candidates are in the Pareto 

optimal set, then the value of GD is 0. 

Table 2 shows the GD criterion for the nine test problems. 

In Table 2, we can see that GD for the first 8 problems is very 

small that mean the approximate Pareto obtained by the 

proposed approach is very near to the true Pareto solution. 

On the other hand, for test problem (9) we can see that GD 

criterion is greater than the other test problems. This is due to 

that this problem has nonconvex Pareto solution. 

Table 2. The GD criterion for test problems. 

Test problem Generational Distance (GD) 

Test problem (1) 0.00010458 

Test problem (2) 0.00655497 

Test problem (3) 0.00569784 

Test problem (4) 0.00549784 

Test problem (5) 0.00012578 

Test problem (6) 0.00048679 

Test problem (7) 0.00026457 

Test problem (8) 0.00075481 

Test problem (9) 0.01587945 

8. Conclusion 

This study presents a hybrid algorithm combining TR and 

PSO for solving MOOPs. It is a new algorithm that performs 

random searching with deterministic searching and integrates 

the merits of both TR and PSO. In the proposed algorithm, 

MOOP converting to SOOP, TR is used to obtain a point on 

the Pareto frontier and homogeneous PSO with a dynamic 

constriction factor is applied to get all the points on the 

Pareto frontier. Various kinds of MO benchmark problems 

showed the effectiveness of the new algorithm and illustrate 

the successful result in finding a Pareto optimal set. The 

following are the significant contributions. 

� The present work addressed an important task of 
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combining TR with PSO to not find a single optimal 

solution, but to find a set of nondominated solutions 

� Using the randomicity PSO and the high efficiency of 

TR method, can overcome the limitation of TR method 

and solve efficiently a class of MOOPs 

� The proposed algorithm does not have any restrictions 

on the number of the Pareto optimal solutions found; 

where it keeps track of all the feasible solutions found 

during the optimization 

� The proposed approach can be solve nonconvex 

MOOPs but cannot be generate all Pareto points on the 

frontier 

� The numerical results reveal that the proposed approach 

can generate well-distributed sets of Pareto points very 

efficiently and is thus very suitable for engineering 

MOOPs and has good application value 

� Using the GD criterion show that the proposed 

algorithm give good approximation of the Pareto 

optimal solution. 

� When the initial repository has less than 3 Pareto 

solutions, the good result couldn't be expected and If the 

initial Pareto solutions saved in repository have good 

diversity, then this algorithm have a better results 

Further research will concentrate on the possibilities to 

extend the proposed technique to deal more nonconvex 

MOOPs by using another methods for converting MOOP to 

SOOP. 
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