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Abstract: In this research, a discrete-time Markov process for HIV/AIDs epidemic modeling, which takes into account 

the dynamic of the HIV; the number of susceptible contracting HIV, the number of infective developing AIDS and the 

parameters influencing these outcomes is designed. This is to determine the behaviour of the epidemic and to keep it under 

control. Each parameter in the model was varied at different values while others are kept constant to determine the effects 

of the parameter on the disease states, and to ultimately determine the more important parameter(s) necessary to control the 

epidemic. By simulation, it was revealed that the susceptible people in a population depletes in a negative exponential form 

after contracting HIV, the infectives grow and decay in a log logistic form, while the AIDS people in the population grow in 

a positive exponential form. The rate at which susceptible becomes infective and the rate at which infective becomes AIDS 

are crucial parameters which when kept low, the epidemic is kept under control.  
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1. Introduction 

AIDS is an infectious disease caused by a retrovirus 

called Human Immunodeficiency Virus (HIV), Coffin 

(1986). The prime targets of HIV are the T4 cells (CD4
(+)

 T 

helper cells) resulting in the collapse of immunization 

system in the body and hence death. 

In Nigeria, AIDS was first diagnosed in 1985 in a female 

teenaged less than 14 years but was reported in 1986. This 

case was diagnosed in Lagos, one of the most populous city 

in Nigeria Nasidi et al (1986). Twenty-seven years after, the 

disease has become a massive epidemic which has become 

not only a health burden but also a socio-economic problem. 

One of the most urgent challenging tasks is how to control 

the HIV epidemic. For this purpose and for understanding 

the HIV epidemic, mathematical models that take into 

account the dynamics of the HIV epidemic and the HIV 

biology are definitely needed. 

Van Druten et al (1987) and Isham (1988) derived 

deterministic approximation to susceptible becoming 

infectives and infectives becoming AIDS in a population of 

homosexuals. The prevalence of the infection increases 

exponentially in the early stages of the epidemic. 

According to Trottier and Philippe (2002), the first step in 

deterministic model consists of having a complete and 

realistic picture of the biology of the disease understudy, 

and select a parsimonious model. This was applied in 

measles, an infectious disease. It was discovered that any 

prediction of the number of new cases in an epidemics is 

not straight forward as the relationships among the various 

model compartment are non-linear. Allen and Burgin (1998) 

developed a discrete time deterministic and stochastic 

Susceptible, Infective, and Susceptible (SIS) models. They 

also developed a discrete time deterministic and stochastic 

Susceptible, Infective, and Recovered (SIR) models. These 

previous works are the framework for the model adopted in 

this research work to understand the behaviour of the three 

states of the HIV/AIDS epidemic and determine some 

crucial parameters to control the epidemic. 

The objective of this research is to use the discrete time 

Markov process for HIV/AIDS epidemic modeling to 

determine the behaviour of the epidemic on the number of 

susceptibles, number of infectives and number of AIDS 

cases. It is also to determine the effects of the parameters 

influencing the epidemic on the numbers of these three 

groups to ultimately determine the crucial parameters to 

control the HIV/AIDS epidemic. The scope of this work is 

limited to number of susceptibles contracting HIV, number 

of infectives developing into AIDS, rates susceptible 

becomes infective, rates infective become AIDS, AIDS 
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death rates and natural death rates, and using computer 

simulation to determine the result of the model.

2. The Model 

We first describe the deterministic epidemic model. The 

model consists of four differential equations, one for each 

of the three disease states; susceptibles, infectives and 

AIDS cases, with the number in each class denoted by S

I(t) and A(t) respectively. Secondly, we develop a stochastic 

model, a discrete – time Markov process model, based on 

the deterministic model. The stochastic var

model is due to the variability in the immigrant, death and 

infection process and does not account for environmental 

variability. Thirdly, we describe the simulation procedure.

2.1. The Deterministic Model 

The deterministic model assumes that S(t), I(t) and A(t) 

are deterministic functions of time ignoring completely the 

random nature of these numbers. Assuming a homogenous 

model, the system of differential equations for the 

deterministic model based on the assumptions given below 

are  
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where α>o, γ >0, d1 ≥0, d2 >0. 

