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Abstract: In many real applications, the data of classification problems cannot be precisely measured. However, in an 

increasingly complex environment, these variables can be imprecise, qualitative or linguistic. In such a case, fuzzy set theory 

seems to be the convenient tool to fill this insufficiency. Thus, we proposed a new approach, based on the ranking function, 

which consists in solving the classification problems via fuzzy linear programming model. This approach has been applied for 

the financial distress firms. The obtained results are satisfactory in terms of correctly classified rates 
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1. Introduction 

The bankruptcy problem has become more and more 

important as the competition between financial institutions 

has come to a totally conflicting stage. More and more 

companies are seeking better strategies through the help of 

credit scoring models and hence discriminant analysis 

techniques have been widely used in different credit 

evaluation processes. Therefore, classification problems are 

one of the applications that have gained serious attention 

over the past decades. 

To slove the classification problem, there are many 

parametric discriminant methods proposed, the first is the 

linear discriminant function who is the oldest discriminant 

method initiated by Fisher in 1936 [14], it is the optimal 

combination which separates the averages from two groups. 

 This method of discrimination requires that the sample be 

distributed normally and that the variances-covariances 

matrixes of the two groups are homogeneous. The second 

method is the quadratic function suggested by Smith in 1947 

[3], this method supposes the normality of the sample with 

heterogeneous variances-covariances matrixes. The last 

parametric method of discrimination is the logistic regression, 

which is an econometric method whose endogenous variable 

is binary, it requires neither the normality of the sample nor 

the homogeneity of the variances-covariances matrixes of the 

groups.  

Recently, several linear programming models were 

proposed for resolving the classification problems by various 

authors such as Freed and Glover [10, 11, 12], Glen  [8], 

Bajgier and Hill [16], Hasan and al., [1], Markowski and 

Markowski [13], Gehrlein [17], Glover and al., [6], Nath and 

Jones [15], Jones [4], Koehler and Erenguc [7] and Stam and 

Ragsdale [2].  

Nevertheless, the all linear programming models suppose 

that the variables (or attributes) are measured with certainty. 

However, in an increasingly complex environment these 

variables can be imprecise, qualitative or linguistic. From 

where need for the recourse to fuzzy set theory (L. zadeh [9]). 

In this respect, we proposed a new approach, which consists 

in solving the classification problems via fuzzy linear 

programming, models based on ranking function proposed by 

F. Hosseinzadeh Lotfi and B. Mansouri [5]. 

The rest of the paper is organized as follows. In Section 2 

we define the ranking function and these properties. In 

section 3, we present our new approach to solving the linear 

fuzzy classification problems. In section 4, the empirical 

study was carried out on a sample of 65 Tunisian firms, for 

which financial and account statements data are collected and 

14 financial ratios are calculated. And in section 5, we give 

the concluding points and the future research. 

2. Ranking Function 

To deal quantitatively with imprecise data in classification 
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problems, the concept of fuzzy has been introduced. When 

variables are fuzzy, the objective function and the constraints 

of the decision model also become fuzzy.  

In fact, we represent an arbitrary fuzzy by 

( , , )
m l u

a a a a=ɶ  such that: m
a

: medium value; l
a

:  lower 

value and u
a

: upper value. According to F. Hosseinzadeh 

Lotfi and B. Mansouri  [5], one of the most effective 

approaches to control all fuzzy numbers F(R) is to define a 

ranking function : ( )F R R→τ  such as: 

� a bɶɶ ≻  if and only if ( ) ( )a b≥τ τ  

� a bɶɶ ≻
 if and only if ( ) ( )a b>τ τ  

� a b≈ ɶɶ
 if and only if ( ) ( )a b=τ τ  

With aɶ and bɶ  are fuzzy numbers. 

We restrict our attention to linear ranking function which 

is a ranking function τ such that: ( ) ( ) ( )ka b k a b+ = +ɶ ɶɶ ɶτ τ τ  

for all aɶ  and bɶ  belonging to ( )Rτ  and for k R∈ . Indeed, 

for a fuzzy number , , )( m l ua aa a=ɶ  we use the ranking 

function 
1 1

( ))
2 2

( ) ( m l ua aa a + +=ɶτ .  