And S + I + A = N 

α = Rate at which a susceptible becomes an infective 

γ = Rate at which an infective becomes AIDS case 

d2 = AIDS death rate  

d1 = Natural death rate  

N = Population size.  

2.2. Discrete – Time Markov Process Model

The stochastic model is formulated in 

stochastic process. The stochastic process is a collection of 

random variables, in this model they are S(t), I(t) and A(t) 

denoting random variable for numbers of susceptible, 

infectives and AIDS people respectively at time t. The time 

is discrete and the values of the random variables are also 

discrete state spaces. The future state of the process 

depends only on the current state. 

The stochastic equations based on the deterministic 

 

Since our goal is to study the behaviour when I 

use numerical simulations based on the transition 

probabilities (instead of applying the forward kolmogrov 

equations) to study the behaviour of the stochastic model. 
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Time Markov Process Model 

The stochastic model is formulated in terms of the 

stochastic process. The stochastic process is a collection of 

random variables, in this model they are S(t), I(t) and A(t) 

denoting random variable for numbers of susceptible, 

infectives and AIDS people respectively at time t. The time 

rete and the values of the random variables are also 

discrete state spaces. The future state of the process 

The stochastic equations based on the deterministic 

model are. 

S(t + ∆t) = S - 

I(t + ∆t) = I + SIα/N 

A (t + ∆t) = A +   γ 

The random variable S can be expressed in terms of the 

other variables, that is, S(t) = N 

model is described in terms of the dynamics of the two 

random variables I(t) and A(t). Then I(t), A(t) 

and I(t) + A(t) ≤N. These two variables have a joint 

probability function.  

P(i,a) (t) = Prob {I(t) = i, A(t) = a}.

Let ∆I denote change in the random vari

interval  (t, t + ∆t).    

Let ∆A denote change in the random variable A at the 

time interval (t, t + ∆t) 

The transition probabilities for the multivariate marko

process are given as follows: 

P(i + j, a + k), (i,a)∆t = Prob {(∆I,∆A) = (j

(i,a)} 

Where, 

j = 0 implies that no change in the number of 

j = 1 implies an increase in the number of infectives by 

one, 

j = -1 implies a decrease in the number of infectives by 

one, 

k = 0 implies no change in the number of

k = 1 implies an increase in the number of AIDS by one

k = -1 implies a decrease in the number of AIDS by one.

The process is time homogenous.

Using the lower case letters s, i and a to denote the 

values of the random variables S,I and A, the joint 

probability function, 

P(i,a) (t) = Prob {(t) = i, A(t) = a} is the solution of the 

forward Kolmogrov differential equations.

Since our goal is to study the behaviour when I ≠ 0, we 

use numerical simulations based on the transition 

probabilities (instead of applying the forward kolmogrov 

equations) to study the behaviour of the stochastic model.  

2.3. Assumptions of the Model

Consider a large population of human adults consisti

of males and females. Then there are three kinds of people 
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 SIα/N                                  (4) 

/N – (d1 + γ)I                         (5) 

I – d1A – d2A                       (6) 

The random variable S can be expressed in terms of the 

other variables, that is, S(t) = N – I(t) – A(t). The DTMC 

ibed in terms of the dynamics of the two 

I(t) and A(t). Then I(t), A(t) � {0,1,…,N} 

and I(t) + A(t) ≤N. These two variables have a joint 

P(i,a) (t) = Prob {I(t) = i, A(t) = a}. 

Let ∆I denote change in the random variable I at the time 

Let ∆A denote change in the random variable A at the 

The transition probabilities for the multivariate markov 

 

P(i + j, a + k), (i,a)∆t = Prob {(∆I,∆A) = (j,k)/(I(t), A(t) = 

 

change in the number of infectives, 

implies an increase in the number of infectives by 

implies a decrease in the number of infectives by 

k = 0 implies no change in the number of AIDS, 

implies an increase in the number of AIDS by one 

1 implies a decrease in the number of AIDS by one. 

The process is time homogenous. 

Using the lower case letters s, i and a to denote the 

values of the random variables S,I and A, the joint 

P(i,a) (t) = Prob {(t) = i, A(t) = a} is the solution of the 

forward Kolmogrov differential equations. 

 

Assumptions of the Model 

Consider a large population of human adults consisting 

of males and females. Then there are three kinds of people 
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relevant to HIV epidemic in the population. These are the S 

people (Susceptible people), I people (infective people) and 

A people (AIDS cases). S people are without the virus but 

can contract it to become I people through sexual contact 

with I people or A people or by sharing needles intravenous 

drug use or through blood transfusion of contaminated 

blood. I people are those who have contracted the virus and 

can transmit to S people through sexual contact or sharing 

contaminated needles with I people. According to CDC, 

(1992) quoted by Tan and Xiang (1999), an I person will be 

classified as a clinical AIDS patient (A person) when this 

person develops AIDS symptoms or who has CD4
+
 T – cell 

counts fall below 200/mm
3
. 

The following assumptions are made by Tan Wai (1999). 

(a) Because of the awareness of AIDS, there are no sexual 

contact or intravenous drug contact with AIDS cases.  

(b) There is only one sexual activity level so that each 

person in the population has the same number of 

different sexual partners per unit time.  

(c) AIDS spread through sexual contact mainly between S 

people and I people, ignoring other transmission 

avenues.  

(d) The number of immigrants is equal to the number of 

deaths and migration out of the S people and I people 

in the population.  

(e) The infection duration of the I people have no 

significant impacts on the HIV transmission. Then let 

γ∆t be the probability of I person becoming A person 

during (t, t + ∆t).  

(f) People pick up their sexual partners randomly from 

the population (random mixing or proportional 

mixing).  

Let N(t) = S(t) + I(t) and let α I/N∆t be  

The probability of S individual becoming an I individual.  

2.4. Simulation Procedure 

Matlab program is used to simulate the discrete time 

markov chain epidemic model. S(t), I(t) and A(t) denoting 

the susceptible, the infective and the AIDS cases which are 

the random variables such that S(t), I(t) and A(t) Є{O, 

I,…,N}, and N = S(t) + I(t) + A(t). The outcome of S(t), I(t) 

and A(t) depend on the transition probabilities. The initial 

conditions are N = 100, I(0) = 2 and A(0) = 0 

Given the set of parameters; rate at which susceptible 

becomes infective (α), rate at which infective becomes 

AIDS (γ), AIDS death rate (d2) and natural death rate (d1), 

the simulation was done such that an epidemic would 

develop. The value of each parameter is varied while values 

of other parameters are fixed. 

(a) When α is varied (0.08, 0.1, 0.3, 0.5, 0.8) and other 

parameters are fixed at � � 0.0245, �� �

0.0045,  �� � 0.0012. 

(b) When �  is varied (0.00045, 0.0045, 0.0145, 0.0445) 

while other parameters are fixed at � � 0.3, �� �

0.0012, �� � 0.0045  . 

(c) When d2 is varied (0.00085, 0.0015, 0.0045, 0.0105) 

while other parameters are fixed at � � 0.3, � �

0.0245, �� � 0.0012. 

(d) When d1 is varied (0.00012, 0.0012, 0.0032, 0.0062, 

0.0102) while other parameters are fixed at � �

0.3, � � 0.0245, �� � 0.0045 

3. Results 

The results from the simulated data were obtained and 

presented in graphs. The pattern of the three disease states 

were studied with respect to time. The effects of the 

parameters γ, d1 and d2 are studied on the infectives and 

AIDS cases, while the effect of α is studied on the three 

disease states. 