Hence, for the triangular fuzzy numbers ( , , )m l ua a a a=ɶ  

and , , )( m l ub bb b=ɶ we have: 

1 1
( ) ( )

2 2
( ) m l u m l ua a b ba b a b+ + ≥ + +⇔ɶɶ ≻  

3. Proposed Methodology 

Suppose there are n observations denoted by 

( 1, , )
i

i nX = …  each observation is characterized by p 

independent fuzzy variables denoted by ( 1, , )ij j px = …ɶ  for 

the ith observation. Suppose also that the observations are 

classified into two groups 1G and 2G containing, respectively, 

1n  and 2n observations such as: 1 2G GG ∪ =  and 

1 2n n n+ = . The membership of observations in each group 

is known a priori. The objective is to find a rule that correctly 

classifies most imprecise observations. This rule enables us 

to find the group membership of any new imprecise 

observation. The classification rule is obtained from two 

stages. In stage 1 we determined a nonparametric function 

which reclassifies the observations; the second stage explains 

how to determine the membership of the observations which 

were not correctly classified at a stage.  The objective is to 

minimize the total deviation of misclassified observations. 

These two stages are mathematically formulated as follows: 

1 2

1 2

1 1 1

1

2 2 2

1

1

1 1 2 2

                                       (3.1)

Subject to

( ) 1, ,

( ) , ,

( ) 1 

, , , 0,  1, ,

i i

i G i G

p

j j ij i i

j

p

j j ij i i

j

p

j j

j

i i i i

j

Min d d

w w x d d b i G

w w x d d b i G

w w

d d d d i n

w

+ −

∈ ∈

+ − + −

=

+ − + −

=

+ −

=

+ − + −

+

+

− + − ≈ + ∈

− + − ≈ ∈

+ =

≥ =

∑ ∑

∑

∑

∑

ɶ

ɶ

…

, 0,              1, ,jw j p− ≥ = …

 

In the above model jw +
 and jw −

 represent, respectively, 

the positive and negative weights, 
1id +  and 

1id −  represent, 

respectively, the positive and negative deviations of the 

observations of 1G . 
2id +  and 2id −   represent, respectively, the 

positive and negative deviations of the observations of 2G .  

The model (1) is a fuzzy linear programming model, to 

obtain an equivalent deterministic model we use the ranking 

function τ. According to the property a b≈ ɶɶ if and only if 

( ) ( )a b=τ τ it is possible to change the previous model as 

follows:  

1 2

1 2

1 1 1

1

2 2 2

1

1

1 1 2

                                                (3.2)

Subject to

( ( ) ) ( 1), ,

( ( ) ) ( ), ,

( ) 1 

, ,

i i

i G i G

p

j j ij i i

j

p

j j ij i i

j

p

j j

j

i i

Min d d

w w x d d b i G

w w x d d b i G

w w

d d d

+ −

∈ ∈

+ − + −

=

+ − + −

=

+ −

=

+ −

+

− + − = + ∈

− + − = ∈

+ =

∑ ∑

∑

∑

∑

ɶ

ɶ

τ τ

τ τ

2, 0,  1, ,

, 0,              1, ,

i i

j j

d i n

w w j p

+ −

+ −

≥ =

≥ =

…

…

 

According to the properties of the ranking function ( )τ , 

we can replace the first two constraints by:  

1 1 1

1

2 2 2

1

 ( ) ( ) ( 1), ,

( ) ( ) ( ), ,

p

j j ij i i

j

p

j j ij i i

j

w w x d d b i G

w w x d d b i G

+ − + −

=

+ − + −

=

− + − = + ∈

− + − = ∈

∑

∑

ɶ

ɶ

τ τ

τ τ
 

The final model in the first stage, when we apply the 

ranking function (τ), is formulated as follows: 
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1 2

1 2

1 1 1

1

                                                                  (3.3)

Subject to

1 1
( ) ( ) 1, ,

2 2

1 1
( ) ( )

2 2

i i

i G i G

p
m l u

j j ij ij ij i i

j

m l u

j j ij ij ij

Min d d

w w x x x d d b i G

w w x x x d

+ −

∈ ∈

+ − + −

=

+ −

+

 − + + + − = + ∈ 
 

 − + + + 
 

∑ ∑

∑

2 2 2

1

1

1 1 2 2

, ,

( ) 1 

, , , 0,  1, ,

, 0,              1, ,

p

i i

j

p

j j

j

i i i i

j j

d b i G

w w

d d d d i n

w w j p

+ −

=

+ −

=

+ − + −

+ −

− = ∈

+ =

≥ =

≥ =

∑

∑

…

…

 