3.1. Stochastic Behaviour of the Three Disease States 

The stochastic behaviour of the three disease states is 

shown in Figure 3.1, where rate at which susceptible 

becomes infective (α) is 0.29, rate at which infective 

becomes AIDS (γ) is 0.0245, natural death rate (d1) is 

0.0012 and AIDS death rate (d2) is 0.0045, and the 

population size N is 100. The figure typifies what occurs 

after the introduction of 2% infectives in a population of 

susceptibles at the given parameter values. An epidemic is 

observed as a wave of susceptibles decay. The susceptible 

curve shows a negative exponential depletion of the 

susceptibles, decreasing with a decreasing rate as time 

increases. The number of infectives increases rapidly until 

most susceptibles are infected. Number of susceptibles 

decreases at the same rate as infectives increases, and the 

rate of change has an effect on the rate at which AIDS cases 

appear. The curve of the infectives is of the log logistic 

curve. The curve starting from 2% infectives increases at a 

decreasing rate as time increases to a peak of 62% 

infectives, thereafter decreases with an increasing rate as 

time increases. The susceptibles curve and the AIDS curve 

intersect at a time when the infectives curve is at its peak. 

At this point the susceptibles have decayed to 19% while 

the AIDS cases have increased to 19%.  

3.2. Effect of Changes in Rates at which Susceptible 

Becomes Infective (αααα) 

Keeping the parameters γ, d1 and d2 constants at the 

values 0.0245, 0.0012 and 0.0045 respectively, the effect of 

changing α on the susceptibles is shown in Figure 3.2. 

When α is low (≤ 1%), the number of susceptibles reduces 

rapidly until there are about 67%, and thereafter remains 

constant. When α is high (>1%), the number of 

susceptibles reduces more rapidly until no more 

susceptibles. The rate of decrease in the number of 

susceptibles increases with increases in α. The effect of 

changing α on the infectives is shown in Figure 3.3. When 

α is low (≤1%), the number of infective increases rapidly to 

a peak of 23% infectives, and thereafter remains constant. 

When α is high (≥1%), the number of infectives increases 

more rapidly to higher peaks of higher percentages of 

infectives, and thereafter the number of infectives decreases 
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with increase in time. The rate of increase in the number of 

infectives increases with increase in α and the rate of 

decrease after the peaks, increases with increase in α. All 

the infectives curves showed fluctuations. The more the 

fluctuations, the lesser the value of α. The effect of 

changing α, on the AIDS cases is shown in Figure 3.4. 

When α is low (≤1%), the number of AIDS cases increases 

to 10%, and thereafter remains constant. When α is high 

(>1%), the number of AIDS cases increases slowly at the 

beginning and later towards the end increases rapidly to 

higher percentages of AIDS cases. The rate of increase in 

the number of AIDS cases is more slow at the beginning 

and more rapid towards the end with increase in α. 

3.3. Effect of Changes in Rate at which Infective Becomes 

AIDS (γ) 

Keeping the parameter α, d1 and d2 constant at the values 

0.3, 0.0012 and 0.0045 respectively, the effect of changing 

γnon the infectives is shown in Figure 3.5. When γ is low 

(≤ 0.45%), the number of infectives increases rapidly to a 

peak of 84% infectives, and thereafter decreases a little and 

remains constant. The lower the value of γ, the higher the 

peak of infectives and the earlier in time it remains constant. 

When γ is high (>0.45%), the number of infectives 

increases less rapidly to lesser peaks, and thereafter 

decreases. The higher the value of γ, the less the rate of 

increase of the number of infectives and lower peaks. After 

the peaks, the rate of decrease in the number of infectives 

increases with increase in γ. All the infective curves 

showed fluctuations. The more the fluctuations, the higher 

the value of γ. The effect on changing γ on the AIDS cases 

is shown in Figure 3.6 When γ is low (≤0.45%), the number 

of AIDS cases increases slowly at the beginning and 

rapidly towards the end to a maximum of 27%. When γ is 

higher (>0.45%), the number of AIDS cases increases 

slowly at the beginning and more rapidly towards the end 

to a more higher percentages. The rate of increase in the 

number of AIDS at the beginning is decreasingly slow with 

increase in γ. And towards the end, the rate of increase in 

the number of AIDS is increasingly fast with increase in γ.  

3.4. Effect of Changes in AIDS Death Rates (d2) 

Keeping the parameter α, γ and d1 constants at the values 

0.3, 0.0245 and 0.0012 respectively, the effect of changing 

AIDS death rate (d2) on the infectives is shown in Figure 

3.7. At the beginning, all the curves show about the same 

rate of increase in the number of infectives. But towards the 

peaks, the rate of increase in the number of infectives 

increases with decrease in d2. After the peaks, the curves 

decrease, with the higher level of d2 decreasing more. The 

curves show so much fluctuations. The effect on changing 

d2 on the AIDS cases is shown in Figure 3.8. At the 

beginning, all the curves show about the same slow 

increase in the number of AIDS cases. Towards the end, the 

rate of increase in the number of AIDS cases is faster and a 

little higher with increase in the level of d2.  

3.5. Effect of Changes in Natural Death Rates (d1) 

Keeping the parameter α, γ and d2 constant at the values 

0.3, 0.0245 and 0.0045 respectively, the effect of changing 

d1 on the infectives is shown in Figure 4.9. At the 

beginning, all the curves show about the same rate of 

increase in the number of infectives. But towards the peaks, 

the rate of increase in the number of infectives increases 

little with decrease in the level of d1. After the peaks, the 

curves decrease more with increase in the level of d1. The 

curves show so much fluctuations. The effect of changing 

d1 on the AIDS cases is shown in Figure 4.10. At the 

beginning, all the curves showed about the same slow 

increase in the number of AIDS cases. Towards the end, the 

rate of increase in the number of AIDS cases is faster and 

little higher with increase in the level of d1. 

 

Fig 4.1. Stochastic Behaviour of the Three Disease States with Time for α=0.29, γ=0.0245, d2=0.0045, d1=0.0012 
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Fig 4.2. Changes in Number of Susceptibles with Changes at Rates Susceptibles Becomes Infectives 

 

Fig 4.3. Changes in Number of Infectives with Changes at Rates Susceptible Becomes Infective 

 

Fig 4.4. Changes in Number of AIDS Cases with Changes at Rates Susceptible becomes Infective 
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Fig 4.5. Changes in Number of Infectives with Changes at Rates Infective Becomes AIDS 

 

Fig 4.6. Changes in Number of AIDS Cases with Changes at Rates Infective Becomes AIDS 

 

Fig 4.7. Changes in Number of Infectives with Changes in AIDS Death Rates 
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Fig 4.8. Changes in Number of AIDS Cases with Changes in AIDS Death Rates 

 

Fig 4.9. Changes in Number of Infectives with Changes in Natural Death Rates 

 

Fig 4.10. Changes in Number of AIDS Cases with Changes at Natural Death Rates 
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4. Discussion and Recommendation 

The assumption that the susceptible people contract HIV 

disease only through sexual contact with the infective 

people is realistic. This is because sexual contact between 

the susceptible people and the infective people is the 

commonest way for susceptible people contracting HIV 

disease in Nigeria. Other modes of transmission are not as 

common. The Discrete – Time Markov process HIV/AIDS 

model is able to show the epidemic of the HIV/AIDS 

disease. The number of susceptibles shows depletion in a 

negative exponential form, and the number of infectives 

shows growing and decaying in a log logistic form, while 

the number of AIDS shows growth in a positive 

exponential form. Changing the levels of the parameters in 

the model give insight into the influences of these 

parameters on the number of these three disease states. 

From the effects of these parameters on the three disease 

states, the crucial parameters to control HIV/AIDS are 

determined. When the rate at which susceptible becomes 

infective (�) is not more than 1% ensures the depletion of 

the number of susceptibles stop early with a reasonably 

large size. The numbers of infectives and AIDS cases are 

kept to a minimum and the numbers stabilize faster. 

Therefore to control the epidemic �  should be kept very 

low. To control the epidemic, rate at which infective 

becomes AIDS (γ) need to be kept lower than 0.45%. When 

γ is lower than 0.45% the number of infectives is higher but 

the number of AIDS cases is lower. When AIDS death rate 

is low, number of AIDS cases is reduced while the number 

of infectives is higher. The situation is the same for natural 

death rate as that of the AIDS death rate. 

To keep the numbers of infectives and AIDS cases low, it 

is necessary for the rate at which susceptible becomes 

infective (�) be made lower than 1% and the rate infective 

becomes AIDS (γ) to be lower than 0.45%. 
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