Let ( 1, , )j j jw w w j p
∗ ∗∗ + −= − = … and *b are the optimal 

solutions of the model above, the classification rule is as 

follows: 

� 
* *

1

1

1 1
( ) ( ) 1, ,

2 2

p
m l u

j j mj mj mj m

j

w w x x x b x G+ − ∗

=

 − + + ≥ + ∈  
∑  

� 
* *

2

1

1 1
( ) ( ) , ,

2 2

p
m l u

j j mj mj mj m

j

w w x x x b x G+ − ∗

=

 − + + ≤ ∈  
∑  

Otherwise mx  belongs to the area of overlap. In order to 

classify the observation mx , the second stage begins. Before 

starting the second stages we define the following sets: 

� 1
1

1 1
/ ( ( )) 1

2 2

p
m l u

j ij ij ij
j

D i G w x x x b∗ ∗

=

 = ∈ + + ≥ + 
 

∑  

� 2
1

1 1
/ ( ( ))

2 2

p
m l u

j ij ij ij
j

D i G w x x x b∗ ∗

=

 = ∈ + + ≤ 
 

∑  

� 0
1

1 1
/ ( ( )) 1

2 2

p
m l u

j ij ij ij
j

D i G b w x x x b∗ ∗ ∗

=

 = ∈ < + + < + 
 

∑
 

� { }1 1/C i G i G= ∈ ∈ , { }2 2/C i G i G= ∈ ∈ , 

1 1 1G G C′ = − ,  2 2 2G G C′ = −  

Hence, the model of the second stage is formulated as 

follows: 

1 2

1 2

1

1

                                                              (3.4)

Subject to

1 1
( ) ( ) 1,             ,

2 2

1 1
           ( ) (

2 2

i i

i G i G

p
m l u

j j ij ij ij

j

m l

j j ij ij i

Min d d

w w x x x b i C

w w x x x

+ −

′ ′∈ ∈

+ −

=

+ −

+

 − + + ≥ + ∈ 
 

− + +

∑ ∑

∑

1 1 1

1

2 2 2

1

2

1

1

) ,  ,

1 1
           ( ) ( ) ,  ,

2 2

1 1
( ) ( ) ,            ,

2 2

( ) 1 

             

p
u

j i i

j

p
m l u

j j ij ij ij i i

j

p
m l u

j j ij ij ij

j

p

j j

j

d d c i G

w w x x x d d c i G

w w x x x b i C

w w

b c b

+ −

=

+ − + −

=

+ −

=

+ −

=

  ′+ − = ∈ 
 

  ′− + + + − = ∈ 
 

 − + + ≤ ∈ 
 

+ =

≤ ≤ +

∑

∑

∑

∑

1 1 2 2

1

, , , 0,  1, ,

, 0,              1, ,

i i i i

j j

d d d d i n

w w j p

+ − + −

+ −

≥ =

≥ =

…

…

 

Let now ( 1, , )j j jw w w j p
∗ ∗∗ + −= − = …  and *c are the 

optimal solutions obtained in the second stage. Then the 

classification rule is as follows: 

� 1

1

1 1
( ) ( ) , ,

2 2

p
m l u

j j mj mj mj m

j

w w x x x c x G+ − ∗

=

 − + + ≥ ∈  
∑  

� 2

1

1 1
( ) ( ) ,

2 2

p
m l u

j j mj mj mj m

j

w w x x x c x G+ − ∗

=

 − + + ≤ ∈  
∑  

4. Empirical Study and Results 

Our data base which was obtained from the “bourse des 

valeurs mobilières de tunisie (bvmt)” web site 

(http://www.bvmt.com.tn) based on a real data of 65 Tunisian 

firms divided into two groups. The first group ( 1G ) consists 

of 46 non-bankruptcy firms. The second group ( 2G ) 

constituted of 19 bankruptcy firms. Each firm is described by 

14 financial ratios. 

In this empirical study, we assumed that the 14 financial 

ratios characterizing the 65 firms are fuzzy triangular 

numbers.  

The membership function of these variables are given in 

the Fig 1: 
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Figure 1. The membership functions of the 14 financial ratios 

In the remainder of this section, we will exhibit the 

performance of the fuzzy classification linear programming 

using the ranking function defined in section 2. 

The coefficients of the discriminant function and the value 

of the objective function of the first and the second stage of 

this model are given by the following table 1 (all results are 

given by the LINDO software): 
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Table 1. The coefficients of the discriminant function of the first and the 

second stage 

 Stage1 Stage2 

1w+
 0.0000 

1w−
 0.0000 

1w+
 0.0000 

1w−
 0.0000 

2w+
 0.0000 

2w−
 0.0000 

2w+
 0.0000 

2w−
 0.2432 

3w+
 0.0000 

3w−
 0.0000 

3w+
 0.0000 

3w−
 0.0001 

4w+
 0.0000 

4w−
 0.0000 

4w+
 0.0000 

4w−
 0.0895 

5w+
 0.0000 

5w−
 0.0000 

5w+
 0.0000 

5w−
 0.0000 

6w+
 0.0000 

6w−
 0.0000 

6w+
 0.0000 

6w−
 0.0000 

7w+
 0.0000 

7w−
 0.2267 

7w+
 0.0000 

7w−
 0.2742 

8w+
 0.0000 

8w−
 0.0000 

8w+
 0.0000 

8w−
 0.0053 

9w+
 0.0000 

9w−
 0.5627 

9w+
 0.0000 

9w−
 0.1211 

10w+
 0.0000 

10w−
 0.0765 

10w+
 0.0000 

10w−
 0.0332 

11w+
 0.0000 

11w−
 0.0000 

11w+
 0.0221 

11w−
 0.0000 

12w+
 0.0000 

12w−
 0.0000 

12w+
 0.0000 

12w−
 0.0000 

13w+
 0.1340 

13w−
 0.0000 

13w+
 0.0000 

13w−
 0.0000 

14w+
 0.0000 

14w−
 0.0000 

14w+
 0.0000 

14w−
 0.2113 

*b  -1.0884   
*b  -0.7412   

    
*c  -0.4118   

VOF 10.9998   VOF 0.1019   

VOF: Value of the Objective Function 

The objective of the first stage is to identify the overlap 

between the observations based on the score given by the 

first discriminant function. Indeed, there is an overlap if and 

only if we have the classification score is between *b and  

* 1b + (i.e

14

1

1.0884 0.0884j ij

j

w x
=

− < < −∑ ). 

The classification score showed the existence of an 

overlap between observations. The result of assigning 

observations at this stage showed that 19 observations belong 

to '
1G and 16 observations belong to '

2G . 

While, the objective of the second stage is to find a new 

discriminant function with a new threshold to reclassify 

misclassified observations. 

Hence, the new classification rule is as follows: 

If

14
*

1

( 0.4118)j ij

j

w x c
=

≥ −∑ the observations belong to 1G  

If

14
*

1

( 0.4118)j ij

j

w x c
=

< −∑ the observations belong to 2G . 

Moreover, it was noted that the value of the objective 

function in stage 2 has decreased compared to stage 1. 

With regard to any classification problem, we must 

evaluate the performance of our results by referring to the 

criterion of the percentage of correctly classified. The 

classification result of our approach is given by the following 

table 2: 

 

Table 2. Correct classification rate of proposed method 

Group 
The provided affectation Class 

Total 
G1 G2 

Original Effective 
G1 43 3 46 

G2 1 18 19 

Rate 
G1 93.478 6.522 100 

G2 5.264 94.736 100 

According to table1,we can remark that only three non-

bankruptcy firms thatarereportedasbankruptcyfirms (93.478% 

of the firmsin the first group are correctly classified) and one 

bankru ptcy firm siscl assified in the group of non-bankru 

ptcy firms (94.736% firms in the second group are correctl 

yclassi fied). Hence, the correct class if  icationrate given by 

the proposed approachis 94.107%.There sultob tained by the 

proposed metho disver ysatis factory. 

5. Conclusion 

The aim of this paper is to evaluate a new approach for 

solving classification problems in the presence of fuzzy 

variables. In the first stage we have solved a first linear 

programming model to identify the overlap between the two 

groups. In the second stage, we solved a second linear 

programming model. While, the objective of the second stage 

is to find a new discriminant function with a new threshold to 

reclassify misclassified observations. To evaluate our 

approach, we calculated the rate of good classified obtained 

by the proposed method. This rate is equal to 94,107%. 

The result is satisfactory and shows the ability of this 

procedure to solve classification some problems. 

Given the relevance of this approach and its applicability 

to various classification problems, we think it would be 

interesting to show case our work: 

� Adapting the developed method for other linear and 

nonlinear classification programming models; 

� Extending the scope to other classification problems 

such as medical diagnostic, credit scoring etc. 
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